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Abstract. In this article, we propose a formal method for evaluating the asymptotic behavior of a shape functional
when a thin tubular ligament is added between two distant regions of the boundary of the considered domain.
In the contexts of the conductivity equation and the linear elasticity system, we relate this issue to a perhaps
more classical problem of thin tubular inhomogeneities: we analyze the solutions to versions of the physical partial
differential equations which are posed inside a fixed “background” medium, and whose material coefficients are
altered inside a tube with vanishing thickness. Our main contribution from the theoretical point of view is to
propose a heuristic energy argument to calculate the limiting behavior of these solutions with a minimum amount
of effort. We retrieve known formulas when they are available, and we manage to treat situations which are, to the
best of our knowledge, not reported in the literature (including the setting of the 3d linear elasticity system). From
the numerical point of view, we propose three different applications of the formal “topological ligament” approach
derived from these expansions. At first, it is an original way to account for variations of a domain, and it thereby
provides a new type of sensitivity for a shape functional, to be used concurrently with more classical shape and
topological derivatives in optimal design frameworks. Besides, it suggests new, interesting algorithms for the design
of the scaffold structure sustaining a shape during its fabrication by a 3d printing technique, and for the design of
truss-like structures. Several numerical examples are presented in two and three space dimensions to appraise the
efficiency of these methods.
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1. Introduction

In line with the growing interest raised by shape and topology optimization within the academic and
industrial communities, various computational paradigms have emerged, with competing assets and
drawbacks; see [95] for an overview. Among them, relaxation-based topology optimization frameworks
feature designs as density functions and (possibly) microstructure tensors, describing the local ar-
rangement of material and void at the microscopic scale; see for instance [30, 99] about the SIMP
method, and [2] about the homogenization method. Another popular optimal design framework is
that of “geometric” shape and topology optimization, where the optimized shape is rather represented
as a true “black-and-white” domain. Several mathematical tools are then available to evaluate the
sensitivity of the optimized criterion with respect to variations of the design, notably the notions of
shape derivative and topological derivative. This article focuses on another, less considered type of
sensitivity for functions of the domain which evaluates the effect of gluing a thin tubular ligament to
the optimized shape. The proposed approach to address this question relies on a formal connection
between this geometric shape and topology optimization setting and the mathematical field of small
inhomogeneities asymptotics, which has been the focus of much attention from the inverse problems
community, as we shall recall below.
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1.1. Foreword: various means to evaluate the sensitivity of a function with respect to the
domain

Let us consider a model shape and topology optimization problem of the form:

Jnin J(Q), (1.1)
where the objective function J(2) depends on the optimized design €2, which is sought within a set
Uyq of admissible shapes in R? (d = 2,3 in applications). A great deal of optimization algorithms
dedicated to the resolution of eq. (1.1) (starting from the gradient method) rely on the “sensitivity” of
J(€Q) with respect to “small variations” of §2. These notions are usually understood from two different,
complementary viewpoints:

e Hadamard’s boundary variation method is perhaps the most popular framework for geometric
shape optimization. It features variations of a shape 2 of the form

Qg := (Id40)(Q), where 0 : R? — R? is a “small” vector field.

Intuitively, 6 encodes the deformation of Q (and particulary, its boundary 0f2) at each point;
see Figure 1.1 (top, right). The shape derivative J'(2)(6) of J at Q is accordingly defined as
the Fréchet derivative of the underlying mapping 6 — J(€y) at = 0, so that the following
expansion holds in the neighborhood of 6 = 0:

T(;H)—)Oasﬁ—)();

see Section 7.2.1 for a little more detailed presentation. We refer generally to e.g. [12, 72,
86, 102] for the mathematical theory underlying Hadamard’s boundary variation method, and
to [8, 96] for implementation issues.

J(Q) = J(Q) + J'(2)(0) + o(6), where

e The concept of topological derivative is based on variations of €2 of the form

Quor := Q\ B(zo,r) where B(z,r) is the open ball with center zo and radius r.

In other terms, €, is obtained from {2 by nucleation of a hole centered at z¢ € 2 with
small radius r > 0; see Figure 1.1 (bottom, left) for an illustration. The topological derivative
dJr(Q)(zo) of J at Q is the first non trivial term in the asymptotic expansion of J(€2, ) as
r — 0; typically:

I (o) = J(Q) + r¥dJ7r(Q) (20) + o(r?).

We refer to [26, 64, 93, 101] for more details about topological derivatives.
There is also a third notion of sensitivity of J(2) with respect to €2, seldom considered in the
literature, which accounts for the addition to 2 of a ligament w, . with “small” thickness ¢ around
a base curve o; see Figure 1.1 (bottom, right). More precisely, let o : [0,£] — R? be a curve, whose

endpoints ¢(0) and o(¢) belong to 02, and which otherwise lies completely outside 2; one considers
the variations €2, . of £ defined by:

Qe = QUwg e, where wy, 1= {:U eR?, d(z,0) < 5} , (1.2)

the thickness ¢ < 1 of the ligament tends to 0, and d(z,0) = minye, |2 — p| is the usual Euclidean
distance from x to 0. One then looks for an asymptotic expansion of J(£2, ) of the form:

J(Qe) = J(Q) + e 1dTL(Q)(0) + o(e?7). (1.3)

Note that the decay rate e~ of the first non trivial term in this expansion is proportional to the
measure |wq | of the vanishing ligament as ¢ — 0. The sign of the “ligament derivative” dJr,(2)(o)
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THE TOPOLOGICAL LIGAMENT IN SHAPE OPTIMIZATION

FIGURE 1.1. (Top, left) One shape Q C R% (top, right) deformation Qg of Q via the
diffeomorphism (Id +6); (bottom, left) variation €2, , of Q by nucleation of a hole with
radius 7 around zo; (bottom, right) variation Q.. of © by addition of a thin ligament
with base curve o and thickness €.

then indicates whether grafting the thin tube w,. to € is beneficial in terms of the performance
criterion J(2).

Variations of a domain of the form eq. (1.2), and the associated asymptotic expansions eq. (1.3) of
related shape functionals, have been originally analyzed in the series of articles [87, 88, 89]. Unfortu-
nately, the derivation of an expansion of the form eq. (1.3) is far from being an easy task, especially
when the shape optimization problem eq. (1.1) under scrutiny originates from mechanical applica-
tions: J(2) then depends on 2 via the solution ugq to a partial differential equation posed on Q (e.g.
the conductivity equation, or the linear elasticity system), which characterizes its physical behavior.
In this spirit, the asymptotic analysis of partial differential equations posed on domains of the form
eq. (1.2) has been considered in the seminal works [87, 88, 89], where expansions of the form eq. (1.3)
are proved rigorously. The notion of “exterior topological derivative” constructed in there involves
partial differential equations posed on the product set of the shape €2 with the rescaled geometry w, 1
of the ligament. The mathematical justification of expansions such as eq. (1.3) is intricate; moreover,
the resulting formulas do not lend themselves to an easy use in numerical algorithms, as the au-
thors themselves acknowledge in the introduction of [87]; see nevertheless [75] for a recent numerical
implementation of related ideas.

1.2. From topological ligaments to thin tubular inhomogeneities

In the present article, we propose a formal change in viewpoints about the means to understand vari-
ations of a shape of the form eq. (1.2). This paves the way to approximate expansions of a shape
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functional when a thin tube is grafted to the considered domain, of the form eq. (1.3). Unlike the rig-
orous formulas eq. (1.3) established in the aforementioned contributions, our approximate expansions
are relatively simple to calculate, and they are also very amenable to use in numerical practice.

In order to enter a little more into specifics, let us slip into the model context of the conductivity
equation; the latter is analyzed more thoroughly in Section 2 below and we stay at the formal level
for the moment. The considered objective function J(2) of the shape 2 reads:

J(Q) = /Q j(ug) da, (L.4)
where j : R — R is a smooth function, and the physical state uq is the potential, solution to:

—div(yVug) = f in Q,

ug =0 on I'p,

Du (1.5)
Yo =9 on I'y,
'yag—n“ =0 on T,

and ~y(z) stands for the inhomogeneous conductivity inside §2. The parts I'p and I'y of 9Q bearing
homogeneous Dirichlet and inhomogeneous Neumann boundary conditions are non optimizable, and
the functions f and g stand for a body source and a heat flux entering € through I', respectively.
The remaining, adiabatic subregion I' of 0 is therefore the only one subject to optimization. The
perturbed version of eq. (1.5) where a thin ligament w, . of the form eq. (1.2) is grafted to € is
described by the system:

—div(yVuge) = f  in QUuwe,

uge =0 on I'p,

85{2,5 _ (16)
Yo =9 on 'y,
yes on d(QUuws.)\ (TpUTy);

where homogeneous Neumann boundary conditions are imposed on the boundary of the grafted liga-
ment w, . defined in eq. (1.2).

In our analysis, we propose to approximate egs. (1.5) and (1.6); we introduce a large “hold-all”
domain D C R%, containing (2, such that both regions I'p and T'y of 9§ are also subsets of 9D, and
we replace eq. (1.5) by the following “background” conductivity equation, posed on D as a whole:

—div(yVug) = f in D,

Uuop =0 on FD,

Oug __ (17)
Y05, —9 on I'y,
70%:0 on 0D\ (TpUTy),

where vp(x) is an inhomogeneous conductivity coefficient. Formally, the solution ug to eq. (1.7) is a

good approximation of that ug to eq. (1.5) when ~q is of the form

2o(z) = {”(””) e . (18)

ny(x) otherwise,

with n < 1, thus mimicking void, or when ~g(z) is a smoothed version of eq. (1.8), as we assume

thenceforth for simplicity (see Remark 2.3 below about this point). This is the well-known ersatz ma-

terial method in shape and topology optimization: see for instance [2, 11, 30, 50] about the consistency
of this approach.

As an approximation of eq. (1.6), we then introduce the perturbed version of eq. (1.7) where the

thin tube w, . € D in eq. (1.2) is filled by a material with conductivity i (x); the perturbed potential
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FL) FD

FIGURE 1.2. (Left) Graft of the ligament w, . with base curve o and thickness ¢ to
a shape Q; (right) corresponding tubular inclusion inside an approximate background
medium occupying the hold-all domain D.

ue then satisfies:
—div(y:Vues) = f in D,

u: =0 on I'p, yi(z) if z € wye,
where v (z) = i
Yeon — 9 on I'y, vo(z) otherwise;
Ve %“ng = on 0D,

(1.9)

see Figure 1.2 for an illustration.

Our strategy for calculating approximate topological ligament expansions such as eq. (1.3) now
outlines as follows. We investigate the asymptotic behavior of the perturbed, smoothed potential u.
as ¢ — 0, and that of an approximate counterpart J,(g) of the objective J(25c) in eq. (1.4) of the
form:

T () i= /Dj(ue) dz. (1.10)
More precisely, we search for a function u; : D — R and a real number J/ (0) such that:
ue = ug + e tuy +o(e?7Y), and J,(e) = J5(0) 4+ 47LIL(0) 4+ o(e47Y). (1.11)

Note the slight ambiguity in the notation, where the first non trivial term u; in the above expansion
should not be confused with the solution u. to eq. (1.9) for e = 1. Finally, we retain the value .J/(0)
as an approximation of the ligament derivative dJr,(€2)(o) featured in the exact expansion eq. (1.3).

Interestingly, we could have considered a wide variety of “small” inclusion sets w. € D in the
formulation of the problem eq. (1.9), beyond thin tubes wy . of the form eq. (1.2). For instance, wy .
could be replaced by a ball with radius ¢, or a collection of such.

The general study of the influence of low volume inclusions w, within a smooth background medium
has received a considerable attention in the literature. Since the analysis of the approximate asymptotic
expansions eq. (1.11) conducted in the next sections relies heavily on results and techniques involved
in these investigations, we next present this topic with a little more details.

Remark 1.1. The above strategy for evaluating approximately the sensitivity of a functional with
respect to the addition of a thin ligament to the domain is somehow reminiscent of the so-called
“Moving Morphable Components” method in structural optimization; see [69], and [73] in the context
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of density-based topology optimization. In those works, designs are represented as collections of bars,
parametrized by one of their endpoints, their length and orientation. A smooth material coefficient is
calculated thanks to the ersatz material method, approximating the mechanical behavior of the design.
Finally, the optimal design problem is reformulated and solved in terms of these parameters. This idea
could lead to an alternative way to construct a perturbed, smoothed equation such as eq. (1.9), and
thereby a smoothed functional eq. (1.10); see also [27] where a similar process is analyzed in connection
with shape and topological derivatives.

1.3. Sensitivity of a problem perturbed by small inhomogeneities

The effect of low-volume perturbations in the material coefficients of a partial differential equation has
been the subject of multiple investigations in the literature. In this section, we mention a few related
facts and interesting results, without claiming for exhaustivity.

The general structure of the expansion of the solution u. to the conductivity equation eq. (1.9), when
the smooth background medium ~y(z) is perturbed by an arbitrary inclusion set w. with vanishing
measure |w;|— 0 has been identified in the article [44]; it reads:

ue () = uo () + [we| /DM(y)Vuo(y) - VN (z,y) du(y) + o(|w:|). (1.12)

Here, du is a measure capturing the limiting behavior of the rescaled inclusions ﬁws, M(y) is a
polarization tensor, appraising the limiting behavior of the field u. inside w., and N(z,y) is the
Green’s function of the background conductivity operator in eq. (1.7); see eq. (2.9) below for a precise
definition. These conclusions have been extended to various physical contexts, such as those of the
linear elasticity system in [31], or the Maxwell’s equations in [68].

A few particular instances of the above general question have been thoroughly analyzed, where
more specific assumptions about the geometry of the vanishing inclusion set w. make it possible to
determine explicitly the limiting measure du and the polarization tensor M (y).

e The situation which is best understood is certainly that of diametrically small inclusions,
where w; is of the form

we = 70 + ew, for some fixed o € D and w € R%. (1.13)

The limiting measure du turns out to be the Dirac distribution d,, at the point xy where w,
shrinks, and the explicit expression of the polarization tensor M(x() involves the solution to an
exterior problem posed in Rd\w; see Section 4 below for more precise statements. Among other
contributions in this direction, see [23, 45, 91] in the case of the conductivity equation, [21] as
regards the linear elasticity system, and also [97] when, in this context, several diametrically
small inclusions are connected via a non local term; see finally [24] when it comes to the
Maxwell’s equations.

e Thin inhomogeneities have also been paid much attention: w is then a thin sheet of the form
we ={z €R, d(z,S) < e}, (1.14)

around a (open or closed) (d — 1) hypersurface S C RY. In this setting, the limiting measure
du is a Dirac distribution concentrated on the surface S and for y € S, the polarization tensor
M(y) is diagonal in a local frame obtained by gathering tangent and normal vectors to S at y;
see Sections 2 and 3 below for a more precise account in two space dimensions. In this context,
we refer to [34, 35] for the rigorous calculation of the expansion of the solution u. to the
conductivity equation based on variational techniques, and to [74] for an alternative method
of proof based on layer potentials. Interestingly, asymptotic expansions have been derived in
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the thin inhomogeneities context which are uniform with respect to the conductivity 4 filling
we (the latter may take values arbitrarily close to 0 or oo): see [54] in the case where S is
closed, and the recent two-part paper [46, 47] dealing with the challenging issue of open curves
in 2d. Let us finally refer to [33] about thin inhomogeneities expansions in the context of the
linear elasticity equations in 2d.

e One last context of interest in applications is that of tubular inhomogeneities wy ¢, of the form
eq. (1.2). This situation coincides with that of thin inhomogeneities when d = 2, but it turns
out to be altogether different when d = 3. The only rigorous three-dimensional results that we
are aware of arise in the context of the conductivity equation, under the assumption that the
base curve o is a straight segment, see [32]. These have been very recently adapted in [43] to
the case of the Maxwell’s equations, without such a restrictive assumption on the curve o.

In general, the mathematical analysis of such small inhomogeneities asymptotics can be conducted
via different techniques. On the one hand, variational methods rely on precise estimates (in the energy
norm, notably) of the field u. and the difference between u. and ug or several intermediate quantities;
see the aforementioned works [33, 34, 45, 46, 47, 54, 91]. On the other hand, layer potential techniques
are based on a representation of the field u. as an integral over the boundary of the vanishing set dws,
and on asymptotic expansion formulas for the Green’s function N(xz,y) of the background operator
involved in this integral; see for instance [19, 22].

From the numerical point of view, asymptotic formulas of the form eq. (1.12) have been widely used
for the detection or the reconstruction of small inclusions w. inside a known background medium.
Most of these investigations arise in the context of electrical impedance tomography, where a known
current g is injected (or a collection of such), and the corresponding potential u., solution to eq. (1.9)
is measured either on all, or only one part of the domain D, with the purpose to retrieve some of the
features of w. (its diameter, the position of its centroid, etc.).

e The reconstruction of diametrically small inhomogeneities has been extensively addressed in
the literature, and we refer to Chapter 5 in [18] for an overview. In a few words, a least-
square algorithm was originally proposed in [45] for the reconstruction of the parameters of
the inclusion set w, at play in the asymptotic formula eq. (1.12) when the latter is a collection
of balls (center, shape). More robust approaches were then devised, using particular input
currents g, such as constant [23, 78|, linear [18], or exponential functions [22]. The entries of
the polarization tensor M and the locations of the inclusions can then be inferred from the
calculation of integral quantities involving the input and measured data, namely, the values of
g and the measured potential u. on dD. Let us also mention the variant of the linear sampling
method developed in [39] to deal with the identification of diametrically small inhomogeneities.

e The reconstruction of thin inhomogeneities has been considered in [16] in the context of the
2d conductivity equation; the authors use the knowledge of the first non trivial term in the
expansion of the potential u. to infer first the polarization tensor, thus the direction of the
base curve, assumed to be a line segment, then the endpoints of the curve, from the datum of
two boundary measurements. This idea is generalized in [17] to handle inclusions made from
multiple segments in 2d.

e To the best of our knowledge, the identification of tubular inhomogeneities inside a three-
dimensional medium has only been addressed in [32] and [67], in the context of the conductivity
equation and in [43] in the context of Maxwell’s equations. In [32], the asymptotic expansion
of u. is rigorously calculated and used, in the particular case where o is a straight segment;
on the contrary, in [67], the author relies solely on the general structure eq. (1.12) of this
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expansion in order to construct an indicator W (x,n) which vanishes on D, except at points
x € D which are close to the sought curve ¢ and in the directions n which are orthogonal
to o at z. In [43], a regularized least-square algorithm is proposed, which consists in finding
the curve ¢ minimizing the error between the measured far-field and that predicted by the
asymptotic formula eq. (1.12).

1.4. Main contributions and outline of the article

The findings of the present article were partly announced in the preliminary note [51]; our purpose is
twofold.

From the theoretical point of view, our main aim is to calculate the sensitivity of the solution u. to
certain partial differential equations—mnamely the conductivity equation and the linearized elasticity
system— with respect to perturbations of the background material properties inside tubular inclusions
Wee, Of the form eq. (1.2). As we have mentioned, these expansions have already been computed in
a variety of situations, mainly in 2d; their proof is however quite intricate, and we propose a formal
method to achieve this, inspired by the former works in [54, 85, 91]. With a minimum amount of
technicality, the presented argument allows us to retrieve asymptotic expansions for thin tubular
inhomogeneities in situations where rigorous proofs are already available in the literature (the cases
of the 2d conductivity and linear elasticity equations, and that of the 3d conductivity equation when
o is a straight segment); moreover, it allows for a formal calculation of such expansions in situations
which are, to the best of our knowledge, not reported in the literature (such as that of the 3d linear
elasticity system). Furthermore, we show that the expansions of u. obtained in these different contexts
make it possible to calculate the asymptotic behavior of related observables J, () (see e.g. eq. (1.10))
in a convenient adjoint-based framework which is familiar in shape and topology optimization.

From the numerical point of view, we explore several applications in shape and topology optimization
of our asymptotic formulas for thin tubular inhomogeneities. We have indeed exemplified in Section 1.2
that they make it possible to approximate the sensitivity of a function of the domain when a thin
ligament is grafted to the latter. We show how this strategy can be used to fulfill multiple purposes
in the shape and topology optimization context, such as:

e to add bars to structures in the course of a “classical” shape optimization process driven by
shape derivatives, thereby making the final design less sensitive to the initial guess;

e to calculate an optimized support structure for a shape showing overhang features, in readiness
for its construction by additive manufacturing;

e to predict a “clever” initial guess, made of bars, for the optimization of a truss-like structure
(i.e. whose outline resembles a collection of bars).

The remainder of this article is organized as follows. In Section 2, we discuss the problem of thin
tubular inclusions in the physical context of the two-dimensional conductivity equation. The main
result, Theorem 2.1, describes the first non trivial term in the asymptotic expansion of the perturbed
state ue. Although this situation is well-understood in the literature, we take advantage of its technical
simplicity to explain carefully how a simple and heuristic energy argument allows to retrieve the correct
expression. The derivative with respect to the vanishing thickness ¢ of a functional depending on u.
is then calculated in Section 2.3 by means of a suitable adjoint method. In Section 3, we adapt
these developments to the case of the 2d linear elasticity system. Our next task is to obtain similar
results in three-dimensional situations. It turns out that this question shares much similarity with the
treatment of diametrically small inhomogeneities. For this reason, we expose in Section 4 how our
heuristic energy argument also allows to handle this well-known case in the literature. We are then in
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position to address the calculation of the asymptotic expansion of the field u. in the case of tubular
inhomogeneities in 3d, first in the case of the conductivity equation in Section 5, then in the context of
the linear elasticity system in Section 6. As we have mentioned, the ideas introduced in this article give
rise to various numerical algorithms in connection with the field of shape and topology optimization.
These are presented in Section 7, and illustrated with concrete physical examples. Eventually, several
theoretical perspectives of our work are outlined in Section 8, as well as promising applications.

2. Asymptotic expansion of the solution to the conductivity equation in 2d

The analyses of this section take place in the setting of the 2d conductivity equation which we have
already encountered in Section 1.2, where the salient points of this article can be conveniently exposed,
with a minimum level of technicality.

2.1. Presentation of the model setting and statement of the results

Let D C R? be a bounded Lipschitz domain, filled by a material whose conductivity v € C°(D)
satisfies:

Ve e D, ~v- <) <74, (2.1)

for some fixed constants 0 < y_ < «4. The boundary 0D is composed of three disjoint, open subsets:
the voltage potential is kept at constant value 0 on I'p, while a smooth heat flux g € C®(T'y) is
entering D via the subset I'y; the domain D is insulated from the outside on the remaining part
0D \ (Tp UTy). Denoting by f € C*®(D) a source acting in the medium, the voltage potential ug
inside D is the unique solution in the space

Ht, (D) = {ue H'(D), u=0onTp}
to the following “background” conductivity equation:

— diV(’}/OvuO) = f in D,

ug = on I'p, (2 2)
fyo% :g on FN7
70%: on 0D\ (I'pUT'y).

Let us already notice that the classical regularity theory for elliptic equations predicts that the solution
up to eq. (2.2) is smooth in the interior of D; see e.g. [38, §9.6].

