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Abstract. Nonlinear quantum graphs are metric graphs equipped with a nonlinear Schrödinger equation. Whereas
in the last ten years they have known considerable developments on the theoretical side, their study from the
numerical point of view remains in its early stages. The goal of this paper is to present the Grafidi library, a Python
library which has been developed with the numerical simulation of nonlinear Schrödinger equations on graphs in
mind. We will show how, with the help of the Grafidi library, one can implement the popular normalized gradient
flow and nonlinear conjugate gradient flow methods to compute ground states of a nonlinear quantum graph. We
will also simulate the dynamics of the nonlinear Schrödinger equation with a Crank-Nicolson relaxation scheme and
a Strang splitting scheme. Finally, in a series of numerical experiments on various types of graphs, we will compare
the outcome of our numerical calculations for ground states with the existing theoretical results, thereby illustrating
the versatility and efficiency of our implementations in the framework of the Grafidi library.

2010 Mathematics Subject Classification. 35R02, 65N06, 35Q55.
Keywords. Quantum Graphs; Python Library; Nonlinear Schrodinger equation; Finite Differences; Ground
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1. Introduction

The nonlinear Schrödinger equation
iut + ∆Ωu+ f(u) = 0,

where u : Rt × Ωx → C is a popular model for wave propagation in physics. It appears in particular
in the modeling of Bose-Einstein condensation and in nonlinear optics. In general, the set Ω is chosen
to be either the full space Rd (with d = 1 in general in optics and d = 1, 2 or 3 for Bose-Einstein
condensation), or a subdomain of the full space. For example, in Bose-Einstein condensation, the
potential might be chosen in such a way that the condensate is confined in various shapes Ω, e.g. balls
or cylinders. In some cases, the shape of Ω is very thin in one direction, for example in the case of
Y -junctions (see e.g. [58]), or in the case of H-junctions (see e.g. [38]). In these cases, it is natural to
perform a reduction to a one-dimensional model set on a graph approximating the underlying spatial
structure (see e.g. [55]).

The study of nonlinear quantum graphs, i.e. metric graphs equipped with a nonlinear evolution
equation of Schrödinger type, is therefore motivated at first by applications in physics. An overview

This work was supported by the ANR LabEx CIMI (grant ANR-11-LABX-0040) within the French State Programme
Investissements d’Avenir.

1

mailto:Christophe.Besse@math.univ-toulouse.fr
mailto:Romain.Duboscq@math.univ-toulouse.fr
mailto:stefan.lecoz@math.cnrs.fr


C. Besse, R. Duboscq & S. Le Coz

of various applications of nonlinear Schrödinger equations on metric graphs in physical settings is
proposed by Noja in [48]. One may also refer to [32, 54] for analysis of standing waves in a phys-
ical context. The validity of the graph approximation for planar branched systems was considered
by Sobirov, Babadjanov and Matrasulov [55] and by Uecker, Grieser, Sobirov, Babajanov and Matra-
sulov [59]. It has been shown in [29, 30] that any (linear) self-adjoint coupling at a vertex of a quantum
graph may be approximated as a limit of Schrödinger operators on thin branched manifolds.

The mathematical aspects of nonlinear equations set on metric graphs are also interesting on their
own. Among the early studies, one finds the works of Ali Mehmeti [10], see also [11]. Dispersive effects
for the Schrödinger equation have been considered on star graphs [46] and the tadpole graph [47]. In
the last ten years, a particular theoretical aspect has attracted considerable interest: the ground states
of nonlinear quantum graphs, i.e. the minimizers on graphs of the Schrödinger energy at fixed mass
constraint. The literature devoted to ground states on graphs is already too vast to give an exhaustive
presentation of the many works on the topic, we refer to Section 5 for a small sample of relevant
examples of the existing results.

There seem to be relatively few works devoted to the numerical simulations of nonlinear quantum
graphs. One may refer e.g. to [15, 41, 45] which are mostly theoretical works completed with a nu-
merical section. R. H. Goodman developed a Matlab library [34] in which finite differences have been
implemented on graphs. This library was used in [33, 42]. In [62, 63, 64], the authors proposed an
extension to transparent vertices conditions. Numerical simulations on the integrable cubic nonlinear
Schrödinger equation on graphs have been performed in [56].