We now consider a version of the above situation where D is perturbed by a “thin” tubular inclusion
Wg,e With width € > 0 around a base curve o:

Woe = {x € R?, dist(z,0) < 5} ; (2.3)

see Figure 2.1 for an illustration. Here, we assume that o : [0,¢] — D is a smooth (open or closed)
connected curve, parametrized by arc length (so that ¢ is the length |o| of the curve), which does
not intersect 0D, and is not self-intersecting. Throughout the article, with a slight abuse of notation,
we identify the geometric curve o with its parametrization s — o(s). The inclusion w, . is filled with
another material with smooth conductivity 41 € C*(D), which also satisfies eq. (2.1) (up to modifying
the values v_ and ). The potential u. in this perturbed situation is the unique solution in HllD (D)
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to the following equation:
—div(y.Vu,) = f in D,

Ue on D, Where ’Yg(fl?) — ’71 (:L‘) rrec UJ € (24)
~Yo(x) otherwise.

70%:.9 on I'y,

70%: on 9D\ I'pUTy),

FIGURE 2.1. Setting of the perturbed conductivity problem eq. (2.4) in the case of
(left) a closed base curve o and (right) an open base curve o.

We aim to understand the behavior of u. as the thickness ¢ of the inclusion vanishes. In this
direction, a fairly classical analysis yields the natural convergence result (see Lemma B.1 for a proof):

ue 2% g strongly in H%D(D).

We then wish to identify the next term in the asymptotic expansion of u. as ¢ — 0; the main result of
interest is the following. It has been proved independently in [34] owing to a variational method and
in [74] by layer potential techniques.

Theorem 2.1. The following expansion holds at any point x € D\ o:
ue(z) = up(x) + cur(x) + o(e), where ui(x) = / M(y)Vuo(y) - VyN(z,y) dl(y), (2.5)

and the remainder o(e) is uniform when x belongs to a fized compact subset of D\ o. Here, N(z,y)
is the Green’s function of the background operator eq. (2.2) (see Section 2.2.1 below), and for any
point y € o, the polarization tensor M(y) is a symmetric 2 X 2 matriz. Its expression reads, in the
local orthonormal frame (7(y),n(y)) of R? made of a unit tangent vector 7(y) to o at y and its 90°
counterclockwise rotate n(y):

2(71(y) —0(v)) 0 ) ) (2.6)

M) —
) ( 0 270(y) (1 - 244

Remark 2.2. In the above expression, and throughout this article, we have denoted by d¢ the line
measure on a (smooth enough) one-dimensional subset of R?, d = 2, 3. This measure coincides with
the surface measure ds on a (d — 1)-dimensional hypersurface of R? when d = 2, and we shall use
interchangeably either notation in this situation.

The conclusion of Theorem 2.1 holds regardless of whether o be closed or open. While the latter
situation is the most interesting for our applications, its rigorous mathematical treatment is signif-
icantly more involved. Briefly, one has to prove that the contribution of the endpoints of o to the

194



THE TOPOLOGICAL LIGAMENT IN SHAPE OPTIMIZATION

asymptotic behavior of u. is of order higher than €. This fact is observed in all the situations handled
in the literature, to the best of our knowledge: see [34] for the case of the 2d conductivity equation,
[33] for the case of the 2d elasticity system, and [32] in the context of the 3d conductivity equation,
under some technical assumptions, and [43] for the case of the 3d Maxwell’s equations. It even holds
true when, in the 2d conductivity case, the conductivity inside the inclusion is allowed to degenerate
to 0 or oo; see [46, 47, 54].

In Section 2.2.3 below, we propose a formal method, which can be made rigorous in some cases,
leading to the correct expansion eq. (2.5) obtained in [34, 74] from intuitive considerations. According
to the previous discussion, for simplicity, the presentation of our formal argument proceeds under the
simplifying assumption that the curve o is closed.

Our second topic of attention in Sections 2.2 and 2.3 concerns the behavior as € — 0 of a quantity
of interest J, (&) involving the perturbed potential u.. To set ideas, we consider a function of the form:

Jo(e) = /Dj(us) dz, (2.7)
where j € C*(R) satisfies the growth assumptions:
VueR, |j(w)| < CO+ul?), |j'(u)] < CO+ul), and [5"(u)] < C, (2.8)

for some constant C' > 0. Using Theorem 2.1, we prove in Section 2.3 that J,(¢) is differentiable at
€ = 0, with derivative

J(0) = /Dj’(uo)ul dz.

This expression is somewhat awkward, since it involves the term u; in eq. (2.5), which depends on
o in a very non trivial way. This makes difficult the identification of a curve o such that J.(0) be
as negative as possible. To overcome this drawback, we show that, thanks to the introduction of a
suitable adjoint state pg € H%D (D), this derivative has the alternative form:

T,(0) = [ M(@)Vuo- Vpo dé(a),

which is much more suitable for our purpose.

Remark 2.3. We believe that the aforementioned results, and notably Theorem 2.1, still hold true
in the case where the background conductivity g is only piecewise smooth, with jumps not aligned
with the curve o, and also in the case where o does intersect dD in a non tangential way. Although we
have no proof of these facts, we shall see in the examples of Section 7.3 that the use of our asymptotic
formulas when o intersects 0D yields coherent numerical results.

2.2. Asymptotic behavior of the potential u,

Our purpose in this section is to retrieve the conclusion of Theorem 2.1 thanks to a simple formal
argument based on energy considerations, in the particular case where o is a closed curve. To this end,
we first recall in Section 2.2.1 some elementary facts about the Green’s function associated to eq. (2.2)
and we say a few words about the signed distance function to a closed curve ¢ in Section 2.2.2.
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2.2.1. Preliminaries about the Green’s function to the background conductivity equation eq. (2.2) in 2d

Let N(x,y) be the Green’s function of the mixed boundary value problem in eq. (2.2), that is, for a
given point x € D, the function y — N (x,y) satisfies:
divy (Y0 (y)VyN(2,y)) = 0y=x in D,
0(y) g (,y) = 0 on 0D\ I'p, (2.9)
N(z,y ) =0 on I'p,
where ,—, is the Dirac distribution at y = z. A simple adaptation of the proof of Lemma 2.36 in [62]
reveals that the function N(z,y) is symmetric in its arguments: N(z,y) = N(y,z). Moreover, it has

essentially the same singularities as the (modified) fundamental solution of the Laplace operator in
the free space

1
G =— 1 — . 2.10
(2,9) 2mm0(a) 8 |z =yl (2.10)
More precisely, the following decomposition holds:
N(z,y) = G(z,y) + R(z,y), (2.11)
where for z € D, the remainder y — R(z,y) satisfies:
divy (y0(y) VyR(z, y)) = ﬁo() = y\2 ‘Vl(y) in D,
w(y)ﬁ—,{j(x,y) = gl ooy on 9D\ Tp,
R(z,y) = 2mo log |z — y| onI'p.

Since the right-hand side of the above equatlon belongs to LP(D) for 1 < p < 2 and is smooth for y # z,
it follows from classical elliptic regularity that, for a given point x € D, the functions y — R(z,y)
and y — N(z,y) are smooth on D \ {z}; moreover, for any compact subsets K, K’ € D, there exists
a constant C' such that:

sup || R(x, - )lw2»(xr) + sup | R(z, )| g1(py < C; (2.12)
zeK zeK

see [38, 66], and also [63] for a more thorough analysis of such Green’s functions.

Let now 0 € D be a smooth, connected, open or closed simple curve (i.e. o does not present self-
intersections); we denote by n(z) a smooth unit normal vector field to o, whose orientation may be
arbitrary for the purpose of this section. When a(z) is a discontinuous quantity across o which is
sufficiently smooth from either side of o, we denote by

E SRR
a*(x) = %gr(l) a(z £ tn(z))
>0
the one-sided limits of a at = € o. Accordingly,

[a](z) :=a® () —a (z) and {a}(z):=a"(2)+a (z)
are respectively the jump and the mean value of a across o; see again Figure 2.1.
In the following, we shall require information about the following integrals, involving the GReen’s
function N(z,y) to eq. (2.2) and a smooth enough density function ¢, say ¢ € C% (o) for some
0<i<:

Vee D\o, Syo(x /Nl’y ds(y),

Vz € D\ o, Dyp(x /’Yo y)e(y) ds(y),

These quantities are respectively the well-known single and double layer potentials associated to (;
see [19, 62, 83] and references therein for related material, and also [76, 77] when o is open.
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The single and double layer potentials S, and D,y satisfy the following jump relations on o:

So61 =0, g (Sae)] = (2.13)
and
[Do] = —¢, ['708(1(2)0%0)} =0, (2.14)

both formulas being obviously independent of the chosen orientation for the normal vector n.
A straightforward calculation based on egs. (2.13) and (2.14) reveals that the first-order term u; in
the expansion eq. (2.5) of the perturbed potential u. satisfies the following partial differential equation:

- diV(’}/ovul) =0 in D \ ag,

up =0 on I'p,

Yo% = on 0D \Tp, (2.15)
[u] = =2 (1 — 1—‘1) % on o,

[’Yo%} =22 8(71 - ’VD)%) on o.

The function u; is equivalently characterized by the integral representation eq. (2.5) or as the solution
to eq. (2.15). Note however that the functional setting for eq. (2.15) differs, depending on the nature
of 0. When ¢ is closed, u; is the unique solution in the space H%D (D \ o) to this equation. Moreover,
this function is “variational” in the sense that it is equivalently characterized as the minimizer of
an energy functional whose Euler—Lagrange equations precisely yield eq. (2.15). The case where o is
open is more subtle; see [76] for related issues. The function u; is no longer variational; it satisfies the
various components of eq. (2.15) in the sense that it belongs to C?(D \ @), that it has one-sided limits
uf(x) at every point x in the interior of o, and that it has logarithmic singularities at the endpoints;
see [16] for precise statements and proofs.

Remark 2.4. The exact counterparts of the above properties hold in the case of three space dimen-
sions, up to the fact that the (modified) fundamental solution G(z,y) in eq. (2.10) then reads:

1
C@Y) = @ =yl

2.2.2. Preliminaries about the signed distance function to a closed curve in 2d

As we have mentioned, our formal calculation of the first-order asymptotic expansion of Theorem 2.1
is considerably simpler when o is a closed curve. This situation can indeed be treated with the help
of the notion of signed distance function, whose main properties we recall for the convenience of the
reader, referring to e.g. [42, 55, 66] for details.

Let ¢ C R? be a smooth, connected, closed simple curve, delimiting an interior and an exterior
domain, O and O! respectively; see Figure 2.1 (left). We denote by n = (n1,n2) : ¢ — R? the unit
normal vector to o, pointing outward O, and by 7 = (n2, —n1) the corresponding tangent vector, so
that for any point x € o, (7(z),n(z)) is a local orthonormal frame of the plane.

Definition 2.5. e The signed distance function d, to the interior domain OV is defined by:
—d(z,0) ifxzeOY,
Vo € R?, dy(x) =<0 ifz €o,

d(z,0) ifze O,

where
d(z, ) = min |z — p| (2.16)
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is the usual Euclidean distance function to o.

e The points p € o achieving the minimum in the definition eq. (2.16) are called the projections
of = onto 0. When there exists a unique such point, it is denoted by p,(z).

e The skeleton ¥ of o is the set of points € R? having at least two projections on o.

Since o is smooth, there exists r > 0 such that the mapping
(—r,r) x o3 (t,x) — x +tn(x) € Wo,r (2.17)
is a smooth diffeomorphism onto the tubular neighborhood wy, of o defined in eq. (2.3). Its inverse
is:
Wor D @ — (do(x),po(z)) € (—1,7) X 07}
see [14] or [103, Thm. 20, p. 467]. Throughout this article, we assume for notational simplicity and

without loss of generality that this property holds for some r» > 1. As a consequence, the tangential
and normal vector fields 7(z) and n(x) can be extended from o to the whole set wy; via the formulas

7(x) = 7(po(x)), and n(z) = n(ps(z)), = € w1, (2.18)

a notation that we consistently employ in the following. In particular, it is possible to define the
normal and tangential derivatives % and % of a (smooth enough) function v : D — R on the whole

neighborhood w, 1. Also, when M : D — R?*2 is a matrix-valued function, we denote by

M M
M= T ™ )
( Mm' Mnn

its expression in the local basis (7,7n), that is, for z € wy1: My (z) = M(z)7(x) - 7(2), Mem(z) =
M(x)n(x) - 7(x), etc.
The derivatives of the signed distance function d, and the projection p, read:

1
Vo € we1, Vdg(x)= 2 —po(x) =n(p,(z)), and Vp,(z)= ( (@) ) , (2.19)
’ dy () 0 0
where the latter matrix is expressed in the local basis (7(x),n(z)). Here, K : ¢ — R is the mean
curvature of o, oriented in such a way that x(x) is positive when OV is locally convex around z, and
we take the shortcut x(z) = k(ps(x)) for € wy 1.
In the following, it will also prove useful to recast integrals over the tubular neighborhood w, 1 as
nested integrals over o and (—1,1); to this end, applying the coarea formula of Lemma A.1 with the
mapping p, and using eq. (2.19) yields:

Proposition 2.6. For any function ¢ € L*(wy.1), it holds:

/%11 o(r) dr = /(7 </1 (1+tx(p))f(p+tn(p)) dt) dé(p).

-1

We conclude this section with a few technical formulas involving the extended normal and tangential
vector fields n, 7 : wy1 — R? in eq. (2.18).

We first calculate the derivatives of n and 7. Differentiating the normalization identities |7|? =
In|? =1 and 7 - n = 0, we obtain:

Vil =VnTn=0, and Vrin+ Vvnlr =o0.

Besides, the normal vector reads n = Vd,, and so the symmetric matrix Vn = V2d, is given by:

—— 0
— 1+dsk
Vn = ( 0 0 > . (2.20)
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in the local basis (7,n) of the plane; see e.g. [66], §14.6. Now, straightforward calculations yield:
Vrn-1=Vrir-n=0, Vrn-n=Vrin.-n=-Vnlr.n=0,
as well as:
Vrr-7=0 and VTT~n:VTTn-T:—VnTT~T,
so that we obtain, in the local basis (7,n):
o 0 8 , (2.21)
T I+dor

Finally, let v : ws 1 — R? be a smooth enough vector-valued function; similar calculations based on
the previous formulas yield:

V(-n)-n=Voln-n+Vnlv.-n=Vun-n, (2.22)
and
Vw-7)-n=Volr-n+Vrilv.-n=Von-7+Vrn-v=Vun-7. (2.23)
Likewise,
. . — T T . — . .
Vw-n)-7=(Vn'v+Vvn) 7=Vor-n+ 1+dgﬁv T,
and so: .
VUT'HZV(U'H)'T—1+dUHU T (2.24)
Finally,
V(U-T)'7’ZVTTU-T+VUTT~TZV’UT'T-FVTT-U:V?}T'T—iK‘ v-n,
1+dsk
which yields:
WT.T:V(U-T)-Hﬁv-n (2.25)

Remark 2.7. Most of the above results actually extend to regions outside the tubular neighborhood
we,1 of 0. More precisely, the mappings d, and p, turn out to be differentiable on the whole set D\ X
(see again [42, 55, 66]) and all the formulas in this section hold true in there.

2.2.3. Formal proof of Theorem 2.1 when o is a closed curve

We now describe how the asymptotic behavior of the potential w., solution to eq. (2.4), which has
been derived rigorously in [34, 74|, can be inferred in a relatively simple manner from heuristic energy
considerations. Let us notice that, however formal, this argument can be made rigorous along the
lines of our previous work [54], but this goes beyond the scope of the present article. To simplify
the presentation, we assume throughout this section that the considered curve o is closed; see the
discussion following Theorem 2.1 about this point.

Introducing the difference 7. := 1 (u. —ug) € H%D (D), we aim to prove that, as ¢ — 0, r. converges
to the function u; defined in eq. (2.5). We proceed in three steps.

Step 1: We represent the error r.(z) at points x € D\ ¢ in terms of the Green’s function
N(z,y) and the values of r. inside w,.. To this end, a simple calculation reveals that r. is the
unique solution in H%D (D) to the following problem:

—div(y.Vre) = 2 div (L, . (71 — 70)Vug) in D,
re =0 on I'p,
’Yo% =0 on 0D\ T'p,
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where 7. is defined in eq. (2.4) and 1, is the characteristic function of w, .. The variational form of
this equation is:

1
Yo € H%D (D), /D%V'rs -Vodr = —g/ (71 —v)Vug - Vo dz. (2.26)

Let x € D\ o be a fixed point; it follows again from elliptic regularity that r. is smooth in a neigh-
borhood of z for € > 0 small enough. Using the definition eq. (2.9) of the Green’s function N(z,y),
which holds in the sense of distributions, we obtain:

re@) = [ divy (0(0) VN, ) r(w) d.
== /D 20(y)Vre(y) - VyN(z,y) dy, (2.27)
== [ 2@Vr) VN@y dy+ [ (=0 @) V) TN () dy.

In order to rewrite the first integral in the above right-hand side, we wish to insert y — N (x,y) as test
function in the variational formulation eq. (2.26) for r.. Unfortunately, this is not directly possible
since N(z,-) is not a function in H%D(D). More precisely, it follows from egs. (2.10) to (2.12) that

N(z,y) is in WH1(D) and that it belongs to H'(D\ V), where V is an arbitrary open neighborhood of
x. To achieve our purpose nonetheless, we argue as in [44]: since = ¢ o, for a fixed and small enough
€, there exists an open neighborhood V C D of x such that:

Wee €D\ 'V,

and a sequence of functions vy € H%D (D) satisfying:

v € Hh (D), wp(y) = N(z,y) fory € D\V, and wv(y) 225 N(z,y) in WHY(D).

We may now use v = vy, in eq. (2.26) and take limits in the resulting expression because r. is smooth
on V. This yields:

/D%(y)ws(y) - VyN(z,y) dy = —é /ww (71 =70) (1) Vuo(y) - VyN (z,y) dy;
combining this with eq. (2.27) finally results in:
re(z) = i/% (71 = 70)(¥)Vuo(y) - VyN(z,y) dy + /w” (71 =20)(®)Vre(y) - VyN(z,y) dy, (2.28)
which is the desired representation formula for r.(x).

Step 2: We identify the behavior of the rescaled error inside the inclusion set w;.. This is
the part where our derivation becomes formal. Let us introduce the mapping m. : ws1 — wgs defined
by:

VI € we1, me(x) = po(x) + edy(z)n(ps(2)). (2.29)
Using the material in Section 2.2.2, the derivative of m. reads, in the local basis (7(x),n(z)) of R?:

1+eds (x)k(x) 0 >

Vme(z) = < l+dg (z)k(z) (2.30)

3

We now seek the limiting behavior of the rescaled error s, := r. om, inside the unit inclusion set wy 1;
this quantity will show up in the course of the third step below.
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To this end, applying the classical Lax—Milgram theory to the variational problem eq. (2.26) allows
to characterize r. as the unique solution to the following minimization problem:

1 1
min  F:(u), where E.(u):= f/ Ye|Vul? dz + = (m1 —7)Vuo - Vu de. (2.31)
ueH] (D) 2Jp €

Wo,e

Our strategy now outlines as follows: we construct an equivalent minimization problem from eq. (2.31),
which involves both scales (7, s.) of the problem. The minimized objective F;(u,v) depends on func-
tions u which are defined “far” from ws . and functions v defined on the rescaled inclusion w,,1. We
then obtain information about the limiting behavior v of s. from the intuition that it should minimize
the leading order terms of Fy(u,v) as ¢ — 0.

More precisely, we transform the integrals on wy. in eq. (2.31) into integrals posed over wy; by
means of a change of variables via the mapping m.: the couple (r¢,s:) is then the solution to the
two-scale minimization problem:

in F 2.32
(u)EV. =(u,0), (232

where the space V. is defined by:
Ve= {(“7”> € Hf (D) x H'(wo,1), Yz € 0, {ng - ngm)) = u(z + en(x)) } |
VT u

and the two-scale energy F.(u,v) reads:

1 1
F.(u,v) := 3 /D\ Yo|Vul? dz + 3 (71 0o m2)|det V| (VmZ ' Vm 1) Vv - Vo dz

Wo,1

1
+ g/ (71 = Y0) o mz)|det Vime|(Vug) o me - (VmZ T Vo) da.
Weo,1

An elementary calculation based on eq. (2.30) yields:

1 9 1 1+ edok (Ov\?
Rluo)=g [Vl dot g | (mom) (Trac) (5:) o

o,1

; Lt ok Ovy* dug ov

+ 9 ot (y1 0me) <1+5d0,‘i> <a7_) dx + wo,1((’71 — 70) 0 me) (87— o m5> 5 de
1 1 + Edgli auo 8’[}

+ - oo (71 —0) o me) (Hdg:‘i> < o o m€> o de.

We now expect that the limiting behavior of (r¢,s:) as € — 0, which we denote by (u,v), should
minimize in priority the terms weighted by % in the above expression of F(u,v). In other terms, the
limiting behavior v of s, is the solution to the problem:

n P, whee P =2 [ om) (75 (22
min T == ops) | —— ) [ =
vEH (o) vh  where L0 2 Juga NPT ak) \on v
1 8U[) ov
- () (226 p, ) L da. (2
s o) () (3 o) G e 239

Writing down the associated Euler-Lagrange equation, we infer that, for any test function ¢ €
H' (wy1):

/wg,l (n0po) (1 + dgli> on on dz + /wcm ((v1 —70) °ps) <1 n dg/f) <6n op0> n dr =0.
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We now extract information about the desired limit function v from this equation. Applying the coarea
formula of Proposition 2.6 and using test functions of the form

e(p+tn(p)) =¢((P)C(1), peo,tel-11],

for arbitrary smooth functions ¢ € C*°(¢) and ¢ € C*°([—1, 1]), we obtain:

[ ) ([ 50+ me))e ) i

duo

+ [ ) =) 52 ([ 0y e) aep) =o.

As a result, for any point p € o, the function (—1,1) 3 ¢t — v(p+tn(p)) is affine (i.e. %(v(p—i—tn(p))) =
0), and & (v(p +tn(p))) = %(p +tn(p)) is the real value given by the relation:

71(19)%(19 +tn(p)) + (m(p) — vo(p))%(p) =0,

that is:

ov 1 Oug

5, P+ tn(p)) = ——<(1(p) —0(Pp)) 5 (/).

71(p) (2.34)

Note that we have not fully characterized the limiting function v for s. inside wy 1, but the above
information is all that will be needed for our purpose; see Remark 2.8 and Section 5.4 about this
point.

Step 3: We pass to the limit in the representation formula eq. (2.28). A change of variables
in eq. (2.28) based on the mapping m. immediately brings into play the rescaled function s.:

@) == [ et Tmel((n = 70) 0 me) (Vo) o) - VN amey) dy

o,1

+ / |det Ve |((v1 — 70) 0 me) V"' Vs - VN (z,m<(y)) dy,

o,1

a /m,l 11—:—5(270:((% — ) o me)((Vug) ome) - VyN(z,me(y)) dy

.