In view of the sparsity of numerical tools adapted to quantum graphs, we have developed a Python
library, the Grafidi library1, which aims at rendering the numerical simulation of nonlinear quantum
graphs simple and efficient [18].

From a conceptual point of view, the library relies on the finite difference approximation of the
Laplacian on metric graphs with vertex conditions described by matrices (see Section 2.1 for details).
Inside each of the edges of the graph, one simply uses the classical second order finite differences
approximation for the second derivative in one dimension. On the other hand, for discretization points
close to the vertices, the finite differences approximation would involve the value of the function at
the vertex, which is not directly available. To substitute for this value, we make use of (again) finite
differences approximations of the boundary conditions. As a consequence, the approximation of the
Laplacian of a function close to a vertex involves values of the function on each of the edges incident
to this vertex. Details are given in Section 2.

The basic functionalities of the Grafidi library are presented in Section 3. The Grafidi library has
been conceived with ease of use in mind and the user should not need to deal with technicalities for
most of common uses. A graph is given as a list of edges, each edge being described by the labels (e.g. A,
B, etc.) of the vertices that the edge is connecting and the length of the edge. With this information,
the graph-constructor of the library constructs the graph and the matrix of the Laplacian on the
graph with Kirchhoff (i.e. default) conditions at the vertices and a default number of discretization
points. One may obviously choose to assign other types of vertices conditions, either with one the
pre-implemented type (δ, δ′, Dirichlet) or even with a user defined vertex condition for advanced uses.
A function on the graph is then given by the collection of functions on each of the edges. The graph
and functions on the graph are easily represented with commands build in the Grafidi library.

We present in Section 4 the implementation for nonlinear quantum graphs of four numerical methods
popular in the simulation of nonlinear Schrödinger equations.

The first two methods that we present concern the computation of ground states, i.e. minimizers
of the energy at fixed mass. Ground states are ubiquitous in the analysis of nonlinear Schrödinger
equations: they are the profiles of orbitally stable standing wave solutions and serve as building blocks

1See https://plmlab.math.cnrs.fr/cbesse/grafidi
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for the analysis of the dynamics, in particular in the framework of the Soliton Resolution Conjecture.
The two methods that we implement are the normalized gradient flow, which was analyzed in details
in our previous work [17], and the conjugate gradient flow, which was described in [12, 22] in a general
domain. The idea behind these two methods is that, since the ground states are minimizers of the
energy at fixed mass, they may be obtained at the continuous level by using the so-called continuous
normalized gradient flow, i.e. a gradient flow corresponding to the Schrödinger energy, projected on
the sphere of constant mass.

The next two methods that we present in Section 4 concern the simulation of the nonlinear
Schrödinger flow on the graph. Numerical schemes for nonlinear Schrödinger equations abound, we
have selected a Crank-Nicolson relaxation scheme and a Strang splitting scheme, which have both been
shown to be very efficient for the simulation of the Schrödinger flow (see [16, 61]). As for the methods
to compute ground states, thanks to the Grafidi library, the implementation of the time-evolution
methods is not more difficult on graphs than it is in the case of a full domain.

To illustrate and validate further the use of the Grafidi library and the numerical methods pre-
sented, we have performed a series of numerical experiments in various settings in Section 5. As the
theoretical literature is mainly devoted to the analysis of ground states, we have chosen to also focus
on the calculations of ground states using the normalized and conjugate gradient flows. We distinguish
between four categories of graphs: compact graphs, graphs with a finite number of edges and at least
one semi-infinite edge, periodic graphs and trees. For each of these types of graphs, we perform ground
states calculations. The comparison of the outcomes of our experiments with the existing theoretical
results reveals an excellent agreement between the two.