Now using the Lebesgue dominated convergence theorem, together with the (formal) convergence of
s: to the function v € H'(w,1) partially characterized by eq. (2.34), we obtain:

0s: ON

(1 = o) ome (S E LT (3 me(y) + e O
1= < o7 o7, (y

1+dyr On On,

(z, ms(?J))) dy.

o,1

tim (o) = | L (1 =) 0 20) (V0) © ) - Ty N (2 po(y)) dy

e—0 1+dok
n ( ) 1 0OvON
pa— O —_
Wt L0 0 Pey + dok On Ony

(z,p0(y)) dy, (2.35)
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where v € H'(w,,1) is the limiting behavior of s. derived in the course of the second step. Finally, it
follows from the coarea formula of Proposition 2.6 and eq. (2.34) that:

ll_% re()

= 2/0_ (71 = 0)(p)Vuo(p) - VyN(z,p) dl(p) +/ (/ (p + tn(p)) dt) gi\;(fv,p) dé(p),
= 2/0_(71 — ) (p)Vuo(p) - VyN(z,p) dl(p) — / )(p) ) %1;? (p)gj\;( z,p) dé(p),

=2 [ o= GG ) ) <2 [ () (1 . )8“0@%@ 5) A,

which is the desired expression.

Remark 2.8. As we have mentioned, the limiting behavior v of the rescaled error s. inside the unit
inclusion wy,; is not completely determined by our analysis; only the normal derivative eq. (2.34) is
The main reason is that the “near field” v depends on the “far field” u, i.e. the limiting behavior of the
error 1. “far” from o, in an non trivial way. Actually, injecting the information eq. (2.34) back into the
two-scale minimization problem eq. (2.32) and arguing as in [54] (in particular, pursuing the strategy of
minimizing only leading order terms as ¢ — 0) would provide another minimization problem satisfied
by the “far field” u, which is exactly that associated to the equation eq. (2.15) satisfied by the function
w1 in the expansion eq. (2.5). As we shall see in Section 5.4, a completely different phenomenon occurs
in 3d, where the “near field” function v can be explicitly characterized, independently of the “far field”
U.

2.3. Asymptotic expansion of an observable involving the solution to the conductivity
equation

In this section, we investigate more precisely the asymptotic behavior of the quantity of interest J,(¢)
defined in eq. (2.7) as € — 0. Let us start with a preliminary lemma.

Lemma 2.9. The function J,(g) is differentiable at ¢ = 0 and its derivative reads:

150 = [ §'(uo)ur da, (2.36)

where uy is defined in eq. (2.5).
Proof. Let us first deal with the differentiability of J,(¢) at e = 0; a simple use of Taylor’s formula

yields:
Jg( / / (up + t(ue — uo))

The previous Theorem 2.1 shows the pointwise convergence of the sequence of functions “==*2. Now
invoking the growth condition eq. (2.8) together with the uniform integrability of the sequence of
functions supplied by Lemma B.1, the Vitali convergence theorem (see e.g. [36]) allows to pass to
the limit € — 0 in the above expression. As a result, J,(g) is differentiable at ¢ = 0, with derivative
eq. (2.36). [ |

0 dt da.

The formula supplied by Lemma 2.9 is unfortunately difficult to handle, since it involves the function
u1, which depends on o either via the integral eq. (2.5) involving the Green’s function N(x,y), or in
an implicit manner, via the solution u; to eq. (2.15) where o plays the role of a “parameter”. This
difficulty is classical in shape optimization, and in optimal control in general, and it can be overcome
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thanks to the introduction of a suitable adjoint state, which allows to make explicit the dependence
of J/(0) on o.

Proposition 2.10. The derivative J.(0) rewrites:

JQ(O):2/7 <1_>‘?:f%ffdz+z/( )%“%podz

(2.37)
_ / Mg - Vpo dr,

where the polarization tensor M is that given in eq. (2.6), and the adjoint state py € H%D (D) is the
unique solution to the equation:

—div(vVpo) = —j'(uw) in D,
po=0 on T'p, (2.38)
70%’2’ =0 on 0D\ T'p.

Proof. Injecting the integral representation eq. (2.5) for u; into the formula eq. (2.36) for J.(0), we
obtain:

= [ [0 (2(71—70)(y)(321](y)g]7\:(:n,y)+2 (2en=) )5 w) gfi (@ ’y>>d£(y> ax.
0u0

=2 [ (1 =G ( [ v @)V ) dr ) del)

w2 [ (Zen—0) 05202 on (] ivO0Tm) )N . 9) dr ) ety

where the second line follows from the Fubini theorem and the first line in the definition eq. (2.38)

of Po-
On the other hand, using the definition eq. (2.9) of the Green’s function N(z,y), and its symmetry
with respect to its arguments, it holds, for an arbitrary point y € o,

| div(0Vio) @) (@.y) do = po(y).

Oug Opg Oug Opo
/ - duog Po __ T\ Yo YPo
JJ(O)—2/U(’Y1 %) 5 d€+2/7 (1 ) - ndé

which is the desired formula eq. (2.37). |

Hence,

Remark 2.11. Interestingly, eq. (2.37) can be derived from eq. (2.36) by using the system eq. (2.15)
for characterizing wj, instead of its integral representation eq. (2.5), at least when the curve o is
closed. Indeed, under this assumption, injecting the definition of the adjoint state py into eq. (2.36)
and integrating by parts, we obtain:

J.(0) = /D\div(fyono)ul dz,

0

- / ’YO%[U&] ds — / YoVpo - Vup dx,
o n

“o [ (1o 2) 2 Dug Opo

B 070 8’0 871

dl — /’yong Vuy dz.
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Now using the variational formulation attached to eq. (2.15) (and since po € Hf (D) C HE_(D\ 0)),
we get:

0
/ YoVui - Vpg do = —/ {’Youl] po dl,
D o on

_ 0 auo
= 2/0 7 ((’Yl — 70)87) po dZ.

Combining both expressions, and using integration by parts on ¢ in the last integral of the above
right-hand side, we retrieve eq. (2.37).

Remark 2.12. The particular form eq. (2.7) of functionals J,(¢) considered in Proposition 2.10 is
only a means to set ideas, and multiple other functionals could be handled in exactly the same way,
such as integral quantities involving the trace of the perturbed potential u. on a fixed region of 0D,
or “stress-based” criteria based on the gradient Vu,.

With a little anticipation on Section 7, let us finally comment about the practical interest of this
result. The quantities ug and pg only depend on the “background” configuration, and the structure
eq. (2.37) makes it easy to identify a curve o making the derivative J/(0) negative, indicating that
a tubular inclusion with small enough width ¢, filled by a material with conductivity v; “improves”
this background configuration, as measured in terms of J,(¢). This task is made even easier by the
straightforward reformulation of eq. (2.37):

T(0) = [ Pla,mi(a). mae))de(a)
where P(x,-,-) is the bivariate, homogeneous polynomial of degree two defined for x € o by:
P(z,m1,79) = B1(2)7] + Ba(x)172 + B3(2)73,

with the explicit expressions of the coefficients:

Y0\ Oug Opo 2 9 (8u0 Opg  Oug (9p0>
=2 — _ 2 1—-—=| ——— = — — - -
61 (71 70) 6951 (91'1 + o ( ”)/1) 6952 (91'2, /32 Y1 (71 70) 63;1 8.%‘2 8.%'2 81‘1 ’

Y0 Oug Ipo Oug Ipo
=2y (1 10) ZHOIPO 4 o1 ) S0 TP0
Ps =20 ( ’Yl) Ox1 0x1 2 70)8332 Oxsy’

where the dependence with respect to x is omitted for brevity.

3. Thin tubular inhomogeneities in the context of the 2d linear elasticity system

In this section, we examine the effect of thin tubular inhomogeneities inside a background elastic
medium. Up to an increased level of technicality, our analyses are very close in spirit to those conducted
in Section 2, in the context of the 2d conductivity equation. In order to emphasize the parallel between
both situations, we reuse the notations in there insofar as possible.

3.1. Presentation of the 2d linear elasticity setting and statement of the main results
3.1.1. The background and perturbed linearized elasticity systems

In the present context, the bounded and Lipschitz domain D C R? represents a structure which is
clamped on a subset I'p of its boundary dD; traction loads g : I'y — R? are applied on a disjoint
subset T'y of 9D, and body forces f : D — R? are assumed. The structure is filled with an isotropic,
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linearly elastic material with inhomogeneous, smooth Hooke’s tensor Ag(z): for any element e in the
set S2(R) of symmetric 2 x 2 matrices,

Ap(z)e = 2pp(x)e + Ao(x) tr(e)l, (3.1)
where the Lamé coefficients o and Ao belong to C*°(D) and satisfy in addition:
Ve € D, - < po(w) <4, and 7 < Ao(@) + po(z) < 74, (32)

for some positive constants 0 < y_ < 4.
The displacement field ug € H%D(D)Q in the above situation is the unique solution to the system:

—div(Ape(up)) = f in D,
Uy = 0 on FD, (3 3)
Ape(ug)n =g on I'y, )

Ape(up)n =0 on 9D\ (Tp UTy),

where e(u) := 3(Vu+ VuT) is the strain tensor associated to a vector field u : D — R%. Throughout
the sequel, we assume smooth enough data f, g; elliptic regularity then implies that the background
displacement ug is smooth in the interior of D.

We now consider the situation where the medium Ag is perturbed by a thin tubular inclusion w,. .
of the form eq. (2.3), filled by another elastic material with smooth, inhomogeneous Hooke’s law
Ai(z), whose coefficients A1, 1 € C®(D) also satisfy eq. (3.2). The perturbed elastic displacement
Us € H%D(D)2 is then characterized by:

—div(Aze(ue)) = f in D,

= F A f g,e»
us =0 on I'p, where A.(z) = 1(z) ifax Gu.J ” (3.4)
Ace(us)n =g on I'y, Ap(z) otherwise.
Ace(us)n =0 on 0D\ (TpUTy),

3.1.2. The Green’s function of the linear elasticity system

Like in Section 2, our goal is to obtain an asymptotic expansion for the perturbed displacement field
ue (and a related quantity of interest) of the form:

ue = ug + euq + o(e),

where the first-order term w; has yet to be identified. The precise statement of the result involves,
again, the Green’s function N(z,y) of the background operator in eq. (3.3). Here, N(z,y) is defined
for # # y € D as a 2 x 2 matrix; for x € D and j = 1,2, its 5 column vector y — N;(z,y) is the
solution to:

divy (Ao (y)ey(Nj(z,y))) = dy=2§; in D, o

Ao(y)ey(Nj(z,y))n =0 on 0D\ T'p, (3.5)

Nj(z,y) =0 onI'p,
where §; is the 4* coordinate vector of R2.

The Green’s function N(z,y) is naturally related to the (modified) fundamental solution of the
linearized elasticity operator in the free space — the so-called Kelvin matrix I';;(x,y), given by:

ar(x Or(z) (z; —yi)(x; — y; o
Fij(xay)zzgr)logx_y’(sij_ QET)(Z ]xl)—(yJP J), r£yeR? i,j=1,2,
here
v 1<1+ 1 ) s 1(1 1 ) 36
ar:=—=|—4+—-— an =l —==—|; .
P2\ T 2m0+ Ao "2\ 2m0+ Ao
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see [19, 70, 84] for properties of this matrix. More precisely, it holds
N(z,y) =(z,y) + R(z,y),

where the remainder R(z,y) is “smooth enough” — it satisfies eq. (2.12), as in the case of the 2d
conductivity equation.

Again, the structure of the sought expansion of the perturbed displacement u. (see Theorem 3.2
below) builds upon the layer potential operators associated to the base curve o. In this context,
we introduce the (vector-valued) single layer potential S,p associated to a (vector-valued) density
function p € C%(0)? (0 <1 < 1):

Vo€ D\o, Sppla) = [ Niz,y)ely) dsiy).
and the double layer potential D,y of ¢ is:
Vo€ D\o, Dople) = [ (Avey(NV(wy)n(y))e(y) ds(y).

In the above formula, (Apey(N(x,y))n(y)) is by definition the 2 x 2 matrix where the conormal
derivative operator Agey(-)n is applied row-wise. Explicitly, using Cartesian coordinates:

d d
(Ao (Z 501 (ﬂf,y)>¢~n+uo > ( oy, (©Y)+ ayij(x,y)> nwj) ds(y);

i=1 ij=1

(Dop(a@)m = [

[

see [19] about these matters.
The jump relations for the single- and double-layer potentials read, in the present context:

[SU ] =0, [AOG(SUSO)”] =@, [DUSO] =—¢ and [AOB(DUSO)n] =0ono. (37)
Remark 3.1. Again, the above considerations extend to the three-dimensional case, up to the different
definition of the Kelvin matrix:

- _ ap(@) 1 o Br(®) (zi—yi)(z —y5)
sz(xay) - A |x_y|5’t] A1 |x—y|3

) Z’?j:l7273?

where ar and fr are still given by eq. (3.6).

3.1.3. Statement of the asymptotic expansion of the displacement u.

The asymptotic behavior of the displacement u. as the thickness € of the ligament w,. vanishes is
described in the following theorem, whose rigorous proof can be found in [33].

Theorem 3.2. For an arbitrary point x € D \ o, the following asymptotic expansion holds:
us(x) = ug(x) + eur(x) +o(e), where ui(x) = / M(y)e(ug) : ey(N(z,y)) dl(y), (3.8)
g
and the o(e) is uniform when x is confined to a compact subset K C D \ o. The polarization tensor
M(y) reads, for any symmetric 2 x 2 matriz e € Sa(R):
M(y)e = ar(y) tr(e)l + Br(y)e + vr(y)(eT - )7 @ 7 + dr(y)(en - n)n @ n,
where the coefficients ar, Br,yr and dr are given by:

Ao + 2p0
A+ 2u]

Ho

ar = 2(A1 — Ao) Br = 4(m — MO)Ea

and
201 4+ 21 — Xo o

A1+ 201 M1

H1AQ — HoAL

, b = Ay — o) P20 HoM
> T = 4(m 'uo)m()q-i-?m)

yr = 4(p1 — po) (
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One comment is in order about the notation employed in eq. (3.8): M(y)e(uo) : ey(N(z,y)) is the
vector field with components:

(M(y)e(uo) : e(N(z,y))); = M(y)e(uo) : ey(Nj(2,y)), j=1,2;

i.e. the j' component of M(y)e(up) : ey(N(z,y)) is the Frobenius inner product between the strain
tensors of ug and the j* column of the Green’s function.

Equivalently, using the jump relations eq. (3.7) for the single and double layer potential operators,
the first-order term u; in the above expansion can be seen as the solution to the system:

—div(Ape(ui)) =0 in D\ o,

u; =0 onI'p,

Ape(ur)n =0 on D\ T'p,

[ur - 7] = =4 (1= £2) e(ug) n() on o, (3.9)
[up - n] = -2 (1 — 35(1)%:\\9 e(up)(T)nn — 2 (;}‘j;&’) e(up)rr(z) on o,

[Aoe(u)n] - 7 = —252(x) on o,

[Age(ur)n] - n = 2xa(z) ono,

where the scalar field a : ¢ — R is defined by:

p1—fo+ A1 poA — M1>\0> <M0)\1 - Ml)\o)
= (4 —2 4o (B R0
¢ ( i 21+ M 21+ M elto)rr 201 + A e(to)rn

Again, this solution is “variational” and it belongs to the space H%D (D \ 0)? when o is a closed
curve; when o is open, the functional setting is a little more involved, and similar to that outlined in
Section 2.2.1 in the case of the conductivity equation. We do not elaborate on these issues, since they
are not needed in the sequel.

3.2. Formal derivation of the asymptotic expansion of u. when ¢ is a closed curve

In this section, we show how the asymptotic expansion eq. (3.8), which was rigorously established
n [33], can be derived from a simple adaptation of the heuristic energy argument exposed in Sec-
tion 2.2.3. Still under the assumption that o is closed, we follow the same trail as in there, and for
this reason, we only sketch the calculation.

Let us introduce the difference r, := %(u6 —up) € H%D (D)2, which is the solution to the following
variational problem:

Yo € HL (D)?, /DAEe(rs)  e(v) du = —i/w (A1 — Ag)e(up) : e(v) da. (3.10)

Equivalently, 7. is the unique solution to the minimization problem:

min  FE_(u), where E( / Ace(u) : e(u) dz + — ! / (A1 — Ao)e(up) : e(u) dz. (3.11)
uGH%D (D)2 € Jwo e

Like in Section 2.2.3, we proceed in three steps.
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Step 1: We establish a representation formula for the error r.(z) at points z € D\ o
in terms of the Green’s function N(z,y) in eq. (3.5) and the values of 7. inside w,.. A
calculation analogous to eq. (2.28) yields, for either component j = 1,2 of the error r.(z):

rej(t) = /D divy (Ao(y)ey(Nj(2,9))) - re(y) dy,
=~ [ Awelr)w) + ey (N, ) d.

= —/DAe(y)e(Te)(y) s ey(Nj(2,9))) dy+/w (A1 = Ao)(y)e(re)(y) : ey(Nj(x,y)) dy.

o,€

Now repeating the argument used in the first step of our derivation in Section 2.2.3, we may “insert”
y — Nj(z,y) as test function in the variational formulation eq. (3.10) for r.. The first integral in the
above right-hand side then rewrites:

[ A-@elra) s ey dy =2 [ (= A el ) ey (Ny(a1))
D € Jwge

and so:

real@) =2 [ (A= Ao wleluo)y) : e (Ns(9))) dy

+ (A1 = Ao)(y)e(re)(y) : ey (Nj(z,9)) dy, (3.12)

Wo,e

which is the desired representation formula.

Step 2: We examine the limiting behavior of the rescaled error s, := r. om, inside w, .. To
this end, we construct an equivalent two-scale minimization counterpart for the problem eq. (3.15),
satisfied by the couple (re, s¢), thanks to a rescaling via the mapping m. in egs. (2.29) and (2.30); we
then simplify the involved energy functional by retaining only the leading order terms as € — 0.
Before we do so, let us recall the following elementary fact from calculus: if ¢ : V — U is a smooth
diffeomorphism between two open sets V,U C R? and u : i — R? is a smooth vector field, then

1
e(u)op = 3 (V(u 00)Vo ' + Vo TV (uo @)T) , and (divu) oo = tr(V(uo @)V ).
Hence, a change of variables yields, for an arbitrary vector field u € H%D (D)
Asre(u) : e(u) dz
1 1
= / |det V| <2u1§ (Vva;l + Vm;TVvT) > (Vva;l + Vm;TVvT) + A1 tr(Vva;l)z) dz,
Wo, 1

where we have denoted v = u o m,. After some calculation, this rewrites:

1+edok (( 1+dy,k

2
1
. 2 —_— . 2
. 5d0n) (Vor - 1) —i—gQ(an n)

/wm Are(u) : e(u) de = / 21

Wo.1 1+ dsk

1/1 1+d, 2
—l—( VUTL-T—FHVUT'TL))(L’E

2 \e 1 +edok
l4+edyr (14 dyk 1 2
A . — . dzx. 1
+/w071 1€1+dai<& <1+5d0mvw T—i—Ean n) z. (3.13)
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By the same token, we also get:

/w (A1 — Ag)e(up) : e(u) dz

1+ edyk ( 1+dyk

= 2(u1 — po)e

W1 1+dsk

T Edg/{((vuo omg)7 - 7)(Vor - 7‘)) dz,

1 dy 1
+ " 2(puy — MO)EW (E((Vuo omg)n-n)(Von - n)) dz
1+ ed, 1 14 dy
+ " 2(m — uo)aligda: ((e(uo)m ome) (ngn T+ MV@T : n)) dz

1+dsk

1+ edyk
1+ edsk

+/w (= Na)e 2 (divuo) o me) (

Collecting egs. (3.13) and (3.14), the couple (r., s:) is the solution to the following two-scale mini-
mization problem:

1
Vot -1+ ngn : n> dz. (3.14)

1
min F.(u,v), where F.(u,v) = ~F(u,v) + F2(u,v), (3.15)
(u,w)EVe €
and we have denoted
1 1+ edyk

FX(u,v) :

€

— - Ry 2
=3 ), Thdon ((2/1,1+)\1)(an n)* + p(Von - 7) ) dz
1+ edsk
+/ 2 — po) T
Wo, 1

1+ dor ((Vug ome)n - n)(Von - n)) dz

| +ed,
+ - 2(p1 — uo)w(e(u())m ome)(Vun - 7) dx
| +«d,
wf o —)\O)m((divuo) ome) (Von -n)dz. (3.16)

The quantity F2(u,v) in eq. (3.15) is made of terms whose coefficients are of order O(1) as ¢ — 0,
and its explicit expression is not needed in the following. The functional space V. is defined by:

B u(z +en(z)) = v(z + n(z))
V.= {(u,v) € H%D(D)z x H'(w1)?, Va€o, {u(x —en(z)) = v(x — n(x)) } '

We now obtain information about the limiting behavior v € H*(wy.1)? of s. by relying on the intuition
that v should minimize the leading order terms in the formulation eq. (3.15), so that it actually solves
the problem:

~ B 1 .
UGHI{I(ELI”I)Q F(”)v where F(v) = 5 /wo-’1 1 n do_/g ((2“1 + Al)(vfun . n)? + I (an ) 7—)2) da
1
! /wo,l 20 = po)y + dali((vuo opg)n-n)(Vun-n)dz
1
2 B 14 d . ™ o . d
+ /wa’l (/Ll ,UJO) 1+ doK(G(UO) op )(V’UTL ,7_) x

+ /wa1 (A1 — o) 1 —i—ldafi((divu()) opg) (Von-n) de. (3.17)

As in Section 2.2.3, we extract the information needed for our purpose about v by writing down the
Euler-Lagrange equations for eq. (3.17).
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Using at first test functions of the form

Vpeo, te(=1,1), op@+tn(p) = C(t)Y(p)T(p),

where 1) € C*(0) and ¢ € C*([—1,1]) are arbitrary, and the coarea formula of Proposition 2.6, we
obtain:

Lo ([ @m0+ m)2/0) @) o) + [ 20— po)eCuo)onss [

-1

1
(1) dt) dé(p) = 0.

Here, we recall from egs. (2.22) to (2.25) that for a sufficiently smooth vector-valued function v : R? —
R?, it holds:

Von-n=V(v-n)-nand Von-7=V(v-7)-n. (3.18)
Taking now ¢ with compact support in (—1,1), we see at once that ¢ — (v-7)(p + tn(p)) is an affine
function. Using then arbitrary functions ¢ € C*°([—1, 1]), it follows that:

1 (6) 35 (0 )0+ (0)) + 211 — 1)) Pen = 0,

e o)+ () = (-2 (1- ) c(uo)rn ) ) (3.19)

Now writing down the Euler-Lagrange equation for eq. (3.17) with test functions ¢ € H'(wy1)? of
the form

Vpeo, te(=11), ¢(p+in(p))=(t)¢(p)n(p),
we obtain similarly:

(o ) = (-2 gy,

which is the needed information for our purpose.

_ m (e(uo)rr + e(uo)nn)) (»), (3.20)

Step 3: We pass to the limit in the representation formula eq. (3.12). Using again a change
of variables via the mapping m. in eq. (3.12), we obtain:

resfe) = 2 [ et Tmel(41 = Ag) oma)(elu) o) +(ey(Ny) () dy
+ /wa,l |det Vim.[ (2(p1 — po) 0 me) % (Vs,;Vms—l + VmE—TVse—T) : (ey(N)) (z,me(y))) dy

+ |det Vime|((A1 — Ao) o me) tr(Vs€Vma_1) (divy Nj)(z, me(y)) dy

Weo,1
= LA+ I
with obvious notations.
A simple calculation based on eq. (2.30) now yields:

Il = /w,l m(ml — Ap) ome) (e(up) ome) : (ey(N;)(z, me(y))) dy,

and so, taking limits and using the coarea formula of Proposition 2.6:

ggygzlm1+ZM«Arn%wma@wwom>w%mm@maw»@7

(3.21)
=2 [ (A1 = AoJe(un) : ¢, (N w.p) ).

Note that, in the above integrand, as often in the following, we omit the mention to the integration
point p when the latter is obvious, to keep expressions simple insofar as possible.
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Likewise, it comes:

2= /w ) 2(pu1 — po) © me <€(V8€T -7)(ey (Nj) (2, me ()7 - 7)

1+edsk
Trrmsn ) (e, (), me(y) )

1+edok
1+dyk

+ <5V557' -n+

(Vsen - n)(ey(Nj)(x, me(y))n - n)) dy,

so that, using again eq. (3.18) and the convergence of s. to the function v satisfying eqs. (3.19)
and (3.20) identified during the second step, we obtain:

ti 12 = [ HRPI 2 (o) ey () o () 1)+ (0 m) ey (N5) o0 ) )y

=2 [ 20 = o) () 5 (0 7)(ey (N ()7 ) + 0wy (Ny (o)) ) ) (3:22)

Finally, by the same token,

1+ ed,
I = / (A1 — Xo) o my. (SVSET T+ ungn . n) (divy(Nj)(z,me(y))) dy,
Wo,1 1 + do—ff
and so: O — o) 3
li 12 = [ SLE IR () (divy (V) (2 o (9))
e—0 wen 1+ dok 8n (3.23)
=2 [ (A= 20)0) - 0 0 divy (N ,9) )
Putting egs. (3.21) to (3.23) together, and using the explicit expressions egs. (3.19) and (3.20) for the
derivatives a@(v T) an a@(v n), a simple, albeit tedious calculation yields the desired asymptotic
expansion eq. (3.8).

3.3. Derivative of a quantity of interest depending on the perturbed displacement wu.

In this section, we use the asymptotic expansion of u. obtained in Theorem 3.2 to appraise the limiting
behavior of a function J,(¢) of the form:

Jo(e) = | tue) da.

where j : R? — R is a given smooth function, satisfying the growth conditions eq. (2.8).
The result of interest is the next proposition; we omit the proof, since the arguments developed in
Section 2.3 in the context of the 2d conductivity equation can be applied in an analogous way.

Proposition 3.3. The function J, () is differentiable at 0, and its derivative reads:

/ Mel(po) : e(ug) d,
- / 2u1 A <4M1(u1 — po+ M) = 2(pod + pdo) +2X0(M — Ao) Jelpo) rre(uo) - df
A1 — Ao
+ [ 26210+ 30) (55755 ) (e(o)rre(un)an + elpo)ane(un).r) d

/ 8110 (1—) e(po)nre(uo)nr ds —i—/a 2(2p0+ o) (1—

(3.24)

2110+ Ao
2u1+M

) e(pO)nne(UO)nn Cw,
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where M is the polarization tensor defined in the statement of Theorem 3.2, and the adjoint state pg
is the unique solution in H{._(D)? to the system:
—div(Aoe(po)) = —j'(uo) in D,
bo = 0 on FDv (325>
Ape(po)n =0 on 0D\ Tp.

As in the conductivity case detailed in Section 2.3, the derivative eq. (3.24) can be rewritten in a
way which is easier to exploit in the context of shape and topology optimization:

T(0) = [ Pla.m(a), n(@) de(a)
where, for a given point z, P(z,-,-) is the homogeneous polynomial of degree 4 given by:
P(z,71,m) = B1(x)7 + Bo(2) 7m0 4 Bs(x) 273 + Ba(z) 75 + By ()75

Using the shortcuts e = e(ug) and f = e(pg) (in which the dependence with respect to the point x is
also omitted for brevity), the coefficients 3;, i = 1,...,5 read:

B1 = aierr fi1 + az(eaafii + e11fa2) + aseiafio + auesn foo,

B2 = 2aq(e11 fi2 + e12f11) + 202(—e12fi1 — e11 fi2 + e fiz2 + e12f22)
+ az(eiz(faz — fi1) + fiz(ea2 — e11)) — 2au(eaz fiz + e12f22),

Bs = ai(e11 faa + 4erafio + eaaf11) + 2ae(e11 fi1 + €22 faa — 4era fi2)
+ az(—2e12f12 + (e22 — e11)(foz — f11)) + aalerr for + e f11 + 4erafi2),

B1 = 201 (e12.f22 + €22 f12) + 22 (e11 f12 + e12.f11 — e12.fa2 — €22 f12)
—ag(era(fo2 — f11) + fi2(e22 —e11)) — 2au(err fiz2 + e12fi1),
and
Bs = ez foz + aa(err faz + e fi1) + azeia fiz + aserr fii-
In the above, we have defined:

2
=;— 4 — A1) — 2(poA A 2X00(A1 — A
a1 241 +)\1( (k1 — po + A1) (o1 + p1Xo) + 2X0(A1 0)),
AL~ Ao Ho 2110 + Ao
= 2210 + A () =8 (1—), d as=22u0 + A (1—).
03 (210 0) 21 + M o3 Ho m and ay (2u0 0) 20 T

4. Asymptotic expansions in the context of diametrically small inclusions

As we shall see in more detail from the next Section 5, our mathematical treatment of three-dimensional
tubular inclusions wy . (the three-dimensional version of eq. (2.3)) somehow boils down to that of a
two-dimensional diametrically small inclusion, of the form eq. (1.13), a situation which has been
extensively studied in the literature, see notably [19, 45, 74, 91]. We shall indeed see that, roughly
speaking, the situation of a 3d tubular inhomogeneity amounts to that of a 2d diametrically small
inhomogeneity inside each 2d normal plane to the base curve o. For this reason, we temporarily pause
our discussion about tubular inhomogeneities to exemplify how our formal energy argument allows
to retrieve the well-known asymptotic expansion formula for the field u. when the ambient medium
bears a diametrically small inclusion. We focus on the physical context of the conductivity equation
in Sections 4.1 to 4.3 and we handle simultaneously the cases where the space dimension equals 2 and
3. The corresponding derivation in the linear elasticity setting entails no additional difficulty, except
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that it is a little more involved as far as calculations are concerned. For this reason, we simply state
the results of interest in Section 4.4.

4.1. Diametrically small inclusions in the context of the conductivity equation

The physical setting of interest is exactly that of Section 2.1: the bounded and Lipschitz domain D is
filled by a material with smooth conductivity 7o satisfying eq. (2.1), a smooth source term f : D — R
is acting inside the medium, and a smooth heat flux g is imposed on the region I'yy C 0D; the voltage
potential ug inside D is the unique solution in H%D(D) to the equation:

—div(yVug) = f in D,

ug =0 on I'p, (4.1)
M0 =g only,
Yok = on &D\ (Tp UTy).

Assuming that 0 € D for simplicity, a small inclusion w, := ew € D is present inside D, shaped from
a smooth bounded domain w C R?, and filled by a material with smooth, inhomogeneous conductivity
~v1 which also fulfills eq. (2.1). In this context, the perturbed potential u. is the solution in Hf._ (D)
to the equation:

—div(y-Vus) = f in D
ue =0 on I’ r) ifrew
} b where 7. (z) = (@) - (4.2)
VG =g on I'y, ~Yo(x) otherwise.
’}/0% = on 8D\(FDUFN),

As we shall see, the main difference between the present situation and that tackled in Section 2 is
that the “near field”, i.e. the rescaled behavior of u. near w., no longer depends on the “far field”,
away from w.. This “near field” is a well-defined function, characterized as the solution to a partial
differential equation posed on the whole ambient space R?.

The adapted mathematical setting to deal with such “exterior problems” depends on the space
dimension, and we introduce the weighted spaces

1
(1+||2)2 log(2 + |2[2)

WhH(R?) = {u € L% (R?), u € L*(R?), Vuc L2(R2)} :

and
WL IR =ue L (R?), —————u e L*(R?), Vue L*(R3)}.
(14 [x[?)2
Let us emphasize that functions u € W1 =1(R3) vanish at infinity, while functions v € W1 =1(R?) do
not in general, since the latter space contains constant functions. To harmonize notations, we introduce
the space

_ WL R2)/R ifd=2
1,—-1 dy . )
Wor (B = {le—l(Ri‘) if d =3,

of functions in WH~(R?) vanishing at infinity; see [90, §2.5] for further details about these issues.

4.2. Asymptotic expansion of the perturbed potential u.

As we have mentioned, the asymptotic behavior of u. as ¢ — 0 in the context of diametrically
small inhomogeneities w. = ew has been extensively studied in the literature, either by variational
considerations or by layer potential techniques; see for instance [45, 74, 91] or [19, Ch. 5]. Our purpose
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in this section is to sketch how the formal technique exposed in Section 2.2.3 may be adapted to deal
with this situation. The result of interest is the following theorem:

Theorem 4.1. For any point x € D \ {0}, the following expansion holds:
ue () = uo(z) + e%uy () 4+ o(e?), where uy () := MVup(0) - V,N(z,0), (4.3)

and N(x,y) is the Green’s function of the background equation eq. (4.1); see Section 2.2.1. In eq. (4.3),
the polarization tensor M = (Mj;); j=1,.. 4 is defined by:

VEER!,  ME= (1(0) ~20(0) [ (€ + Voew)) dy, (4.4)
where for any & € RY, ¢ is the unique solution in Wy~ (R?) to the exterior problem:
—Age =0 in wU (RY\ @),
10(0) 225 — 1 (0)225 = —(39(0) ~ M(0)E -1 on O, (45)
e ()] = 0 when y — oo.

Formal derivation of eq. (4.3). We aim to analyze the limiting behavior of the remainder r. :=
E%(Ue —ug) € H%D(D) “far” from the point 0. Our starting point is again the observation that 7. is
the unique solution to the following variational problem:

1
Vv € Hp (D), / YeVre - Vo de = . (m —0)Vuo - Vo dz, (4.6)
D We
or equivalently to the minimization problem:
1 1
min  E.(u), where E.(u) := 7/ Ve |Vu|? dz + —d/ (71 —v)Vug - Vudz. (4.7)
ueHy (D) 2Jp €% Ju.

According to the formal method presented in Sections 2 and 3, we proceed in three steps.

Step 1: We represent the error r.(z) at a given point x € D \ {0} in terms of the values
of r. inside w.. Arguing exactly as in Section 2.2.3 — that is, using the Green’s function N(z,y) in
eq. (2.9) for the background equation eq. (4.1), integrating by parts, and “injecting” y — N(z,y) as
test function in the formulation eq. (4.6) to transform the resulting expression — we obtain:

@) = 5 [ 1 =00V VNG dy+ [ 1 =00 Vre) - TN @) (@48)

We
Step 2: We study a rescaled version of r. near the inclusion set w.. To this end, let us
introduce the rescaled error s, € H iFD(%D), defined by:

d—

1 1
5:(2) = e (e2) = g(u6 —up)(ez), ae. z € ED’

a quantity which will appear naturally in the course of the third step. The convergence of s, as e — 0 is
the subject of the next lemma, which is exactly Theorem 1 in [45]; we postpone the formal justification
of this formula thanks to our heuristic energy argument to the end of the proof of Theorem 4.1.

Lemma 4.2. The following expansion holds:

HV(SE - U)HLQ(%D) S CS%,
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where v(y) € Wol’_l(]Rd) is the unique solution to the exterior problem:

—Av=0 in wU (RY\ @),
%0(0) % = 11(0)% = —(7(0) = 71(0)) Vg (0) - n(y)  on dw, (4.9)
lv(y)| — 0 as |y| — oo.

Remark 4.3.

e It follows from the theory of exterior problems that eq. (4.9) has a unique solution in VVO1 —1 (RY);
see [90, §2.5.4]. Without entering into details, let us solely mention that when d = 2, this fact
holds true because the compatibility condition

5 Vug(0) - n(y) ds(y) =0

is obviously satisfied by the right-hand side of the transmission conditions on dw in eq. (4.9).
e The function v(y) in eq. (4.9) is exactly the function ¢y, defined in eq. (4.5).

Step 3: We pass to the limit in the representation formula eq. (4.8). A change of variables
in eq. (4.8) brings into play the function s.:

re(z) = / (11 — 70)(e2) Vg (2) - Vy N(w,e2) dz + / (71 — 70)(e2)Vse(2) - V, N, 2) d=.
Then, applying Lemma 4.2 yields:

limy () = | (32(0) = 20(0))(Tuo0) + V(=) - V, N(a,0) d,

e—0

which is the expected formula eq. (4.3), in view of eq. (4.4). |

We eventually provide the missing link in the previous argument.

Formal proof of Lemma 4.2. Using a change of variables in eq. (4.7), the function s.(2) = e 1r.(e2)
is the unique minimizer in H iFD ( %D) of the energy functional defined by:

1 /1 1
Ee(v) = — (2 /ID\wfyo(az)]Vvlz dz + i/wfyl(sz)\Vv\Q dz + /w (71 —v0)(e2)Vug(ez) - Vo dz) .

Removing the multiplicative factor, retaining only the leading-order terms in E.(v), and replacing
the function space HiFD(%D) by I/VO1 ’_1(Rd), we expect that s. converges to the solution of the

approximate minimization problem:

min  E(v),
veW, ! (RY)

where B(v) i= ;/Rd\w%(o)\vv,zdz—k;/W%(O)\vadz—k/w(w(o)—70(0))Vu0(0).Vv dz.

Writing down the Euler-Lagrange equation associated to this minimization problem, it is easy to see
that its unique solution is the function v(y) defined by eq. (4.9), which is the desired conclusion. m
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4.3. Asymptotic expansion of a quantity of interest involving u. and final comments

Again, the result of Theorem 4.1 allows to calculate the derivative of a function J,(¢) depending on
the size € of the inclusion via the perturbed potential w., say:

Ju(e) = /D j(uz) da,

where j : R — R is a smooth function, satisfying the growth conditions eq. (2.8). Since the proof is
completely analogous to those of Proposition 2.10 and Proposition 3.3, we state the following result
without proof.

Proposition 4.4. The function J,(¢) has the following expansion at e = 0:
Jo(€) = J,(0) + €2J,(0) 4 o(e9), (4.10)
where the “derivative” J,(0) reads:
Jo(0) = MVug(0) - Vpo(0).
Here, M is the polarization tensor defined by eq. (4.4), and the adjoint state py is the unique solution
in H%D(D) to:
—div(y0Vpo) = —j'(uo) in D,
bo = 0 on FD)
%2 =0 on 8D\ Tp.
Remark 4.5. When d = 2 and w is the unit disk, one has |w| = 7, and a simple calculation based on
separation of variables yields, for an arbitrary vector ¢ € R%:
70(0)=71(0)

S0y ity Ew,

= 0)+71(0

)= 2B
0(0)F1(0) g2~ Otherwise.

Then, the polarization tensor M is the isotropic matrix:

71(0) —70(0)

M= 2#70(0)71(0) +70(0)

(4.11)

and so, eq. (4.10) reads:

71(0) —70(0)
71(0) +70(0)
which is a well-known topological derivative formula in the context of the two-phase conductivity
equation; see e.g. [25].

Jo(€) = J,(0) + £%2m70(0) Vug(0) - Vpo(0) + o(e?),

4.4. Extension to the linear elasticity case

The above calculations and conclusions are readily adapted to the case where the scalar conductivity
equation eq. (4.1) is replaced by the d-dimensional linear elasticity system eq. (3.3). Along the lines
of the previous pages, it can indeed be proved that the following asymptotic expansion holds for the
perturbed displacement wu,:

ue j(x) = uo,j(x) + 6du1,j(x) + o(ed), where uy j(x) := Me(ug)(0) : ey(N;(x,0)), j=1,...,d.
The polarization tensor M is defined by:

Ve e SRY,  ME=(41(0) ~ 4o(0) (Jule + [ e(ve)(2)dz)
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N(z,y) is the Green’s function of the background linear elasticity problem in eq. (3.3) (see Remark 3.1)
and ¢¢ is now the unique solution in VVO1 ’_1(Rd)d to the exterior problem:

— div(A4p(0)e(¢pe)) = 0 in R\ @

—div(A1(0)e(¢¢)) =0 inw

¢ = b on dw (4.12)
Ap(0)e(ge)n™ — A1(0)e(de)n™ = (A1(0) — Ap(0))én  on Jw

|9e(y)] — 0 as |y| — oo.

This polarization tensor M can be calculated explicitly when d = 2 and w is the unit disk:
Ve € S(RY), Me = agtr(e)l + fBge;
see [19, §10.3] or [20]. In the above formula,
- (()\0 +2p0) (A1 +p1 — (Mo + o)) 2p0(p1 — po) (Ao + 240) )
po + A1+ f1(Xo + 3p0) + o(Ao + ko)

t0(Ao + 2p0) (1 — ko)
po( Ao + po) + p1(Xo + 3p0)’

ag =

and f[Bg = 4w

(4.13)

and we have denoted A\; = A\;(0), p; = p;(0) for short.

5. Asymptotic expansion of the solution to the conductivity equation in 3d under
perturbations by thin tubular inhomogeneities

In this section, we begin our investigations about thin tubular inclusions in 3d. The bounded, Lips-
chitz domain D C R3? is filled by a material with smooth conductivity yo(z), fulfilling the ellipticity
assumption eq. (2.1), and the potential ug is the unique solution in H%D(D) to the “background”
conductivity equation:

—div(yVug) = f in D,

ug =0 on I'p,

o - (5.1)
on g N -

ook — on 0D\ (Tp UTy),

where the homogeneous Dirichlet boundary conditions are imposed on the region I'p C 0D, and
f:D —Rand g: 'y — R are respectively a smooth source and a smooth flux entering through the
region 'y € 0D which is disjoint from I'p.

The constituent material vy in D is perturbed by an inhomogeneity

Woe = {a: eR?, d(z,0) < 5} € D,

taking the shape of a thin tube with width ¢ around a smooth, simple curve o : [0,¢] — R3, which
may be open or closed. The inclusion w, . contains a material with smooth conductivity ~;(x) which
also satisfies eq. (2.1), so that the perturbed voltage potential u. is the unique solution in H%D (D) to
the following equation:

—div(y.Vue) = f in D,

— r if
us =0 on- D where . (z) = nlz) ifee (A.)0'757 (5.2)
YGE =g on I'y, ~Yo(z) otherwise.

’YO%: on 9D\ (Tp UTy),
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We are interested in the asymptotic expansion of u. as € vanishes. As we have mentioned, to the
best of our knowledge, this is still an open question in the literature, although the particular instance
where o is a straight line segment (and not a general curve) has been treated in [32]. In the next
sections, we apply our heuristic energy argument to calculate the asymptotic expansion of interest. As
in Sections 2 and 3, our presentation is simplified in the case where o is closed, which we shall assume
throughout this section, unless stated otherwise. We are confident that the very same asymptotic
formula holds when o is open (and we shall actually use this formula in this context in the numerical
examples of Section 7), since we expect the endpoints of o to contribute only to higher-order terms in
the expansion of w..

We initiate our study by recalling in Section 5.1 a few useful properties about the (unsigned) distance
function d, to o, before turning in Sections 5.2 and 5.3 to the derivation of the sought asymptotic
expansions of u. and related quantities of interest. We close this study with a few comparisons between
the two- and three-dimensional behaviors of tubular inhomogeneities in Section 5.4.

5.1. The unsigned distance function to a three-dimensional closed curve

In this section, we collect some facts about the unsigned distance function to a closed curve in 3d;
although these are admittedly not new, they are not so easily found under this form in the literature.
Throughout this section, o : [0,¢] — R3 is a smooth, closed simple curve. Recall that, without loss of
generality, o is assumed to be parametrized by arc length, that is: |o/(s)|=1 for all s € (0, ¢).

Definition 5.1.

e The unsigned distance function to ¢ is defined by:

Vo € R3,  6,(z) = érelg |z — yl. (5.3)

e The skeleton ¥ of o is the set of points z € R? for which the minimum in eq. (5.3) is achieved
at least at two distinct points y1 # y2 € 0.

e When z ¢ ¥, the unique minimizer in eq. (5.3), denoted by ps(x), is called the projection of x
onto o.

The skeleton ¥ admits the following alternative characterization:

Proposition 5.2. The skeleton X is exactly the set of points x € D where 62 fails to be differentiable.
Since 05 is a Lipschilz function, Rademacher’s theorem implies that X has null Lebesgue measure.
Actually, the smoothness of o implies that the closure 3 also has 0 Lebesque measure.

See [55] for a proof of the first part of the proposition, and [58] about Rademacher’s theorem. The
final point is delicate, and it is the only one in this statement which requires the smoothness of o;
see [82].

Let us introduce a few additional objects attached to a point p = o(sg) € o; see Figure 5.1 for an
illustration:

e 7(p) = 0'(sp) is the unit tangent vector to o at p, with the orientation induced by the
parametrization s — o(s).

e a(p) := 0" (sp) is the acceleration vector of o at p.

® N, = {z€R? z-7(p) =0} is the (vector) plane of directions in R* which are orthogonal
to 7(p).
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e P,(p) C N (p) contains those directions z € N, such that p + z has p as unique projection
point:

Pa(p) = {Z S Nr(p)v pg(p—l-Z) :p}-

e B,(p,r) := B(p,r) N {p +2z,2z€ NT(p)} is the two-dimensional ball with center p and radius
7 in the (affine) plane p + N .

The next result of interest for our purpose is concerned with the smoothness of d, and p, near the
curve o. It is based on an argument using local charts, and a use of the implicit function theorem; see
in [14, Thm. 3.1] or [13].

Theorem 5.3. There exists g > 0 such that, for 0 < e < gq,
e the squared distance function 82 is of class C* on the tubular neighborhood Woe-
o The projection ps : wee — o is well-defined and of class C*.

e For every point p € o, one has Bo(p,e) C Py(p), that is, for any z € N, with [z < ¢,
po(p+2) =p.

For convenience, and without loss of generality, we assume in the following that ¢y > 1 can be
chosen in the above statement. Like in the case of the signed distance function in 2d discussed in
Section 2.2.2, the squared distance function 63 and the projection p, happen to be smooth on the
whole set D\ 3; see again [42, 55, 66]. These facts allow, in particular, to define extensions of the
tangent vector 7 and the acceleration vector a from o to the neighborhood w, 1 (and actually D \ X):

Ve € wor, T(x) =T(po(x)), and a(z) = alps(r)),

a convention that we adopt throughout the following.