2. Space discretization of the Laplacian on graphs

2.1. Preliminaries

A metric graph G is a collection of edges E and vertices V. Two vertices can be connected by more
than one edge (in which case we speak of bridge), and an edge can connect a vertex to himself (in
which case we refer to the edge as loop). To each edge e ∈ E , we associate a length le and identify the
edge e with the interval [0, le] ([0,∞) if le =∞).

A function ψ on the graph is a collection of maps ψe : Ie → R for each e ∈ E . It is natural to define
function spaces on G as direct sums of function spaces on each edge: for p ∈ [1,∞] and for k = 1, 2,
we define

Lp(G) =
⊕
e∈E

Lp(Ie), Hk(G) =
⊕
e∈E

Hk(Ie).

We denote by (·, ·) the scalar product on L2(G) and by 〈·, ·〉 the duality product on H1(G). As no
compatibility conditions have been given on the vertices yet, a function ψ ∈ H1(G) has a priori
multiple values on each of the vertices. For a vertex v ∈ V, we denote by

ψ(v) = (ψe(v))e∼v ∈ Rdv

the vector of the values of ψ at v, where e ∼ v denotes the edges incident to v and dv is the degree of
v, i.e. the number of edges incident to v. In a similar way, for ψ ∈ H2(G), we denote by

ψ′(v) = (ψ′e(v))e∼v ∈ Rdv

the vector of the outer derivatives of ψ at the vertex v. For brevity in notation, we shall also note

ψ(V) = (ψ(v))v∈V , ψ′(V) = (ψ′(v))v∈V ,

the vectors constructed by the values of ψ and ψ′ at each of the vertices.
To give an example, we consider the simple 3-edges star graph G3,sg drawn on Figure 2.1. The
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•A •
O

• B

• C

Figure 2.1. The 3-edges star graph G3,sg.

degree dO of the vertex O is dO = 3, the set of vertices is V = {O,A,B,C} and the set of edges is
E = {[OA], [OB], [OC]}. The vectors ψ(O) and ψ′(O) are given by

ψ(O) =

ψOA(O)
ψOB(O)
ψOC(O)

 , ψ′(O) = −

∂nOAψOA(O)
∂nOBψOB(O)
∂nOCψOC(O)

 ,
where nOM = OM/‖OM‖, M ∈ {A,B,C}, is the inward unit vector, and

∂nOMψOM (O) = lim
t→0
t>0

ψOM (O + tnOM )− ψOM (O)
t

.

A quantum graph is a metric graph G equipped with a Hamiltonian operator H, which is usually
defined in the following way. The operator H is a second order unbounded operator

H : D(H) ⊂ L2(G)→ L2(G),
which is such that for u ∈ D(H) ⊂ H2(G) and for each edge e ∈ E we have

(Hu)e = −u′′e . (2.1)
The domain D(H) of H is a subset of H2(G) of functions verifying specific vertex compatibility
conditions, described in the following way. At a vertex v ∈ V, let Av, Bv be dv × dv matrices. The
compatibility conditions for u ∈ H2(G) may then be described as

Avu(v) +Bvu
′(v) = 0.

For the full set of vertices V, we denote by
A = diag(Av, v ∈ V), B = diag(Bv, v ∈ V)

the matrices describing the compatibility conditions. The domain D(H) of H is then given by
D(H) = {u ∈ H2(G) : Au(V) +Bu′(V) = 0}. (2.2)

We will assume that A and B are such that H is self-adjoint, that is at each vertex v the dv × 2dv
augmented matrix (Av|Bv) has maximal rank and the matrix AvB∗v is self-adjoint. Recall that (see
e.g. [14]) the boundary conditions at a vertex v ∈ V may be reformulated using three orthogonal and
mutually orthogonal operators PD,v (D for Dirichlet), PN,v (N for Neumann) and PR,v (R for Robin)
and an invertible self-adjoint operator Λv : Cdv → Cdv such that for each u ∈ D(H) we have

PD,vu(v) = PN,vu
′(v) = ΛvPR,vu′(v)− PR,vu(v) = 0.

The quadratic form associated with H is then expressed as

Q(u) = 1
2 〈Hu, u〉 = 1

2
∑
e∈E
‖u′e‖2L2 + 1

2
∑
v∈V

(PR,vu,ΛvPR,vu)Cdv ,

and its domain is given by
D(Q) = H1

D(G) = {u ∈ H2(G) : PD,vu = 0, ∀v ∈ V}. (2.3)
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Among the many possible vertex conditions, the Kirchhoff-Neumann condition is the most frequently
encountered. By analogy with Kirchhoff laws in electricity (preservation of charge and current), it
consists at a vertex v to require:

ue(v) = ue′(v), ∀e, e′ ∼ v,
∑
e∼v

u′e(v) = 0.

Another popular vertex condition is the δ or Dirac condition of strength αv ∈ R. It corresponds to
continuity of the function at the vertex v, and a jump condition of size αv on the derivatives, that is

ue(v) = ue′(v), ∀e, e′ ∼ v,
∑
e∼v

u′e(v) = αvu(v),

where we slightly change our notation to designate by u(v) the common value of u at v. For αv = 0,
we obviously recover the Kirchhoff-Neumann condition. If δ conditions are requested on each of the
vertices of the graph, the quadratic form and its associated domain H1

D(G) are given by

Q(u) = 1
2
∑
e∈E
‖u′e‖2L2 + 1

2
∑
v∈V

αv|u(v)|2, H1
D(G) =

{
u ∈ H1(G) : ∀v ∈ V,∀e, e′ ∼ v, ue(v) = ue′(v)

}
.

2.2. Space discretization

We present here the space discretization of the second order unbounded operator H. We discretize
each edge e ∈ E with Ne ∈ N∗ interior points (when e ∈ E is semi-infinite, we choose a large but
finite length and we add an artificial terminal vertex with appropriate - typically Dirichlet - boundary
condition). We therefore obtain a uniform discretization {xe,k}06k6Ne+1 of the edge e that can be
assimilated to the interval Ie = [0, le], i.e.

xe,0 := 0 < xe,1 < · · · < xe,Ne < xe,Ne+1 := le,

with xe,k+1 − xe,k = le/(Ne + 1) := δxe for 0 6 k 6 Ne (see Figure 2.2). We denote by v1 the vertex
at xe,0, by v2 the one at xe,Ne+1 and, for any u ∈ H1

D(G), for all e ∈ E and 1 6 k 6 Ne,
ue,k := ue(xe,k),

as well as

ue,v :=
{
ue(xe,0) if v = v1,

ue(xe,Ne+1) if v = v2.

×
v1

×
v2

xe,0 xe,1 xe,Ne xe,Ne+1
• • • • • • •

Figure 2.2. Discretization mesh of an edge e ∈ E .

We now assume that Ne > 3 and discretize the Laplacian operator on the interior of e, i.e. we give
an approximation of Hu(xe,k) for 1 6 k 6 Ne. Two cases need to be distinguished: the points closed
to the boundary (k = 1, Ne) and the other points. We shall start with the later.

Note that we do not discretized the Laplacian on the vertices, because, as will appear in a moment,
the values of the functions at the vertices are determined in terms of the values at the interior nodes
with the boundary conditions.

For any 2 6 k 6 Ne−1, the second order approximation of the Laplace operator by finite differences
on e ∈ E is given by

Hu(xe,k) ≈ −
ue,k−1 − 2ue,k + ue,k+1

δxe
2 .
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For the cases k = 1 and k = Ne corresponding to the neighboring nodes of the vertices v1 and v2, the
approximation requires ue,v1 and ue,v2 . We therefore use the boundary conditions

Avu(v) +Bvu
′(v) = 0, v ∈ {v1, v2},

in order to evaluate them. To avoid any order reduction, we use second order finite differences to
approximate the outgoing derivatives. Therefore, we need the two closest neighboring nodes and for
−2 6 j 6 0, we denote

ue,v1,j = ue(xe,|j|) and ue,v2,j = ue(xe,Ne+j+1).

The second order approximation of the outgoing derivative from e at v ∈ {v1, v2} is given by

u′e(xe,v) ≈ (Due,v)0 := 3ue,v,0 − 4ue,v,−1 + ue,v,−2
2δxe

.