In the forthcoming sections, we shall need the expressions of the derivatives of §, and p,. Our first
step toward this goal is the following simple consequence of the first- and second-order optimality
conditions for eq. (5.3):

Lemma 5.4. Let x € R3\ X and p € o be its projection p,(x) onto o; then:

(i) The vector (x — p) is normal to o at p:
7(p) - (x —p) = 0.
(ii) The following inequality holds:
L —a(p)- (x—p) = 0.

Proof. Let sg € [0,£) be the parameter value such that p = o(sy); by definition, and since the curve
o is closed (and so, o : [0,4] — R? can equivalently thought of as an ¢-periodic mapping o : R — R3),
Sp is the unique solution to:

in |z — 2, 5.4
Srerhl)%]x o(s)] (5.4)

The first-order necessary condition for optimality then reads:
o'(s0) - (x — o(s0)) =0,
which is exactly (i).
In a similar fashion, the necessary second-order optimality condition for eq. (5.4) at s = so reads:

" (s0) - (x — a(s0)) — 0" (s0)[*< 0;
after rearrangement, this yields (ii). |

220



THE TOPOLOGICAL LIGAMENT IN SHAPE OPTIMIZATION

Let us now proceed with the calculation of the gradient of d,:

Lemma 5.5. Let e > 0 be as in Theorem 5.3, x be a point in R3\ (X Ua), and p = p,(z); then, the
gradient Vo, (x) reads:

Proof. This is a simple consequence of the theorem of differentiation of a minimum value with respect
to a parameter, see [55, Ch. 10, Thm. 2.1]. [ |

By analogy with the two-dimensional situation of Section 2.2.2, the unit vector field “5 ((’x()x ) defined

on R\ (¥ U o), pointing from o to z, is denoted by n(x); as a consequence of the definition and
Lemma 5.5, it holds:

Vn(z) = Vnl (z) = V35,.
We also introduce the unit vector field
b:R3\ (ZUo) =R b(z)=7(p) x n(z),

so that for any point = € R?\ (X Ua), (7(p),n(z),b(z)) is a direct orthonormal frame of R3. Note that
(n(z),b(x)) is also the vector basis for the polar coordinates in the plane N.(,); see again Figure 5.1.
The next result of interest is about the derivative of the projection mapping p,:

Proposition 5.6. Let x € R3\Y and p = p,(x). Then, the derivative Vp,(x) reads, in any orthonor-
mal basis of R3 with 7(p) as first coordinate vector:

1
Voo (z) = 0
0

Proof. We already know from Theorem 5.3 and the subsequent remark that the mapping R3\ X >
T+ po(x) € o is smooth; hence, it is enough to calculate Vp,(z) for z € R3\ (XU o), which we do.
Using Lemma, 5.5, it holds, for z € R*\ (X U o),
Po(x) =2 — 05(2)Viy(z),
and so:
Vo (z) =1 — Vs () @ Vg () — 6,(2) V26, (2);
in particular, Vps(x) is a symmetric 3 x 3 matrix. Also, Theorem 5.3 implies that for any given vector
z € Ny and for s > 0 small enough, py(x + s2) = p,(z), so that, for any such vector:
Vpe(z)z = 0.

Therefore, the proof of the proposition is complete provided we show the following relation:

z-7(p)
VzeR3, Vpy(z)z-7(p) = , 5.5
DT =) @) )
which is our next task.
To this end, differentiating the relation
7(po (7)) - (z — po(x)) = 0
at x, in an arbitrary direction z € R? yields:
(V7(p)Vps(z)2) - (x —p) + 7(p) - (2 = Vo (2)2) =0, (5.6)
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in which the directional derivative Vp,(x)z is a tangent vector to ¢ at p. On the other hand, by
definition, for any tangent vector Z at o at p, it holds:

Vr(p)z = <r(e(s)

where ¢ : (—l,l) — o is an arbitrary local parametrization of ¢ with ¢(0) = p and ¢(0) = z =
(z - 7(p))7(p). Selecting a curve ¢ with constant velocity |¢/(s)| satisfying these properties, it follows
from the definition of a(p) that:

s=0

V7(p)z = (Z-7(p))a(p)-
In particular, taking Z = Vp,(x)z in the above identity, we obtain:
V7 (p)Vps(x)z = (Vpe(x)z - T(p)) a(p). (5.7)
Inserting eq. (5.7) into eq. (5.6) finally yields:
((Vpo(2)z) - 7(p)) (alp) - (x — p)) + 7(p) - (2 = Vpo(2)2) =0,
whence eq. (5.5) follows, thus completing the proof of the proposition. ]

It follows from Proposition 5.6 and the definition of n(x) that the derivative of the mapping x — n(z)
reads, in the local basis (7(p),n(x),b(z)):

—a(p)-n(z)

S il R
_ =5, (@)a(p)-n(w)
Ve R3\ (ZUo), Vn(z)= 0 0 0 (5.8)
0 0 —%}x)

Likewise, exploiting the orthonormality relations within the basis (7, n,b), simple albeit lengthy cal-
culations yield the following formulas (in the same basis):

0 0 0 0 0 0
Vr(a) = | 5oam 0 0 |, and V@) =[ 0 0 —5i |. (5.9)
0 0 0 0 0 0

Let us now apply the coarea formula of Lemma A.1 to the mapping p, : R?\ ¥ — o

Proposition 5.7. Let ¢ € L'(D); then,

| ez~ [ ( Ly (1 Fla(2) - n)elp +2) ds<z>> dt(p).

In the above formula, as in the rest of this article, d¢ stands for the line measure on o (that is, the
restriction to o of the one-dimensional Hausdorff measure), while ds is the surface measure on each
normal plane N, (the restriction to N, of the two-dimensional Hausdorff measure).

We conclude this section with a few useful notations:

e The normal component vy of a vector field v : R3 — R3 is given by:
Yz e R\, wn(z) =v(z) — (v(z) - 7(zx))7(x).

e Accordingly, the normal component Vyu of the gradient of a smooth enough function u :
R? — R is defined on R? \ 3 by:
ou

Vyu= (Vu)y = Vu— —.
or

e The normal part ey of a symmetric matrix e € S3(R) is:

en=€e—(eT)@T—7Q® (eT)+ (eT-T)T R T.
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F1cure 5.1. Ilustration of the main objects attached to the 3d tubular inclusions
considered in Section 5.1.

The normal derivative V yv of a smooth enough vector field v : R? — R3 is defined on R3 \ &
by:
Vyv=Vov— (Vour)®T,

and so the normal strain tensor of v is:
en(v) = %(VNU +(Vao)).
This strain tensor can be expressed in the local basis (n,b) of the plane N, as:
en(v) = (e(v)n-n)n@n+ (e(v)b-b)b @b+ (e(v)n-b)(n @b+ bR n),

and with a small abuse of notations, we shall either consider ey (v) as a 3 x 3 symmetric matrix
with O entries in the 7 indices, or as a 2 X 2 matrix.

Note that egs. (5.8) and (5.9) imply immediately:
en(v) = en(vn).
Also, for smooth enough vector fields v, w : R3 — R3, it holds:

e(v) : e(w) = en(v) : en(w) + 2(e(v)7)n - (e(w)T)N + (Vor - 7)(Vwr - 7). (5.10)

5.2. Formal derivation of the asymptotic expansion of u,

In this section, we look for the asymptotic expansion of the perturbed potential u., the solution to
eq. (5.2), as the thickness ¢ of the tubular inclusion w, . vanishes. As we have already emphasized, our
argument is formal; even though we believe that it could be made rigorous, along the lines of [54, 91],
this goes beyond the scope of this article. Since the next result has only been proved rigorously in the
literature in a particular case (see again [32]), we state it as a conjecture.

223



C. DAPOGNY

Conjecture 5.8. The following formula holds, for any point x € D \ o:
us () = up(x) + %uy (x) 4 o(e?), quadwhere ui (z) := / M(p)Vuy(p) - VyN(z,p) dé(p).  (5.11)

Here, N(x,y) is the Green’s function of the background equation eq. (5.1); see Section 2.2.1 and notably
Remark 2.4. For p € o, the polarization tensor M(p) is the 3 x 3 matriz defined by the following
formula, expressed in any orthonormal basis of R3 with T(p) as first coordinate vector:

— 0

M _ 7(v1 — ) (p) ) : 5.12
(p) ( 0 My (p) (5:12)

where the 2 x 2 submatrix My (p) is the polarization tensor associated to a disk-shaped, diametrically

small inclusion in 2d:

7(p) —0(P)

Yo(p) + 11(p) b

Mun(p) = 2770(p)
see Section 4 and eq. (4.11).

Formal argument. Let us, as usual, consider the error r, := 6%(u€ —ug) € H%D(D)7 which is the
unique solution to the following variational problem:
1
Yo e H%D (D), / YeVre - Voder = 2 (71 —v0)Vug - Vo dz,
D Wo,e

or equivalently, the solution to the minimization problem:

1 1
min  E.(u), where E.(u) := f/ Ve |Vu|? dz + —2/ (71 —v)Vup - Vudz.
ueH}, (D) 2Jp €% Jwoe

We proceed in three steps.

Step 1: We write a representation formula for the error r.(z) “far ” from o, in terms of
the Green’s function N(z,y) of the background operator eq. (4.1) and the values of 7.
inside wy .. Considering an arbitrary, fixed point x € D \ o, one obtains exactly as in the proof of
Theorem 2.1 that, for € > 0 small enough:

re(z) = ;/w (71 —70)(y)Vuo(y) - VyN(z,y) dy + (m =) (¥)Vre - VyN(z,y) dy.  (5.13)

Wo e

Step 2: We analyze the limiting behavior of a rescaled version of r. inside w, .. In order to
carry out this formal part of our argument, let us introduce the mapping m. : ws1 — ws e defined by:

me(z) = po(x) + €05 (z)n(x), (5.14)
where we recall the notation n(z) = 222& from Section 5.1. According to Lemma 5.5 and Proposi-
05 (x)

tion 5.6, the derivative of m. reads, at an arbitrary point = € we 1:

1—eds(z)a(z) n(x) 0 0
1-65(z)a(z)n(x)
Vme(x) = 0 e 0 |, (5.15)

0 0 e

in any orthonormal basis of R? having 7(p) as first coordinate vector. What’s more, still using the
material from Section 5.1, m. can be extended to a mapping R\ ¥ — R?\ ¥, and we introduce the
rescaled remainder s, := er. om,, which will naturally be involved during the calculations of the third
step. In order to analyze its behavior near the unit inclusion set w1, we express s. as the minimizer
of a rescaled version of the energy functional E.(u), which we subsequently simplify by retaining only
the leading order terms as € — 0.
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Using the coarea formula of Proposition 5.7, E.(u) rewrites, for an arbitrary function u € H%D (D):

Ew=j [ ( /. ) (1= 1) e+ 2)VuP (o +2) ds<z>> d(p)
1
+ ?/U (/B (pe) (1 = [zla(p) - n(2)) (71 —70)(p+ 2)Vuo(p + 2) - Vu(p + 2) ds(z)) dl(p).

We now rescale both inner integrals in the above expression by means of the mapping m,; this yields:

Ee(u) = 3 / </(Dmp (1—elzla(p) - n(2))7e(p + €2)[Vu o me[*(p + 2) ds(z)) d¢(p)

+/a </B(,<p,n (1 ~¢lzla(p) - n(2)) (1 —0)(p + £2) Vuo(p +£2) - (Vo me)(p + 2) ds<z>> ae(p).

A simple calculation allows to see that the rescaled version v = eu o m. of an arbitrary function
u € H%D(D) satisfies:
1
(Vu)om, = nggTVv

1 1—9dsa-n ((%

87)T+ VNU

el —¢edya-n

Hence, the energy functional E.(u) rewrites:

where we have defined:

(1= az) - n(:)? (B0, . 2
F.(v) : 2/ (/1 DA (o 'Y (p+€z)(52 T elzla(z) () (aT(p—i-z))

E

+ (1= elelate) - ()| Vvp + 2)) ds(z)>d€(]0)
" /" </Bcr(P71) (= 70)(p +e2) (5(1 —elzla(z) - n(z))g(p + sz)*i(p + 2)

+(1 —¢lzla(z) - n(2))VNuo(p+€2) - Vyov(p + z)) ds(z)> dl(p). (5.16)

Like in the situations tackled in the previous sections, we expect that the limiting behavior of the
rescaled remainder s. = 7. 0o m, “near” the rescaled inclusion set w, 1 can be determined by looking
at the solution to the minimization problem

min F.(v).

Let us emphasize that the above formulation is not mathematically rigorous, and we deliberately do
not attempt to provide an adapted functional framework, which seems a difficult task.
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_ According to our methodology, we look after the minimization of the approximate energy functional
F(v) obtained from F_(v) by retaining only leading-order terms:

Fo = [ [, 309wl o+ 2) dste) )

+ / / o (71 — 70) () Vvuo(p) - Vyvu(p + 2) ds(z) dé(p), (5.17)
where we have defined, for p € o and 2z € N_(,:

~ Y1P ifZGBa-O,l,
3.2y = {1 12 € B0
Yo(p) otherwise.

Note that the formal simplification eq. (5.17) from eq. (5.16) — and notably the change in domains of
integration for the inner integrals, from %(D N Py(p)) to the whole plane N, — tacitly relies on the
intuition that for a fixed point p € o, the function N.(,) 3 2 = v(p + z) vanishes when |z| — oo.

That the coefficients of the energy F(v) have a tensorized structure with respect to o x By (p,1)
entices us to search for the limiting behavior v of s. in the tubular region ws,1 as ¢ — 0 under the
form:

Vpeo, Vze Ny, s(p+z)=uv(p,2),

for a function v : {(p, 2)€Eo xR 2z € NT(p)} — R to be determined. To achieve this task, we use the
Euler—Lagrange equations for the minimization of eq. (5.17), with test functions of the form

Vp€o, Vz€ Ny, w(p+2) = p(p)Y(2),

for arbitrary smooth functions ¢ € C*(0), ¥ € C*°(Ny(,)). This immediately yields that for every
point p € o, the mapping N,y > z + v(p, 2) is the solution to the following exterior problem posed
on the plane N,

—ALv(p,z) =0 for 2 € N, \ 0B5(0,1),
v(p,2)T =v(p,2)” for z € 9B,(0,1), (5.18)
10(0) 3 (9, 2) = 1 (P) 2= (0. 2) = (0 — 1) () Vvuo(p) - n(2)  for z € DB, (0,1), '
lv(p,z)| = 0 when z — oo.

In other terms, we recognize that the function z — v(p, 2) is
U(p? Z) = ¢VNu0(p)(Z)a

where for £ € R?, ¢¢ € VVO1 ""1(R?) is the (radial) cell function attached to a 2d diametrically small,
disk-shaped inclusion; see eq. (4.5). Note that, in the above formula, (and in eq. (5.18) before that), we
have identified the plane N,y with R? (that is, we have identified one orthonormal basis of the former
plane with one of the latter). Since both functions z — v(p, 2) and ¢y 4 (p) have radial symmetry,
this identification can be performed in an arbitrary way, and the forthcoming considerations do not
depend on this choice.

To conclude this second step, we note for further reference that the following identity holds:

Mun(p)Vavuo(p) = (1(p) = 20)) | oy (T0() + Vvu(p.2)) ds2) (5.19)

as a consequence of the expression eq. (4.4) of the polarization tensor Muyny(p) and of eqgs. (4.5)
and (5.18).
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Step 3: We pass to the limit in the representation formula eq. (5.13). Rescaling both integrals
in the right-hand side of eq. (5.13) by means of the mapping m., we obtain:

re(z) = 512/%1 |det(Vme)|(v1 = 70)(m<(2)) (Vuo) (me(2)) - Viy N (2, me(2)) dz

+ 1(71 70)(me(2))|det(Vme) [V TV (re 0 me) - VN (2, me(2)) dz,
1 —eds(2)a(z) - n(z)

= ot 1— 60-(2)&(2) K n(z) ( 70)(m€(2))(vu0)(m5(2)) : VyN(fEama(Z)) dZ

+ [ =) me(a) (88N< me(2)) + e 2ale) D) G G, ma<z>>) daz,

ot 0ty 1—d5(2)a(z) -n(z)

where we have used the expression eq. (5.15) of the derivative of m. as well as the definition of s..
Now bringing into play the approximation of s. by the function v in eq. (5.18) inferred in the course
of the second step, then using the coarea formula of Proposition 5.7, it follows:

. 1
liyre(®) = [ T G g (1 0 e (T 0p) - Tl

1
wor 1= 0o (2)a(2) - n(2)

= [ ] = 0 )Veoe) - VN p) ds() )
F L 0N ) v N () ds(2) ),
= [ 156 ml 0)(8) ) G (r.) ()

+/U/g(p,l) (71 —7)(p) (VNUO(I?) + Vno(p, z)) -V, N(z,p) ds(z) dl(p).

+ (71 _VO)OvaNv'vNyN(map0<z)) dZ,

Using finally eq. (5.19) to reformulate the second integral in the above right-hand side in terms of the
two-dimensional polarization tensor My, we finally obtain:

0 ON
lire(a) = 7 [ (0 —0)0) G 0) g (2:) AU0) + | MnViuo(p) - T, N (e p) dl(p),
which is the desired result. ]

5.3. Asymptotic expansion of a quantity of interest involving wu.

We now consider the derivative of a functional depending on the small thickness € via the perturbed
potential u. in eq. (5.2) of the form:

Jo(e) = /D j(ue) da,

where j : R — R is a smooth function satisfying the growth conditions eq. (2.8). The result of interest
is the following proposition, whose proof is again omitted; see the proof of Proposition 2.10 if need be.

Proposition 5.9. The function J,(g) has the following asymptotic expansion as e — 0,

J,(e) = J,(0) + £2J.(0) + o(£?),
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where the “derivative” J/.(0) reads:
J.(0) = / MVug - Vpo da. (5.20)

In the above formula, M is the polarization tensor defined in eq. (5.12), and the adjoint state py is
the unique solution in H%D(D) to the equation:

—div(vVpo) = —j'(ug) in D,
po =0 on I'p,
’YO% =0 on 0D\ Tp.

A more practical version of this result reads:
T(0) = [ Pla,mi(a). mle).mo(a)) dea),

where for z € o, 7 = (11,72, 73) — P(x,71,72,73) is the trivariate polynomial with degree 2:

(1(2) + 70(x))?
Y1(x) 4+ 0(z)

(@) = 0(x)

Y1 () + vo(z) Vuo(z) - Vpo(z) +

P(x,11,72,73) = 277y0(2) (Vuo(z) @ Vpo(x)) - 7.

5.4. Comparison between the 2d and the 3d cases

Let us conclude this study of thin tubular inhomogeneities in the context of the three-dimensional
conductivity equation with a few remarks about the differences between the 2d case analyzed in
Section 2 and the present 3d situation. In order to ease the discussion, we go on assuming that the
curve o is closed.

However similar at first glance, the 2d and 3d asymptotic formulas eq. (2.5) and eq. (5.11) have
actually quite different structures. As we have seen indeed, the first non trivial term wu; in the 2d
expansion of u. is “variational”, insofar as it can be characterized as the solution to a fairly classical
boundary value problem (or as the minimizer of the corresponding energy functional) and it belongs
to a functional space which is inherited from that associated to u.; see the equation eq. (2.15) and the
comments thereafter.

On the contrary, in the three-dimensional case, u; cannot be characterized in the same fashion:
intuitively, curves in 3d are “too small” sets to bear boundary conditions in the context of a “standard”
second-order elliptic problem (they have zero harmonic capacity). This difference is reflected by the
difference in order (g2 rather than ¢) at which the correction u; comes up in eq. (5.11).

Another interesting manifestation of this phenomenon lies in the study that we carried out during
the second step of the proofs of Theorem 2.1 and Conjecture 5.8, about the “far field” u and the
“near field” v, as the limiting behaviors of the error r. = EdL,l(ug — up) and its rescaled version s,
respectively. In our 2d analysis, we have not completely determined the limit v of s. inside the unit
inclusion set w,1 (and we did not need to do so). In this case actually, the complete limiting behavior
v would depend on the “far field” wu; see Remark 2.8. If we were to try and apply verbatim the
methodology used in the context of Conjecture 5.8 in the 2d case, we would have to consider, for each
point p € o, an exterior problem posed on the normal line to ¢ at p, that is, a one-dimensional version
of eq. (5.18). This 1d exterior problem has no solution decaying to 0 at infinity, but only solutions
tending to constant values at infinity. These constants are exactly the connection between the limiting
behaviors of the “near field” v and the “far field” u that we observed in the case of the 2d conductivity
equation. On the contrary, we have seen that in 3d, the 2d exterior problem eq. (5.18) characterizing
the “near field” v in each normal plane to o has a solution which goes to 0 at infinity. As a result, it
is a completely determined function, independently of the “far field”.
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6. The linear elasticity case in three space dimensions

In this section, we adapt the previous considerations to analyze the effects of thin tubular inhomo-
geneities in the context of 3d linearly elastic structures, a situation which has not yet been addressed
in the literature, to the best of our knowledge.

The physical setting is the exact three-dimensional counterpart to that described in Section 3.1.1.
Inside a bounded, Lipschitz domain D, the “background” and perturbed displacements ug, u. : D — R3
are the solutions to the 3d versions of the systems eq. (3.3) and eq. (3.4), respectively. The two isotropic
materials featured in these equations are physically described by Hooke’s laws Ay, Ay of the form
eq. (3.1), with respective Lamé parameters Ao, po and A1, p1.

Using our formal energy method, we derive the asymptotic expansion of the perturbed displacement
Ue € H%D(D)g’ in terms of ug and a suitable polarization tensor M. Since the derivation is analogous
to that conducted in the 3d conductivity setting in Section 5 (up to an increased level of technicality),
we solely provide the main steps of the argument.

Conjecture 6.1. The following asymptotic expansion holds at an arbitrary point x € D\ o:
ue () = ug(2) + e?ur(x) + o(e?), where uy(z) = / M(p)e(ug) : ey(N(z,p)) dl(p),

N(xz,y) is the Green’s function of the background operator in eq. (3.3) (see Remark 3.1), and the
polarization tensor M(p) is defined at any point p € o by:
(A1 — Ao) (Ao + 20)

Ve,e € Su(R),  Me: &= Munen s ey + == L (tr(en)(@r-7) + (er - 7) tr(ew) )

(M1 — Xo)? _
7/“ v MO) (er-T)(ér-7). (6.1)

Here, we have omitted the mention to the point p under consideration for brevity. We have also
introduced the two tensors M.y (p) and Myn(p), acting on two-dimensional quantities, defined by:

+AM;n(eT)n - (éT)N + 7 (2(M1 — o) + (A1 — Xo) —

o M, n(p) is the 2 x 2 matriz describing the effect of a disk-shaped, diametrically small inclusion
in the 2d conductivity setting, where the conductivity coefficients at play equal po(p) and py(p),
namely:

p1(p) — po(p)

Au(p)%-uoﬁﬁl; 6.2)

Mo (p) = 2mpo(p)
see eq. (4.11).

o Mnn(p) is the isotropic fourth-order tensor describing the effect of a disk-shaped diametrically
small inclusion in the linear elasticity setting; it is defined for any symmetric 2 X 2 matriz e
by:

Mnn(p)e = as(p) tr(e)l + Bs(p)e, (6.3)
where the coefficients ag(p) and Bs(p) are given by eq. (4.13); see Section 4.4.

Formal argument. As usual, let us introduce the error r. := E%(us — g ), which is the unique solution
in H%D (D)? to the variational problem

Y € H%D(D)?’, /DAEB(Tg) ce(v)de = —;/w (A1 — Ag)(x)e(up) : e(v) du;

equivalently, r. is the unique solution to the minimization problem

1 1
min  E.(u), where E.(u) := = / Ace(u) s e(u)de+ = [ (A1 — Ao)e(uo) : e(u) dz.  (6.4)
ueH} (D)3 2/p 5

Wo,e
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Step 1: We construct a representation formula for the error r.(z) “far” from w,. in terms
of the Green’s function N(z,y) of the background equation eq. (3.3) and the values of r.
inside w, .. Considering a fixed point z € D \ o and arguing exactly as in the proof of Theorem 2.1
(Step 1), we obtain, for j = 1,2,3 and € > 0 small enough:

real@) = [ (= Ao)wleluo)y) : e (Ns(.9)) dy

+ [ (A= Ao)y)e(re)(y) : ey(Nj(,y)) dy. (6.5)

Step 2: Asymptotic behavior of a rescaled version of r.. To conduct this formal step of our

argument, let us introduce the rescaled error s. := er. o m., where m. is the mapping given by

eq. (5.14). We aim to determine the limiting behavior of s. near the rescaled inclusion set wy, 1, and
to this end, we perform a rescaling and a simplification of the energy functional E.(u) in eq. (6.4).

At first, the coarea formula of Proposition 5.7 yields the following equivalent expression for the

energy E.(u) attached to an arbitrary function u € Hf_(D)®:

Ew=j [ ( Ly (1 W100) - m(w) (Acelw) : ) +) ds<y>> at(p)

+1 (/ (1 = [yla(p) - n(y)) (A1 — Ao)(p + y)e(uo)(p + y) : e(u)(p + y) dS(y)> dé(p).
Bo(ps€)

€2 J,

We then rescale both inner integrals in the above right-hand side owing to a change of variables
involving m,; this yields:

52
Bw=5 | ( Jeionpy gy (1~ 110D D (Aelelw) o) s (ew) 0 ma))p 2 ds<z>) a(p)

+ ( | = elelalp) () (A1 = o) (p+22)e(uo) (p+ £2) : (e(w) 0 m)(p+ 2) ds<z>) at(p).
o Bo(p,1)

Now, elementary calculations based on eq. (5.14) allow to relate the strain tensor of a smooth
enough vector-valued function u : D — R? to the derivatives of v := cu o m,:

e(u) ome
1
=3 (V(u om)Vmt + Vm TV (uo ms)T),
. 11:5657‘22 e(v)T-1 %(11:565";22 Vot -n+ %an . 7') %(11:865‘;‘22 Vot - b+ %va . T)
= - %(f:fg%leT -n 4+ %an . 7') %e(v)n ‘n %e(v)n ) ,
6 [ea
%(f:j({iZLVvT b+ 1Vob- 7') Le(v)n - b le(v)b-b
(6.6)
where the above matrix is expressed in the local basis (7,7, b) of the space. Similarly, it holds:
11-dsa- 1
(divu) ome = g%e(vﬁ T+ 2 (e(v)n-n+e(v)b-b). (6.7)

A series of simple, albeit tedious calculations reveals that:

1

Eo(u) = 5 F(0)
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where we decompose the quantity F:(v) in terms of the powers in € of the coefficients in the featured
integrals:

F-(v) = F, (v) + eFZ2(v) + €2 F2 (v);

in the above identity, each contribution F!(v) has coefficients of order O(1) as ¢ — 0, and only the
expression of F!(v) will be needed for our purpose:

! *1 om, —E&|zZ|a-n €UTL'7’LQ e\v)o - 2 e(fv)n - 2
500—2L<éwmwmz% (1= elzla - m)((e(0)n - m)? + (e()b- B2 + 2(e(v)n - b)

l\.')\}—t

(Von - 7)% + %(va . 7)2) ds(z)) d(p)

[u—y

2
i 5/0 </;(Dmpa(p)) e 0me(l —elzla-n) (e(v)n -n+e(v)b- b) ds(z)) de(p)
+/a </Ba(p,1) 2(pu1 — po) 0 me(1 — elzla - n)((e(uo)n -n)(e(v)n - n) + (e(ug)b - b)(e(v)b - b)
+ (e(uo)7 - n)(Vun - 7) 4 (e(uo)7 - b)(Vub - T)) ds(z)>d£(p)

+ /U </Ba(p,1) (1 — €’Z’a . n) ()\1 - /\0) o me(diVUO) o My (6('1))71 -n 4+ e(v)b . b) dS(Z)) df(p)

In the above integrals, as often in the forthcoming calculations, the mention to the integration point
p + z is sometimes omitted when it is clear, for the sake of brevity.

Our methodology then proceeds as in the case of Conjecture 5.8. We expect that the limiting
behavior v of s. near the rescaled inclusion set wy 1 be dictated by the minimization of the energy

F!(v), and, in turn, by that of a simplified version F(v) of the latter where only the leading-order
terms as € — 0 are retained. More precisely, we consider the problem:

min F(v), (6.8)

/N 20(p. =) ((e(v)n - n)? + (e(w)b- )* + 2e(w)n - b)?

+ %(an )2+ %(va : 7)2) ds(z)>d5(p)
(c(w)n -+ e(w)b- b)st(z)> dt(p)
ﬁ(/(n ~ o)) ((eln) (p)n - m)(e(w)n - ) + (e(uo) (p)b - D)(e(w)b -1
+ (e(uo)(p)7 - n)(Von - 7) + (e(uo) (p)7 - b)(va'T)) dS(«?’)) d¢(p)

+/U </Bg(p71) (A1 — Ao)(p)(divug)(p) (6(v)n n+ e(v)b- b) ds(z)) dé(p),
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and we have defined, for p € o and z € N,
. pi(p) if |z| < 1,
A(p.z) = 1P T <
to(p) otherwise.

Recall that it is quite unclear what would be a rigorous framework for this minimization, and we do
not elaborate on this issue. B

Taking advantage of egs. (5.8) and (5.9), the energy F(v) may be reformulated in terms of the
normal and tangential components of v with respect to o:

o= [,

7(p)

+/0/o(p,1) 2(p1 — po)(p) <6N(UON)(p) sen(vn) +e(uo)(p)T - Vi (v- 7)) ds(z) d(p)

+ /U / o (A1 — Ao)(p)(divug)(p) tr(en(vn)) ds(z) dé(p). (6.9)

At this point, judging from the tensorized structure of the integrals and coefficients in the above
expression of F'(v), we are enticed to seek the limiting behavior v of s. inside the rescaled inclusion
wg,1 under the form:

(2806 ) (lew(ew)? + 51V aw - D) + 3p. ) (tx(en(on))) ) ds(e) dep)

Vp € 0, 2 € By(p,1), s:(p+2)~v(p2),
for a certain vector field v : {(p, z)€oxR3, 2z € NT(p)} — R3 to be determined.

To achieve this purpose, we rely on the Euler-Lagrange equations associated to the resolution of
eq. (6.8). It immediately follows from the expression eq. (6.9) of the energy F(v) that this minimization
can be conducted in terms of the tangential and normal components v - 7 and vy of the unknown
function v, independently.

Let us then write down the Euler-Lagrange equations for the minimization of eq. (6.9) by considering
only variations of the tangential component v - 7: for each point p € o, the function Ny, > 2z —
(v-7)(p,2z) € R turns out to satisfy the following variational problem:

Yw, / aVy(v-7)-Vywds(z) + 2(p1 — po)(p)(e(uo)(p)7) - Vywds(z) = 0.  (6.10)
Ne) Bo(p,1)

The above variational problem is well-posed when the unknown and test functions v and w are chosen in
the functional space I/VO1 1(R2) (see Remark 4.3). It exactly corresponds to the variational formulation
for the 2d profile eq. (4.9) associated to a disk-shaped diametrically small inclusion in the conductivity
setting, up to the identification of the N.(,) with R?; see again the proof of Conjecture 5.8, and notably
the discussion immediately after eq. (5.18). More precisely, v - T equals:

Vpeo, VzeNyp), (0 -7)02) = b2c(uo)p)r()(2):

where for a given vector £ € R?, the function ¢, € W(} ’_1(R2) is the solution to:

—A¢e =0 in (R2\ B(0,1)) U B(0,1),
10(p) e — 11(p) e = —(u0p) — p(p))(€ 1) o DB(0,1),
|pe(2)| = 0 when |z| — oo;

which is exactly eq. (4.5), in which v0(0),~1(0) are replaced by uo(p) and pi(p), respectively.
For further reference, we note that the 2 x 2 matrix M,y (p) in eq. (6.2) satisfies the following
identity:

2Men (p)(e(uo)(p)T)N = / (11 (p) — po(p)) (2(e(uo) (P)T) N + V(v - 7)(p, 2)) ds(z).  (6.11)

B (p,1)
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Let us now consider variations of the normal component v in the minimization of the energy E(v)
in eq. (6.9). For a fixed, arbitrary point p € o, the mapping N, () > 2 = vn(p,2) € Ny () satisfies:

Vw, / (ZﬂeN(vN) cen(w) + Ar(en(vy)) tr(eN(w))) ds(z)
N.

7(p)

+ (2011 = o) (P)en (mon ) (p) = e (w) + (A = Xo)(p) (div uo) (p) tr(en (w)) ) ds(z) = 0,
Bs(p,1)

and we decompose vy (p, z) as:
’L)N(p, Z) = wl(p7 Z) + wQ(pv Z)a

where w1 (p, z) and wa(p, z) are defined as follows:

e the vector field z — w1(p, z) equals Ve, (uon)(p)(2), Where for any symmetric 2 x 2 matrix &,
ve € VVO1 "~1(R2)2 is the unique solution to the variational problem:

/N (2;76]\/(@5) cen(w) + Xtr(eN(vg)) tr(eN(w))) ds(z)

7(p)

+ (Q(Ml — 10)(P)§  en(w) + (A1 = Ao)(p) tr(§) tr(eN(w))> ds(z) =0, (6.12)
B (p,1)

that is, ve is exactly the profile function eq. (4.12) attached to the asymptotic expansion of the
solution to the 2d linear elasticity system in the situation of a diametrically small disk-shaped
inclusion.

e The vector field z — wa(p, 2) equals we
W, 1 (R?) to the variational problem:

uo)(p)r-r» Where for h € R, wy, is the unique solution in

/N (2ien (wn) : ex(w) + Ntr(en (wn)) tr(ex (w))) ds(2)

7(p)

* /Ba(p,l) (Al - AO)(P)h tr(eN(w)) dS(z) 0.

By uniqueness of the solution to eq. (6.12), it holds:

Wh =V1 A —Xg

1_ M~ pre
2 p1—pp+A1=20

For further reference, we note that, for any symmetric 2 x 2 matrix &:

Munp)E= | o (2(u1 = 1o)(P)(€ + en(ve)) + (A1 = Xo)(p) tr(§ + eN(vf))I) ds(z),  (6.13)
and so:
;,ul — o Jlr Moo (M (p)¢) = /B o T Fen(te) ds(z). (6.14)

Finally, by the same token:

A A=
21 —po+A1— Ao

(MNN(p)I) =

/B (»1) (2011 = o) (Pen (wn) + (A1 = Xo)(p) (b + tr(en (wp)))T) ds(2).  (6.15)
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Step 3: We pass to the limit in the representation formula eq. (6.5). It follows from a change
of variables based on the mapping m. in eq. (5.14) (see also eq. (5.15)) that:

rej(r) = 512/%1 |det(Vme)|(A1 — Ao)(me(2))e(uo)(m<(2)) : ey (Nj(x, m(2))) dz

[ det(Vma)l(Ar = Ag)(me())(elre) o me) s ey (N me(:)) dz, - (610)
Wo,1
=: I} + IZ,
with obvious notations. It is now easy to see from the coarea formula of Proposition 5.7 that:
lim 1} — / / (A1 — Ao)(P)e(uo) (D) : ey(N;(z,p)) ds(z) de(p). (6.17)
e—0 o - (p,1)

As for the second integral I2, the formulas eq. (6.6), eq. (6.7) and the convergence of s. obtained in
the first step yield:

2(p1 — Ho) © Py , n
1o = /wc,,1 1= 06 (y)aly) - n(y) ((Von- 7)(ey (N (@, pa(y)))7 - )

y)-
+ (Vb 7)(ey (Nj (2, ps (1)) - b) + (e(v)n - n)(ey(N;(z, po(y)))n - 1)
+ (e(v)b - b)(ey (Nj(z,ps(y)))b - b) +2(e(v)n b)(@y(Nj(vaa(y)))n‘b)) dy
(A1 — Xo) oy
woa 1= 0o (y)a(y) - n(y)
Using the coarea formula of Proposition 5.7, this rewrites:

lim 12 = //wmluﬁmqu%ﬂwammmm+mmwmmwwmn®@ww

e—0

+ (e(v)n -n+e(v)b- b) divy (N;j(z,ps(y))) dy.

+//U(p’1) (A1 — o) (p) tr(en(vn)) divy(N;(z,p)) ds(z) df(p). (6.18)

Eventually, combining egs. (6.17) and (6.18), we obtain:
timres@) = [ [ (A= A () o) < ey (N (. p) ds(=) L)
+ /U /Bg(p,l) 2(p1 — po)(p) (VN(U -7) - (ey(Nj(z,p))T) + en(vn) : 6Ny(Nj($,p))) ds(z) d¢(p)
+ / / - (A1 — Ao)(p) tr(en (vn)) divy (N, (2, p)) ds(z) d(p).

We now rewrite the above expression by bringing into play the tensors My y(p) and My (p) defined
in egs. (6.2) and (6.3). To this end, expanding the first integral in the above right-hand side (and
notably using eq. (5.10)), we obtain after simple, albeit tedious calculations:

tigres ) = [ [ 2 — g @)extun) + en(u0)) s e, (N5 (z:p) ds(2) de(p)
L] On = M) trlen(wn) + ex(uo) (b)) trlen, (N . p))) ds(2) dé(p)
o -(p,1)
L 20m = o) @en(wz) < ex, (Vi) ds(2) d4(p)

+ /U / o) (A1 — o) (p)(tr(en(w2)) + e(uo)(p)7 - 7) tr(en (Nj(x,p))) ds(z) dé(p)
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L 20m = 0@ (T ) + 2elun)r)x) - ey (Voo p)7) ds(z) Al
L] On = M) ) trlen(wn) + exuo) (b)) ey (Ve p))r - ) ds(2) de(p)
g o(p,1)
L @ = ) ) + = ) E)e()(p) - 7)ey (N )7 7) ds(z) dep)
4 o(p,1)

+ /U / o (A1 — o) (p) tr(en(w2))(ey(Nj(z,p))T - ) ds(z) dé(p)

8

with obvious notations. We now calculate the integrands «;(z,p), j = 1,...,8, omitting the mention
to the point p when it is clear:

e Using eq. (6.13) yields:
(a1 + a2)(z,p) = Mnn(p)en(uon)(p) : en(Nj(z, p)).

e Using eq. (6.15), we obtain:

1 A1 — Ao

211 — pio + M1 — Ao
taking advantage of the expression eq. (4.13) of the coefficients of My, this rewrites:

(A1 — Ao)(Ao + 240) A
pot o)) rlen(Nle,p)):

(a3 + o) (,p) = (e(uo)7 - 7) (MunT: en(N(@.p)));

(a3 + aq)(z,p) =

e On account of eq. (6.11), one has:
as(z, p) = 2Men (2e(uo)T)n - (ey(Nj(z,p))7)n = 4Mon(e(uo)T)N - (ey(N;(x, p))T)N

e From the relation eq. (6.14), we infer that the sixth term equals:
1 A1 — Ao
e tr (M N (x, T,
2 p1 — po + A1 — Ao g ( NN@N(UON)) (ey(Nj(z,p))T - 7)
which yields, from eq. (4.13),
_ (A1 = o) (Ao + 2p0)
po + A1+ p1

ag(x,p) =

ag(z,p) tr(en (uon))(ey(N;(x, p))T - 7).

e The term a7(x,p) does not need to be reformulated.

e Using again eq. (6.14) and then eq. (4.13), ag(x, p) rewrites:

N 2
1 =201 (0 ) 7) ey (N, D)7 7).

ag(x,p) = T —"F—
(@.p) 1+ A1+ po

This results in the desired expression.

Remark 6.2. As we have already noticed in the course of the previous calculation, the component
M n of the polarization tensor M in eq. (6.1) coincides with the polarization tensor eq. (4.11) attached
to a disk-shaped, diametrically small inclusion in the situation of the 2d conductivity equation, where
the Lamé parameter p plays the role of the conductivity coefficient. This echoes to the well-known
two-dimensional reduction of the 3d linear elasticity system in the particular situation of antiplane
shear; see for instance [100].
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We conclude this study with the calculation of the asymptotic expansion of a quantity depending
on the thickness € via the perturbed displacement u., say:

Jo(e) = | (ue) da.

where j : R3 — R is smooth and satisfies the growth conditions eq. (2.8).

Proposition 6.3. The function J,(g) admits the following asymptotic expansion:
Jo(€) = J5(0) + 2 J.(0) + o(e?),

where the “derivative” J(0) reads:

75(0) = | Me(uo) s e(po) d.

Here, M is the polarization tensor defined in eq. (6.1), and the adjoint state py is the unique solution
in H%D(D)3 to the following system:

—div(Aoe(po)) = —j'(uo) in D,
po=0 onI'p, (6.19)
Ae(po)n =0 on D\ Tp.

Again, we provide a slightly different, more practical form of the “derivative” J.(0), emphasizing
its dependence on the curve ¢ and its tangent vector 7:

5,00 = [ Pla.n(@),mae), ma(x) de(a),

where at a given point x € o, 7 = (11,72,73) — P(x,71,72,73) is the trivariate polynomial with
degree 4 defined by:

P(x,m,7m2,m3) =agtre tr f + Bge: f + (_255 + 8Wu0m> (er - f7)
0

1
N (W(/\l — Xo)( Mo + 2u0)
Ho + A1+ p1

(A1 — o) (Ao + 2u0)
Ho + A1+

—as) (tre(fr-71)+trf(er 7))+ <a5+55—27r

fi1 — o (A1 — Xo)?
— 8mpg———— + 27 — + 7N\ — X)) —m——————— |(eT - 7)(fT - 7).
o T (11 = po) + (A1 = Ao) PR v (er-7)(fT-7)
In the above formula, we have taken the shortcuts e = e(ug), f = e(po); the values ag and g depend
on [, i1, Ao, A1 via eq. (4.13) and the dependence of all the coefficients with respect to z is omitted

for brevity.

7. Numerical illustrations and applications

In this illustrative section, we discuss the practical use of the asymptotic formulas eq. (1.11) for thin
tubular inhomogeneities considered in this article. After verifying the numerical accuracy of these
formulas in Section 7.1, we propose three different applications in shape and topology optimization.
At first, in Section 7.2, we introduce a methodology for grafting a thin ligament to a shape in the
course of a more “classical” optimal design process, with the aim to make the final design less sensitive
to the initial guess. Secondly, Section 7.3 is devoted to an algorithm for computing an optimized set
of pillars, serving as the scaffold structure of a shape during its construction by means of an additive
manufacturing technique. Eventually, in Section 7.4, we present a strategy for the computation of a
judicious initial design in view of the optimization of a truss-like structure.
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Before proceeding, let us already emphasize that these numerical methods are proposed as prelim-
inary “proofs of concept”, rather than as fully mature techniques. In particular, several algorithmic
aspects have not been paid much attention in the present article; see in particular Remark 7.1 and
Section 8 for several criticisms and leads towards improving their computational efficiency which will
be considered in a future work.

7.1. Numerical validation

In this first example section, we appraise numerically the validity of our asymptotic formulas for thin
tubular inhomogeneities in the 2d and 3d conductivity and linear elasticity settings.

The physical configurations at stake are depicted in Figure 7.1: in two space dimensions, the hold-all
domain D is the rectangle D = (—1,1) x (0,1), I'p is defined as the left-hand side of 9D and T'y is

its right-hand side. The base curve ¢ C D of the considered tubular inclusions is the straight segment

o=(—3%3)x {%} In three space dimensions, D is the unit cube D = (0,1)3 and the regions I'p and

I'y are the left-hand side and the right-hand side of 0D, respectively; the base curve o is defined by

o={3} <D~ {3}

FD .

I'p

o

ANNNNNNNNRNNNNNNY

Y
VAR

z%
v YA

WOk
<
N

VAN

v
<A
A

FIGURE 7.1. Numerical evaluation of the asymptotic formulas for thin tubular inho-
mogeneities in Section 7.1; (top) common physical setting of the test cases (left) in
2d, (right) in 3d; (bottom) computational mesh where the inclusion we . is explicitly
discretized (left) in 2d for € = 0.02, (right) in 3d for £ = 0.05.

7.1.1. The case of the conductivity equation in 2d and 3d

In the “background” situation, the domain D is filled by a material with conductivity 79 = 1; a
flux ¢ = —1 is applied on I'y and volumic sources f are omitted for simplicity. In the perturbed
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situation, several values of the thickness € are considered for the tubular inclusion w, ., as well as for
the (constant) conductivity ~y; inside the latter.

On the one hand, we evaluate the compliance of the domain D in the perturbed situation, that is,
the quantity:

Cy(e) := /F gue ds = /D%vus - Vue dz,
N

where u, is the solution to eq. (2.4). The numerical computation relies on the use of the Lagrange Py
finite element method on a conforming mesh of D where the inclusion w, . is meshed explicitly — i.e.
a mesh of w, . appears as a submesh of that of D; see Figure 7.1, (bottom). We rely on the remeshing
library mmg (see [52, 53]) for the construction of such a mesh, and on the FreeFem environment [71]
for the finite element calculations.

On the other hand, we compute the approximation of C,(¢) predicted by the asymptotic expansion
of Theorem 2.1 and Conjecture 5.8:

Cy(0) + 712 (0).

The solution wug to the background conductivity equation eq. (2.2) and all the depending quantities
involved in the expressions eq. (2.37) (in 2d) and eq. (5.20) (in 3d) of the derivative C/(0) are calculated
on a fixed reference mesh of D.

The values of both expressions, associated to different conductivities v; = 10,100, or 1000 and
different thicknesses ¢ for the inclusion set are reported on Figure 7.2 in the two-dimensional case,
and on Figure 7.3 in the three-dimensional case.

—— Exact compliance

—— Exact compliance —— Exact compliance
1.9 Asymptotic formula

Asymptotic formula Asymptotic formula

1.25

o

Compliance

Compliance
e
&

Compliance

b 10 00 0.01 0.02 0.03 0.04 0.05 0.000 0.001 0.002 0.003 0.004 0.005 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Epsilon Epsilon Epsilon

FIGURE 7.2. Evaluation of the asymptotic formula for tubular inhomogeneities in
the 2d conductivity case of Section 7.1.1: comparison between Cy(g) and the formula
Cy(0)4+eC”?(0) for 79 = 1 and (left) v3 = 10, (middle) v, = 100 and (right) v, = 1000.

—— Exact compliance —— Exact compliance
Asymptotic formula Asymptotic formula
0.98 0.98

0.96
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0.995
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£ 0.94
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Compli

o
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3
Compl
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0.980

0.90

0.975 0.90 —— Exact compliance
0.88 Asymptotic formula

0.00 0.01 0.02 0.03 0.04 0.05 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.000 0.002 0.004 0.006 0,008 0.010
Epsilon Epsilon Epsilon

F1GURE 7.3. Evaluation of the asymptotic formula for tubular inhomogeneities in the
3d conductivity case of Section 7.1.1: comparison between C, () and C,(0) + £2C”.(0)
for 790 = 1 and (left) v, = 10, (middle) v; = 100 and (right) v = 1000.
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As expected, the asymptotic formula C,(0) + ¢~1C’ (0) provides a fairly good approximation of
the exact, perturbed compliance C,(¢) when ¢ is sufficiently small (especially in 3d). Let us notice
however that, for a given value of the thickness e, the quality of the approximation deteriorates as
the conductivity 7; inside w, (thus the contrast v1/70) gets larger. This observation is in line with
the conclusions of [46, 47, 54], according to which the asymptotic formulas egs. (2.5) and (5.11) for u.
cannot hold uniformly with respect to the contrast 71 /7o, i.e. the remainders o(g) and o(¢?) in there
depend on 71 /79. Actually, it turns out that the limit of u. itself may differ from the background
potential uy when the contrast ~; /vy degenerates to 0 or oo as ¢ — 0. It would be interesting to
appraise the use of the asymptotic formulas for u. established in these articles, which hold uniformly
with respect to the ratio v1/79 (and are unfortunately much more difficult to derive and compute
numerically) to get more robust approximation formulas for u. and Cy(¢) with respect to the values

of Y1-

7.1.2. The case of the linear elasticity system in 2d and 3d

We perform a similar analysis in the context of the linearized elasticity system: now, ug is the solution
to the background elasticity system eq. (3.3), where the Hooke’s tensor Ay in eq. (3.1) is characterized
by the Lamé coefficients A\g = 0.5769 and pg = 0.3846. In the perturbed situation, the displacement
ue is the solution to the system eq. (3.4), and several values are considered for the thickness ¢ of the
inclusion set w,. and the Lamé coefficients A1, p; of its constituent material A;. In all cases, body
forces f are omitted; the surface load reads g = (0,—1) in 2d and g = (0,0, —1) in 3d.

On the one hand, we calculate the perturbed displacement u., and the corresponding compliance

Cy(e) := / g-usds = / Ace(ue) : e(us) de (7.1)
Ty D
on a confoming mesh of D where we . is explicitly discretized; see Figure 7.1 (bottom row).
On the other hand, we evaluate the asymptotic formula
C(0) +£971CL(0) (7.2)

on a fixed mesh of D. The results associated to different values of the thickness ¢, and different values
of the Lamé coefficients A1, @1 are displayed on Figure 7.4 in the 2d case, and on Figure 7.5 in the 3d
case.

—— Exact compliance —— Exact compliance
Asymptotic formula Asymptotic formula 345

Compliance

w
®
w

w

W

o
w
o
o

34.2 33.6
3259 — Exact compliance
Asymptotic formula

34.1

FI1GURE 7.4. Evaluation of the asymptotic formula for tubular inhomogeneities in the
2d elasticity case of Section 7.1.2: comparison between C,(g) and C,(0) + eC”(0) for
values of the ratio % = 2 equal to (left) 10, (middle) 100 and (right) 1000.

0

Again, a fine matching is observed between both quantities eqs. (7.1) and (7.2), which is, perhaps a
little surprisingly, better than in the case of the conductivity equation. As can be expected from the
discussion in the previous Section 7.1.1, for a fixed value of ¢, this correspondance deteriorates as the
ratios % and ﬁ—é increase (again, to a lesser extent than in the case of the conductivity equation).
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Evaluation of the compliance by exact and asymptotic calculations Evaluation of the compliance by exact and asymptotic calculations Evaluation of the compliance by exact and asymptotic calculations
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F1GURE 7.5. Evaluation of the asymptotic formula for tubular inhomogeneities in the
3d elasticity case of Section 7.1.2: comparison between C,(g) and C,(0) + £2C” (0) for
values of the ratio % = ﬁ—é equal to (left) 10, (middle) 100 and (right) 1000.

7.2. Topological ligament for elastic structures

The first application context of our asymptotic expansion formulas for thin tubular inhomogeneities
is also our initial motivation for the work of this article (see Section 1.1): we intend to use them in
the course of a structural optimization process, as a guide to insert now and then bars of material
between distant regions of the shape, in an optimal way with respect to a function of the domain.

7.2.1. Shape and topology optimization of elastic structures using the boundary variation method of
Hadamard

We deal with the optimization of an elastic structure Q@ C R? (d = 2,3), whose boundary 99 is
composed of three disjoint parts: 02 = I'p U 'y UT. The structure is clamped on I'p, and surface
loads g : Ty — R? are applied on I'y; both regions are imposed by the context, so that the remaining,
traction-free region I' is the only one subject to optimization. Omitting body forces for simplicity,
the displacement ug : @ — R? of the structure in these circumstances is the solution to the linear
elasticity system

—div(4e(ug)) =0 in Q,

un =0 on I'p, (7.3)
Ae(ug)n =g on I'y, '
Ae(ug)n =0 on T,

where the Hooke’s law A of the material reads:
Ve € S4(R), Ae =2ue+ Atr(e)l, with Lamé coefficients A = 0.5769, p = 0.3846. (7.4)

Our purpose is to solve the shape optimization problem

mﬂin C () s.t. Vol(Q) = Vrp, (7.5)
where C(Q) is the elastic compliance of €2 (or the work of external loads), namely:
cQ) = / Ae(uq) : e(ug) de = g - ugq ds, (7.6)
Q Iy

and Vol(Q2) = [,dx is the volume, which is expected not to exceed the threshold value Vp. Note
that the choice of the compliance and the volume as the objective and constraint in eq. (7.5) is only
a matter of simplicity, and that other functionals could be considered instead without much change
to the forthcoming discussion: least-square difference functions over the displacement, stress-based
criteria, etc.
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Our numerical resolution of eq. (7.5) relies on the boundary variation method of Hadamard, which
we have already evoked in Section 1.1, and whose salient features are now briefly recalled for the
convenience of the reader; see e.g. [12, 72, 86, 102] for further mathematical details and [8, 96] about
implementation issues.

Variations of a given shape () are considered under the form

Qg := (Id+6)(), where § € WH°(RYR?),  {|0]|yp1.00 (et ety <

)
is a “small” vector field encoding the deformation of ; see Figure 1.1 (top, right). The shape derivative
of, say, C'(2) is the Fréchet derivative C'(€Q) of the underlying mapping 6 — C(Qy) at 6 = 0:

0(9) 9—0

C(Q) = C(2) +C'(Q)(#) +0(0), where > 0. (7.7)

1611100 (Rt Rty

The shape derivatives of C(€2) and Vol(©2) are well-known to be (see e.g. [11]):
/Ae (uq) : e(uq) @-nds, and Vol'(Q /9 n ds. (7.8)

This allows to calculate a so-called (negative) “shape gradient” f¢ : RY — R? for C(9) (and similarly,
a shape gradient 6y for Vol(€2)): O¢ is a vector field such that the deformed version Q. of €2 achieves
a lesser value C'(4p,,) < C(Q) of the compliance for ¢ > 0 small enough. One such possibility, among
others, is such that:
Oc = Ae(uq) : e(ug)n on T,

as follows readily from egs. (7.7) and (7.8). This information is the main ingredient of shape op-
timization algorithms based on the method of Hadamard, a generic sketch of which is provided in
Algorithm 1.

Algorithm 1 Resolution of Problem eq. (7.5) using the method of Hadamard.

Initialization: Initial shape QV, intial values ozoc, a?/ of the optimization parameters.
for n =0,..., until convergence do
(1)  Calculate the elastic displacement ugn of Q.

(2)  Calculate negative shape gradients 67 and 67, for the functionals C'(£2) and Vol(f2), re-

spectively.
(3)  Calculate the deformation

0" = ad0p + aoy.
(4)  Deform Q™" along 6™:
Q= (Id+7m0") (),
where the pseudo-time step 7" is chosen small enough so that:
A C(Q™H) + ol Vol(Q™ ) < aZC(Q™) 4 aft Vol (™).

5 Update the optimization parameters ap, and af’.
C \%4
end for
return Q"

In Algorithm 1, the optimization parameters ag, af, are updated so that the volume constraint is
gradually enforced, while decreasing the value of the compliance, insofar as possible. Several strategies
are available to this end, and in our practical implementation, we rely on the constrained optimiza-
tion algorithm from [60]. As far as the numerical representation of shapes and their evolution are
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concerned, we rely on the level set based mesh evolution method from [6, 7] (see also [59, 61] for
recent developments). Grossly speaking, this method couples a level set representation of the shape
on a fixed computational domain D [11, 105] (see also [94] for the seminal reference about the level
set method) with remeshing operations using the open source library mmg [52, 53] to ensure that the
shape is meshed explicitly at each stage of the process: no ersatz material approximation is needed in
our numerical realization of Algorithm 1. Again, all the finite element calculations considered in this
article rely on the FreeFem environment [71].

One drawback of the method of Hadamard is that it does not, in theory, leave the room for topo-
logical changes between iterations; indeed, the mappings (Id +6) driving the update process are home-
omorphisms. As a result, the quality of the optimized design strongly depends on that of the initial
guess Q0. In practice, a little abuse of the above framework authorizes certain topological changes:
for instance, two separate holes can merge, but no hole can appear inside the bulk of the shape. To
alleviate this problem, classical shape optimization algorithms based on the method of Hadamard are
often complemented with the use of topological derivatives, as a mechanism to nucleate holes inside
the optimized shape in an “optimal” way; see again Section 1.1, and [9, 40].

In the next section, we present another mechanism to enrich the topology of a shape in the course
of its optimization via the method of Hadamard, namely the addition of a thin bar.

7.2.2. Insertion of a material bar

In this section, we explain how a thin bar can be added to a shape (2 arising in the course of Algorithm 1;
for notational simplicity, we drop the mention ™ to the particular iteration in the present discussion.

To achieve our purpose, we approximate the mechanical behavior of Q by the displacement wug
supplied by the ersatz material method; the latter is the solution to the following system, posed on
the whole computational domain D:

—div(Ape(up)) =0 in D,

=0 T A if Q
4o on D where Ag(z) = e 7 (7.9)
Ape(ug)n =g on 'y, nA otherwise,
Ape(ug)n =0 on 0D\ (TpUTy),

and 17 < 1 is a very small parameter (in all our examples, we take 7 = 10~3). Accordingly, the variation
Qe = QU wy . where the thin tube w, . is grafted to 2 is described by the solution u. to:

—div(Aze(us)) =0 in D,

u: =0 on I'p, where A.(z) = A ifze QU Waes (7.10)
Ace(us)n =g on 'y, nA otherwise.
Ace(us)n =0 on 0D\ (TpUTy),

The compliance C(Q, ) of the perturbed shape Q U w, . is then approximated by the quantity:

Cy(e) := /DAEe(ug) e(ue) doe = s g - ue ds;
N

in particular, C;(0) is the approximation of C(€2) supplied by the ersatz material method. Relying on
Proposition 3.3 and Proposition 6.3, this quantity has the following expansion as ¢ — 0:

Cy(e) = Cy(0) + 271C(0) 4 o(e971); (7.11)

note that the adjoint state py in egs. (3.25) and (6.19) featured in those formulas for C (0) is simply
po = —ug in the present context where the compliance functional is considered; see also Remark 2.12.
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On the other hand, the expansion of the volume Vol(,. ) of the perturbed shape is easily calculated
as:
Vol(Q U wgye) = Vol(Q) + ¥ Yo | + o(e? 1), (7.12)

where |o| is the length of o.

The sensitivities egs. (7.11) and (7.12) lead to a simple methodology to add a bar with thickness
¢ (of the order of the mesh size in our applications) to the shape €2 in order to optimize its behavior
with respect to Problem eq. (7.5). The proposed procedure is summarized in Algorithm 2.

Algorithm 2 Optimal insertion of a bar in the course of one particular iteration of Algorithm 1.

Initialization: Shape 2, optimization parameters a¢, oy, thickness parameter €.
(1) Calculate the solution ug to eq. (7.10) in D.

(2) Calculate C’(0) for all the segments of the form o = [z}, 2], with 2!, 22 € 9Q.

(3) Retain the segment o where the quantity
ac (Co(0) + 77104 (0)) + av (Vol() + 7o) (7.13)

is the most negative.
return Q,. = QUuwse.

Remark 7.1.

(i) For simplicity, we have only considered the graft of straight bars to a shape 2, while in
principle, the strategy of Algorithm 2 could feature quite arbitrary base curves o. It is expected,
however, that the search for such a curve minimizing the quantity eq. (7.13) would be difficult
to parametrize and implement.

(ii) The strategy of Algorithm 2, running through all segments of the form [z!, %], where x!, x?
belong to (a discretization of) 9 is admittedly naive: even though the evaluation of the
asymptotic formula eq. (7.11) for C/(0) is cheap (the background displacement ug needs only
to be computed once and for all, independently of o), we expect that this procedure could
become computationally expansive when the size of the mesh gets larger, thus raising the need
for a more clever strategy (e.g. a randomized procedure); see Section 8 for further comments
about this point.

Remark 7.2. In the strategy of Algorithm 2, the specifications of the base curve o of the new bar to
be added to 2 are inferred so as to minimize the quantity eq. (7.13), which amounts to assuming that
the inserted bar has an infinitesimal thickness. In practice, we rely on a “small” (but not infinitesimal)
value € for the thickness, of the order of the mesh size. Therefore, it might happen that the inserted
bar, with thickness ¢, is not exactly the optimal bar to be inserted with this value of the thickness.
Note that the same issue occurs when using topological derivative formulas (see Section 1.1 for a
glimpse), which are, in principle, relevant only when infinitesimally small holes are considered.

Remark 7.3. In all the considered examples where Algorithm 2 is intertwined with steps of the
boundary variation Algorithm 1, the minimized quantity eq. (7.13) is evaluated before and after
insertion of the bar predicted by Algorithm 2. The insertion of this bar is then retained only if this
value has decreased in the process. In practice, especially when more sensitive functions of the domain
than the compliance are considered, it may be desirable to allow a small tolerance over a possible
(slight) increase of eq. (7.13) as a result of the insertion of the bar.
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7.2.3. An example in 2d: the benchmark cantilever test case

The first numerical illustration of our topological ligament approach features the benchmark 2d can-
tilever test case, whose details are reported on Figure 7.6 (top, left): the shapes Q of interest are
contained inside a box D with size 2 x 1; they are clamped on their left-hand side I'p, and a unit
vertical load g = (0, —1) is applied on the region Iy in the middle of their right-hand side. Starting
from the initial design of Figure 7.6 (top, left), we solve the shape optimization problem eq. (7.5) with
a value Vpr = 0.8 for the volume target, while imposing symmetry of shapes with respect to the &
direction.

In a first attempt, we rely on Algorithm 1, which solely uses the boundary variation method of
Hadamard. We intentionally select update rules for the optimization parameters ac, ay so that the
volume constraint is very rapidly enforced. It turns out that the optimized shape develops very early
a trivial topology and the optimization path ends in a local minimum with a quite simple topology
and poor structural performance: the compliance of the final shape equals 3.09; see Figure 7.6 where
several intermediate shapes are represented.

FIGURE 7.6. (From left to right, top to bottom) Iterations 0 (with details of the test
case), 20, 40 and 200 in the 2d cantilever test case of Section 7.2.3 solved by using the
boundary variation Algorithm 1.

We then conduct the same experiment, up to an additional ingredient: the optimization process of
Algorithm 1 is periodically interrupted every 10 iteration, from iteration 40 to iteration 100, in order
to try and graft a bar to the optimized shape, according to Algorithm 2. Several snapshots of this
process are depicted on Figure 7.7, and the related convergence histories are reported on Figure 7.8:
obviously, the final shape has a richer topology, showing a larger number of holes, and the compliance
of the final shape equals 2.61, a lower value than in the previous situation.
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Compliance of the structure Volume of the structure

1.84

17.5 1.64

Compliance
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Volume
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251 081

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Iterations Iterations

Ficure 7.8. (Left) Evolution of the compliance in the course of the optimization of
the 2d cantilever in Section 7.2.3 with a combined use of Algorithms 1 and 2; (right)
evolution of the volume of the structure.

7.2.4. Optimization of the shape of a three-dimensional bridge

A similar experiment is conducted in the context of the optimization of a 3d bridge. As depicted on
Figure 7.9, the shapes are contained inside a trapezoid D with dimensions 4 x 1 x 1. They are clamped
on the reunion I'p of four disjoint regions located on the side and bottom parts of their boundary,
while a unit vertical load g = (0,0, —1) is distributed on their upper side I'y. Starting from the initial
shape of Figure 7.10 (top, left), we solve the problem eq. (7.5), with the value Vp = 0.12 for the volume
constraint, while imposing symmetry of shapes with respect to the £ direction.

FIGURE 7.9. Setting of the three-dimensional bridge example of Section 7.2.4.

We rely first on the boundary variation Algorithm 1, where we use an awkward rule for the update
of the optimization parameters a¢, ay. Again, the volume constraint is imposed very rapidly, so that
the shape accidentally gets disconnected from two of the four clamping regions which compose 0D.
The optimized shape in this case has a poor structural performance, as reflected by the large value
C(2) = 29.66 of its compliance; see Figure 7.10 for several snapshots of the process.

In a second time, we perform the same experiment, up to the use of our topological ligament
approach: every 10 iteration from iteration 40 to iteration 100 of the procedure in Algorithm 1, we
apply Algorithm 2 to try and add a bar to €2, which either connects two points z', 2% € 9, or one
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FIiGURE 7.10. Iterations 0, 40, 100 and 200 in the three-dimensional bridge test case
of Section 7.2.4 solved by using the boundary variation Algorithm 1.

point 2! € 9Q and a point x? € I'p. Several intermediate shapes of the process are represented on
Figure 7.11, and the convergence histories are reported on Figure 7.12. Obviously, the algorithm is
able to detect that it is beneficial to insert bars between the shape and the isolated components of
the clamping region I'p; the resulting shape from this procedure has a much lower compliance value
C(£2) = 8.34 than in the previous situation.

7.3. Optimal design of supports for additive manufacturing.

In this section, we apply our asymptotic formulas for thin tubular inhomogeneities to the computation
of an optimized collection of vertical pillars, serving as the support structure for a fixed shape € in
the course of its construction by an additive manufacturing technique.

We refer to [65] for a general overview of additive manufacturing techniques, and to the survey
article [81] for a description of the new issues and challenges they raise in connection with the field of
shape and topology optimization. Briefly, additive manufacturing (or 3d printing) is a common label
for a whole range of fabrication processes, which have in common that they begin with a subdivision of
the constructed shape into a series of horizontal slices; these layers are then constructed one atop the
other, according to the selected technology (Fused Filament Fabrication, Electron Beam melting, etc.).
These additive manufacturing methodologies have recently become very popular in engineering since
they are allegedly capable of assembling arbitrarily complex shapes, such as the lattice structures whose
optimality is predicted in a wide variety of situations by the homogenization theory. Unfortunately,
additive manufacturing methods also impose limitations of their own on the constructed design €2;
in particular, for various reasons, they all experience difficulties when €2 shows large overhangs, i.e.
nearly horizontal regions hanging over void. One possible solution to cope with the presence of such
features is to erect a support structure S at the same time as 2 (possibly made of a different, cheaper
material) so as to anchor them to the build table; see [41, 57] among other contributions.
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FiGure 7.11. Iterations 0, 40, 41, 51, 61, 71, 81, 100, 150 and 200 in the three-
dimensional bridge test case of Section 7.2.4 solved by using a combination of Al-
gorithms 1 and 2.

In this section, we aim to optimize the design of a support structure S for a given shape €2 containing
large overhangs. The optimized supports S should ease the construction of the total structure Q U .S,
for a minimum weight, so as to limit material consumption.

We rely on the model introduced in [3] for the fabrication process. The structure (2 to be assembled,
together with all the possible designs for the supports S are contained in a fixed computational
domain D of the form D = [0, M;] x ... x [0, My], which stands for the build chamber. Since Q is
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FIGURE 7.12. (Left) Evolution of the compliance in the course of the optimization
of the three-dimensional bridge of Section 7.2.4 with a combined use of Algorithms 1
and 2; (right) evolution of the volume of the structure.

fixed throughout this section, the dependences of the various considered quantities with respect to 2
are omitted for brevity. The physical behavior of Q U S during the construction stage is accounted
for by the linearized elasticity system, in the situation where QQ U S is clamped on the ground I'y :=
{z = (z1, -+ ,2q) € D, x4=0}, and is submitted to gravity loads, represented by a body force
f:R? = R The displacement ug of QU S in these circumstances is the solution to:

—div Age(ug) = pf in QUS,
us =0 on Ty, (7.14)
Ae(ug)n =0 on 9(QU S) \ To.

Here p is the density of material, which equals 1 inside the structure €2, and 0 inside the supports
for simplicity; the value of the Hooke’s tensor Ag inside Q is that A in eq. (7.4), as used in the
previous section; inside the support structure, Ag takes the weaker value A; = ngA (in practice, we
use ng = 0.4).

We aim to solve the problem

géigVOl(S) s.t. C(S) < Cr, (7.15)
where Vol(S) := [¢qdx is the volume of the support structure, and the compliance of the structure
during its manufacturing,

C(S) = / Ase(us) : e(ug) dz = / fug da (7.16)
QUS QUS
is required not to exceed the user-defined threshold Cr.

Remark 7.4.

e This model for the physical behavior of a shape 2 and the companion scaffold structure S
during the fabrication process was proposed in [3]. It is a simplified version of the layer-by-
layer approach introduced in [4, 5, 15], where the compliance of each intermediate shape Qj, :=
{r € Q, x4 <h} (corresponding to the stage where €2 is assembled up to the level x4 = h) is
involved.

e Other physical criteria than the compliance eq. (7.16) could be used for evaluating the per-
formance of the structure S, such as criteria based on the steady-state heat equation, as a
means to measure the rapidity of heat evacuation or the accumulation of residual stress (see
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e.g. [10, 37]). The application of the strategy described below to create an optimized set of pil-
lars in view of Problem eq. (7.15) in this other context governed by the conductivity equation
could make use of the asymptotic formulas derived in Sections 2 and 5.

The optimal design problem eq. (7.15) of a suitable support structure for Q2 was treated by means
of a boundary variation algorithm very similar to Algorithm 1 in [3]. In many practical situations,
however, it is desirable that the scaffold structure S resemble as much as possible a collection of vertical
pillars (at the very least, S itself should not feature overhang regions!) One idea in this direction is
to rely on the asymptotic formulas in this article to devise an optimized set of vertical pillars with
respect to Problem eq. (7.15).

To achieve this, as in Sections 1.2 and 7.2.2, we approximate the solution ug to eq. (7.14) by that
ug to the approximate counterpart supplied by the ersatz material method:

—div Ape(ug) = pf in D, A itz e,
ug =0 on T, where Ag(x) ={nsA ifzx €S, (7.17)
Ape(ug)n =0 on D \ T, nA  otherwise,

and the small parameter for the ersatz material equals n = 1073, Likewise, the mechanical behavior
USUw,.. Of the total structure when a thin bar w, . is added to the supports S is approximated by the
solution u. to:

—div Ace(us) = pf in D, A if z € Q,
U =0 on I'g, where A.(z) = {nsA if z € SUwe,, (7.18)
Ac(ue)n =0 on D \ T, nA  otherwise,

We now replace the compliance C'(S Uwe.) in eq. (7.16) by the quantity
/Aeus e us)dm—/pf-usdx,
D

whose asymptotic expansion
Cy(e) = Co(0) + £ 1CL(0) + o(s*7 )

is supplied by Proposition 3.3 in 2d and by Proposition 6.3 in 3d.

Starting from an empty support structure S® = ), we repeatedly apply an easy adaptation of
Algorithm 2 to insert a vertical bar with thickness ¢ > 0 and material properties A, connecting one
point x € 9 with its projection Z := (z1,...,24-1,0) on the base table I'y in an optimal way. This
procedure is repeated until the performance of the support structure .5, as measured by the compliance
C(S) of QUS in eq. (7.16) gets below the threshold Cr. In concrete applications the thickness € of the
inserted pillars should be set according to the capabilities of the machine tool; for simplicity, however,
in the model examples of this article, we simply choose € of the order of the mesh size.

Depending on the capabilities of the machine tool, it may be possible to construct more general
shapes of supports than just pillars. In such a case, the optimized collection of pillars Siemp resulting
from the previous procedure may serve as a “good” initial guess for a subsequent resolution of eq. (7.15)
by means of a more classical boundary variation algorithm, such as Algorithm 1 up to some minor
adaptations, as in the article [3].

These considerations lead to a two-stage optimal design process for the support structure .S, which
is summarized in Algorithm 3.

Remark 7.5.

e In practice, in the first stage of Algorithm 3, bars are inserted, regardless of their volume, until
the compliance constraint is fulfilled, before the true constrained optimization Algorithm 1,
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Algorithm 3 Optimization of the support structure S for the construction of Q by 3d printing

Initialization: Shape €, intial support structure S° = (), thickness parameter .
Step 1:
while C(S) > Cr do
(1)  Calculate the ersatz material approximation ug to the solution ug of eq. (7.14).

2 For all point x € 99, calculate the quantity C’(0), where o = [z, T] connects x with its
ag
projection = (z1,...,24-1,0) on I'g. and retain the segment achieving the most negative
value.

(3) Update S by SUwge.
end while
Intermediate result: Optimized collection of vertical pillars Siemp.-
Step 2: Solve the shape optimization problem eq. (7.15) by using (an adapted version of) the
boundary variation algorithm Algorithm 1, starting from Stemp.-
return Optimized support structure S.

based on the method of Hadamard, is used. Of course, it would be possible to rely on a
constrained optimization algorithm since the beginning.

e We sometimes interrupt the first stage when the compliance of the support structure S reaches
a slightly larger value than the imposed threshold Cr: we indeed observe that at some point,
it is no longer optimal to insert bars, but a better design is more easily obtained by switching
to a boundary variation algorithm such as Algorithm 1.

7.3.1. Optimization of the support structure of a 2d MBB beam

We first consider a 2d example where the shape €2 to be produced is the MBB Beam of Figure 7.13
(top), which has been optimized with respect to its elastic compliance; see Figure 7.13 (top) (the details
of this optimization are not reported for brevity). Obviously, 2 presents large overhangs, and we solve
Problem eq. (7.15) so as to calculate a suitable support structure S, which eases its construction by
additive manufacturing. We use Algorithm 3 to achieve our purpose, while imposing symmetry of
the structure S in the direction &;. The numerical value f = (0,—9.8) is used for the body force
representing gravity effects in eq. (7.14), and we select the threshold Cr = 67 for the compliance
constraint.

The optimized structures resulting from both stages are represented on Figure 7.13 and the asso-
ciated convergence histories are in Figure 7.14. The compliance C(S) decreases very rapidly in the
course of the first stage, and only 20 iterations are needed to obtain an intermediate structure Siemp
such that C(Stemp) < C7. The second stage of Algorithm 3 proves also quite efficient in delivering a
final support structure S which uses a lesser amount of material for about the same compliance value
as Stemp- Interestingly, S resembles much the intermediate design Siemp resulting from the first, bar
insertion stage.

7.3.2. Optimization of the support structure for a 3d chair

We apply the same methodology on a three-dimensional example, similar to one of those tackled in [3].
The constructed structure €2 is a chair, enclosed in a box D with size 0.7 x 0.5 x 1, which results from
a preliminary shape optimization process; see Figure 7.15 (top, left) below.
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F1caure 7.13. (Top) Optimized design © of an MBB Beam in terms of is structural
compliance; (middle) optimized collection of pillars Siemp resulting from the first stage

of Algorithm 3 (in red); (bottom) optimized support structure S resulting from the
second stage of Algorithm 3.
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Ficure 7.14. (Left) Evolution of the compliance C(S) in eq. (7.16) of the support
structure for the MBB beam example of Section 7.3.1, during the first stage of Algo-
rithm 3; (middle) evolution of C(S) during the second stage of Algorithm 3; (right)
evolution of the volume Vol(S) during the second stage.

The body force f modeling gravity effects equals f = (0,0,—9.8), and the threshold value for the
compliance constraint is C' = 1. No particular symmetry is imposed on the support structure S. We
apply Algorithm 3, and several snapshots of the optimization process are displayed on Figure 7.15;
the associated convergence histories are reported on Figure 7.16.

As in the example of Section 7.3.1, very few iterations of the first stage are needed to deliver a
support structure Siemp Whose compliance satisfies the desired inequality in eq. (7.15). The second
stage also offers a significant improvement of this intermediate design.
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FIGURE 7.15. (From top to bottom, left to right) Iterations 0, 5, 10 of the first phase,
followed by iterations 7,19, 30 of the second phase of Algorithm 3 in the scaffold struc-
ture optimization example of Section 7.3.2. The fixed shape €) to be fabricated is
represented in grey, and the support structure S is displayed in orange.

7.4. An incremental algorithm for the optimization of truss structures.

Although we have hitherto focused on the optimization of continuous structures in this example
section, one promising application of asymptotic formulas for thin tubular inhomogeneities concerns
the optimization of trusses, that is, structures that are collections of straight members, connected
at joints. Most often, the optimal design of such structures is conducted by means of combinatorial,
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FIGURE 7.16. (Left) Evolution of the compliance C(S) of the support structure for
the 3d chair example of Section 7.3.2, during the first stage of Algorithm 3; (middle)
evolution of C(S) during the second stage of Algorithm 3; (right) evolution of the
volume Vol(S) during the second stage.

or sizing optimization algorithms. One popular approach is the so-called “ground structure” method
(see [56] for the seminal article), where the optimized structure is initialized with a very large amount of
bars, connecting all the nodes of a user-defined set. The thickness of each bar is optimized with respect
to a given measure of the mechanical performance of the structure, and a vanishing thickness for a bar
indicates that it should be removed from the structure. One obvious drawback of the resulting optimal
control formulation is that it typically features a very large number of variables. Quite differently, truss-
like structures have also been optimized by means of modern continuous shape optimization methods
(see e.g. [11]), with the risk that the resulting structure might be too “bulky”, and lose its “truss-like”
character. We refer to [29] for a general overview of the question of truss optimization.

In this section, we propose a fairly simple variation of the bar insertion methodology of Section 7.2.2
to address the model structural optimization problem

min Vol(©2) s.t. C(Q) < Cr, (7.19)

in a context where the structure €2 is expected to resemble a truss. Here, as before, C'(£2) stands for
the elastic compliance eq. (7.6) of the structure €2, whose mechanical behavior is characterized by the
elastic displacement ug in eq. (7.10), and C7p is a user-defined threshold.

Contrary to the “ground structure” approach, our algorithm starts with an empty structure €.
A set N = {2t ... 2N } of nodes is defined once and for all by the user within the computational
domain D; we then rely on the methodology of Algorithm 3 in Section 7.2.2 to iteratively try and
enrich  with bars: the ersatz material method is used to produce an approximation C,(g) of the
compliance C(€,.), where variations of the actual structure €2 are of the form Q,. = QU wg,
involving segments o = [z°, 7] with endpoints in N. Relying on the asymptotic expansion of Cy(¢)
supplied by Proposition 3.3 and Proposition 6.3, we iteratively try and insert bars to decrease the
value of the compliance until it gets below the threshold Cr.

As a complement to this bar insertion algorithm, and depending on whether the optimized structure
Q) is required to be exactly a collection of bars, or this assumption might be relaxed slightly, it is
interesting to try and optimize further the resulting design temp from this first stage by means of the
more classical boundary variation Algorithm 1.

This optimal design methodology for truss-like structures is summarized in Algorithm 4.
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Algorithm 4 Optimization of a truss-like structure 2

Initialization: Initial shape Q = 0, set of nodes N' = {xl, ... ,xN} C D, thickness parameter &.
Step 1:
while C(S) > Cr do

(1)  Calculate the ersatz material approximation ug to the solution uq of eq. (7.10).

(2)  For all pairs of nodes z*, 27 € N, calculate the quantity C”.(0), for o = [2%, 27], and retain
the segment achieving the most negative value.

(3) Update Q by QU wg.
end while
Intermediate result: Optimized collection of bars Qiemp.
Step 2: Solve the shape optimization problem eq. (7.19) by using (an adapted version of) the
boundary variation algorithm Algorithm 1, starting from Qemp.
return Optimized truss-like structure €.

7.4.1. Optimization of the layout of a crane in 2d

Our first optimization example of a truss-like structure is that of a two-dimensional crane, as depicted
on Figure 7.17 (top, left). The considered shapes are enclosed in a box with size 5 x 4; two vertical
loads g = (0, —1) are applied on the front and rear parts I'y of the crane, mimicking the weight of the
lifted object and the counterweight, respectively. The optimization problem eq. (7.19) is considered,
with a value C'r = 120 for the imposed threshold on the compliance of shapes.

We apply Algorithm 4 to the resolution of this problem. Several iterates of the optimization process
are depicted on Figure 7.17, and the associated convergence histories are reported on Figure 7.18.
Interestingly, the optimized shape resembles very much a truss and its outline is very reminiscent of
the intermediate collection of bars emp resulting from the first, bar insertion stage.

7.4.2. Optimization of the layout of a mast in 3d

We now turn to a three-dimensional example, that of the optimization of an electric mast. The physical
situation is represented on Figure 7.19 (top, left): shapes are enclosed in a 3 x 1 x 3 T-shaped domain
D and they are clamped at their bottom side; surface loads g = (0,0, —1) are applied at the end of
both arms. Here, symmetry is imposed with respect to the £ direction, and the considered threshold
for the compliance is Cr = 100.

Several intermediate shapes arising in the course of the optimization process are represented on
Figure 7.19, and the associated convergence histories are reported on Figure 7.20. Note that the
resulting collection of bars Qtemp from the first stage is connected, while no particular effort was paid
during the optimization to enforce this property.

8. Conclusions and perspectives

The investigations of the present article lie halfway between the fields of asymptotic analysis and shape
and topology optimization.

From the theoretical point of view, we have focused on the asymptotic expansion of the solution
to a “background” partial differential equation (particularly, the conductivity equation and the linear
elasticity system in 2d and 3d) when the ambient medium is perturbed inside a tube with vanishing
thickness. Our main contribution in this direction was to propose a simple, heuristic argument to
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FIGURE 7.17. (Top) Iterations 0, 4 and 9 of the first phase; (bottom) Iterations 11,
91 and 200 of the second phase in the crane optimization example with design of a
truss-like initial guess, as considered in Section 7.4.1.

conduct the analysis. Albeit not perfectly rigorous, it allows to retrieve quite effortlessly existing
formulas and also to deal with settings which have not yet been addressed in the literature, to the
best of our knowledge.

As regards applications, we have proposed a formal use of these asymptotic formulas for thin tubular
inhomogeneities in order to graft a bar to a shape in an “optimal” way. We approximate the sensitivity
of a function of the domain with respect to the addition of a ligament between two distant regions of the
shape — a question which was investigated in [87, 88, 89] from a different perspective. Taking advantage

256



THE TOPOLOGICAL LIGAMENT IN SHAPE OPTIMIZATION

Compliance of the structure Compliance of the structure Volume of the structure

70000

3.2
60000 260

240 301
50000

40000 289

Compliance

30000

Compliance
N
5
8
Volume

2,61
180

20000 160 2.4

10000

2.24

0 2 4 6 8 10 12 14 16 18 20
Iterations

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120

140 160 180 200
Iterations

Iterations
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FIGURE 7.19. (Top) Iterations 0, 3 and 7 of the first phase; (bottom) Iterations 0, 20
and 100 of the second phase in the T-shaped mast optimization example with design
of a truss-like initial guess considered in Section 7.4.2.

of the popular adjoint method from optimal control theory, our approximate sensitivities can be given
a very convenient structure for numerical calculations. We have exemplified how this strategy may
serve various purposes in the field of shape and topology optimization with three different applications:
it supplies a complementary means to enrich the topology of a shape in the course of its optimization
within the framework of Hadamard’s method; it is also a natural ingredient in the optimization of
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F1cure 7.20. (Left) Evolution of the compliance in the course of the first stage; (mid-
dle) evolution of the compliance during the second step; (right) evolution of the volume
during the second step in the mast optimization example of Section 7.4.2.

the support structure of a shape constructed by additive manufacturing, or in the optimization of
truss-like structures.

The present work opens the way to various perspectives, at first regarding the mathematical analysis.
One first lead for future work arises from the observations made in Section 7.1: it is natural to wonder
in which capacity our asymptotic analyses can be made uniform with respect to the contrast between
the material properties outside and inside the vanishing ligament ws,. (70 and 71, Ap and A; in
the conductivity and elasticity settings, respectively). This is interesting for our applications, where
these asymptotic formulas are used with “very soft” background properties vg or Ag. This may also
help to make the connection between our formal topological ligament approach and the rigorous
expansions derived in [87, 88, 89]. In this direction, let us mention that, in the conductivity setting,
such asymptotic expansions of the potential u. which are uniform with respect to this contrast have
been derived in [91] in the context of diametrically small inclusions and in [46, 47, 54] in the context
of thin inhomogeneities.

On a different note, it would be interesting to conduct the investigations of this article in other
physical contexts, and notably that of fluid mechanics, as described by, e.g., the Stokes equations. We
expect that our formal energy argument would have to be adapted in a non trivial way to handle such
situations, where the physical partial differential equations at stake are no longer elliptic.

As far as applications are concerned, besides those described in Sections 7.2 to 7.4, we believe that
the approximate sensitivity formulas considered in this article could be adapted to deal with a wide
variety of tasks, such as the following ones:

e Besides its mathematical interest, the extension of the present work to the context of fluid
mechanics would allow to optimize the outline of the cooling channels conveying the refrig-
erating liquid within molds; indeed, these intrinsically take the form of tubes, although their
base curve may not be a straight segment; see for instance [106] and the references therein for
more details about this problem.

e The techniques developed in this article naturally allow to address another requirement im-
posed on a shape €2 constructed by means of a powder-based additive manufacturing process,
such as Electron Beam Melting (EBM) or Selective Laser Sintering (SLS): the powder used for
construction has to be removed at the end of the process, lest that it cause unnecessary ma-
terial loss and potential health hazard. Much of the effort in this direction has been directed
towards designing structures ) which are free from internal voids. As such, the article [80]
introduces the so-called “virtual temperature method” to enforce the simple connectedness of
the optimized design. In a different spirit, and following [104], our asymptotic formulas could
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help in identifying one channel connecting an internal void of a structure §2 to its outer surface,
which can be pierced as a post-processing of the construction stage and which is “optimal” in
the sense that it degrades as little as possible the mechanical performance of €.

e Still about applications related to powder-based additive manufacturing, the techniques intro-
duced in this article could be used to optimize the path of the laser in charge of fusing the
processed metallic powder, in order to e.g. evacuate heat as fast as possible; we refer to [37]
for further details about this question, where a totally different method is used.

e The thin tubular inhomogeneities considered in this article find another interesting application
in the optimization of cylindrical geometries in 3d, that is, structures that are described by
a midsurface § and with given thickness function in the normal direction. Such structures
are ubiquitous in nature, since they encompass elastic plates or shells (see e.g. [98]) or, for
instance, micro-chip devices such as those used in nanophotonics (see e.g. [79] and the references
therein). The optimization of such devices is often carried out as a 2d optimization on the
midsurface, and so the calculation of topological derivatives in the 2d midsurface boils down
to a topological ligament asymptotic expansion for the underlying, three-dimensional partial
differential equation.

e Beyond the work of this article, and quite in the same spirit, it would be interesting to use
“thin” inhomogeneities (that is, sets which shrink to a hypersurface in RY, as in eq. (1.14)) to
add “walls” of material to a three-dimensional shape.

Let us finally highlight a few potential algorithmic improvements of the methods presented in this
article:

e One obvious improvement direction of the proposed method, which is crucial for realistic
applications, is the device of a procedure for locating the “optimal” bar to be inserted, which
does not incur an exhaustive search as in Algorithm 2. We believe that gradient methods based
on the minimization of the expansion o ++ Cy(0) 4+ 9~1C” (0) with respect to the endpoints of
o, however cheap, would be prone to end up in local minima with poor structural performance.
One interesting alternative might be to use stochastic optimization algorithms.

e Although the approximate sensitivities derived in this article account for the addition of not
only bars, but also curved ligaments to shapes, the optimization of such geometric entities is
certainly a more challenging algorithmic topic.
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Appendix A. The coarea formula

For the reader’s convenience, we recall the following avatar of the coarea formula (a curved version of
the Fubini theorem), which is used in several different contexts in the present article; see [48]:

Lemma A.1. Let X,Y be two smooth Riemannian manifolds with respective dimensions m > n, and
f: X =Y be a surjective mapping of class C*, whose differential d,f : Ty X — Ty()Y is surjective

for almost every x € X. Then, for any function ¢ € L'(X), it holds:

J ez = | ( Lo ® P dz> dy.

where the Jacobian Jac(f) is defined by Jac(f)(z) := \/det(Vf(x) Vi()T.

Appendix B. Technical results

The following lemma gathers convergence results of the solution u. to the perturbed conductivity
equation eq. (2.4) to the background potential ug in eq. (2.2); we handle both cases d = 2,3 at the
same time.

Lemma B.1. Let 0 € D be a (open or close) smooth curve which is not self-intersecting; let u. be
the perturbed potential in eq. (2.4), and ug be the solution to the background equation eq. (2.2). Then,
for e > 0 small enough,

(i) There exists a constant C' > 0, depending only on ug, such that [|us — uo|| g1 (py < ce'T

(ii) For any exponent 1 < p < 2, there exists C > 0 depending on ug and p only such that:

Ue — UQ
&«d—l

<C,
LP(D)

where the constant C' > 0 is independent of €.

(iii) The sequence of functions EdL,l(ug —wug) s uniformly integrable, i.e. for any real number n > 0,
there exists § > 0 such that:
For all Borel subset E C D with |E| < 9, for alle >0, / te — o
E

Proof. Proof of (i). The difference r. := u. —ug is the unique solution in H%D (D) to the variational
problem:
Yo € H%D(D), / YeVre - Vo de = —/ (71— v0)Vuo - Vo da.
D w,

o,

Hence, taking v = r. as a test function and using the Cauchy—Schwarz inequality, we obtain:
1

2
”VT5||L2(D)d <C </ |Vu0|2 dﬂ?) s

and the result follows from the Poincaré inequality and the smoothness of uy on a neighborhood of
Wee (see again [38, 66]).

Proof of (ii). This is a variation of the classical Aubin-Nitsche duality argument; see [28, 92| for
the original references, and [49] in the context of the finite element method.

At first, the remainder s. := 7% is the unique solution in H}: (D) to the variational problem:
€ I'p

1
Y € H%D(D), /D%ng -Vodzr = —de/ (v1 —v0)Vup - Vo de.

o,
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The conclusion of (i) immediately implies that:

IVsell p2(pye < Ce™" 7. (B.1)
Let now g > 2 be defined by the relation % + % =1 and z € LY(D) be arbitrary; we introduce the
unique solution vy € H%D (D) to the problem:

Y € H%D(D)7 / YoV - Voder = / zv dz. (B.2)
D D
Classical interior elliptic regularity theory implies that there exists an open subset V € D containing
Wee for € small enough, as well as a constant C' > 0 such that vy € W29(V) and:

lvoll e (py + lvollw2avy < Cll2llLa(py- (B.3)
A simple calculation then yields:

/ z8:. dox = / YoVug - Vs dx
D D

= /D VEVUO -Vse dx + /D (70 - ’YE)VUO - Vs, dx (B.4)
1
= _Edﬁ/ (71 = 70) Vo - Vg dz +/ (70 —m1)Vvo - Vs da.

Now since |[Vup|[z~(y) < C as a result of classical interior elliptic regularity, and [[Vug| gy <
C||z|l a(p) owing to eq. (B.3) and the Sobolev embedding theorem (see e.g. [1]), the first term in the
above right-hand side is estimated by:

1
cd—1 / (71 —v0)Vvg - Vug dz

As for the second term in the right-hand side of eq. (B.4), we obtain:

/ (70 —m)Vug - Vs, dx

< C|Vuol| oo (vyal[Vvol| oo (vya < Cll2]|La(p)- (B.5)

< CIVuollz2w, el Vsell L2 (pya

_ _ B.6
< O T | Vool peo e~ 7, (B.6)

< Cl2]|Le(py,
where we have used eq. (B.1) to pass from the first line to the second one.
Eventually, combining egs. (B.4) to (B.6), we obtain the desired result.

Proof of (iii). Let ¢ > 0 be given; we still use the notation s. := “5=1%. For an arbitrary Borel
subset E C D, we define the function z = sgn(s;)1g € L*>(D), where
1 if s >0,
Vs € R, sgn(s):=<¢0 ifs=0,
-1 ifs<0.

Introducing the function vy € H%D (D) defined by eq. (B.2) and re-using eqgs. (B.4) to (B.6), we obtain:
1
[ bselda = [ zs.du < Clleliaen) = CIET,
E D

whence the desired uniform integrability follows immediately. |
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