As a matter of fact, to increase precision, we have chosen in the implementation of the Grafidi library
to use third order finite differences approximations for the derivatives at the vertex. This is transparent
for the user and we restrict ourselves to second order in this presentation to increase readability. We
therefore have the approximation of the boundary conditions

Av[uv,0] +Bv[Duv,0] = 0, (2.4)

where [uv,0] = (ue,v,0)e∼v and [Duv,0] = ((Due,v)0)e∼v. We define the diagonal matrix Λ ∈ Rdv×dv with
diagonal components by

Λj,j = 1
δxej

, ej ∼ v, j = 1, . . . , dv.

Therefore, the approximate boundary condition (2.4) can be rewritten as(
Av + 3

2BvΛ
)

[uv,0] = 2BvΛ[uv,−1]− 1
2BvΛ[uv,−2], (2.5)

where [uv,−1] = (ue,v,−1)e∼v and [uv,−2] = (ue,v,−2)e∼v. Assuming that Av + 3
2BvΛ is invertible (which

can be done without loss of generality, see [17, 19]), this is equivalent to

[uv,0] = 2
(
Av + 3

2BvΛ
)−1

BvΛ[uv,−1]− 1
2

(
Av + 3

2BvΛ
)−1

BvΛ[uv,−2]. (2.6)

Solving the linear system (2.5) of size dv × dv allows to compute the boundary values [uv,0] in terms
of interior nodes. Thus, the value of ue,v1 (resp. ue,v2) depends linearly on the vectors [uv1,−1] and
[uv1,−2] (resp. [uv2,−1] and [uv2,−2]) which take values from every edge connected to the vertex v1
(resp. v2). It is then possible to deduce an approximation of the Laplace operator at xe,1 and xe,Ne .
Indeed, from (2.6) there exist (αe,v)e∼v ∈ Rdv , for v ∈ {v1, v2}, which depend on every discretization
parameter δxe corresponding to the edges connected to v, such that

Hu(xe,1) ≈
ue,2 − 2ue,1 +

∑
e∼v1

αe,v1(4ue,v1,−1 − ue,v1,−2)

δxe
2 ,

and

Hu(xe,Ne) ≈
ue,Ne−1 − 2ue,Ne +

∑
e∼v2

αe,v2(4ue,v2,−1 − ue,v2,−2)

δxe
2 .

Since (ue,v,j)−26j60,v∈{v1,v2} are interior mesh points from the other edges, we limit our discretization
to the interior mesh points of the graph. The approximated values of u at each vertex will be computed
using (2.6). We denote [u] = (ue,k)16k6Ne,e∈E the vector in RN , with N =

∑
e∈E Ne, representing the

values of u at each interior mesh point of each edge of G. We introduce the matrix [[H]] ∈ RN×N

6
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corresponding to the discretization of H on the interior of each edge of the graph, which yields the
approximation

Hu ≈ [[H]] [u].
To define discretized integrals on the graph, we proceed in the following way. We use the standard

trapezoidal rule on each of the edges: on an edge Ie, for a vector [u] (corresponding to a discretized
function u) we approximate∫

Ie

ue(x)dx ≈ Ie([u]) := δxe

(
Ne+1∑
k=0

ue,k −
ue,0 + ue,Ne+1

2

)
,

where the terminal values ue,0, ue,Ne+1 are computed with (2.6). The full integral is then approximated
by ∫

G
u(x)dx ≈

∑
e∈E
Ie([u]).

This formula defines directly the discretization of Lp(G), that we denote `p(G).
As an example, we consider the operator H for the graph G3,sg of Figure 2.1 with Dirichlet boundary

conditions for the exterior vertices A, B and C and Kirchhoff-Neumann conditions for the central
vertex O. We plot on Figure 2.3 the positions of the non zero coefficients of the corresponding matrix
[[H]] when the discretization is such that Ne = 10, for each e ∈ E . The coefficients accounting for the
Kirchhoff boundary condition are the ones not belonging to the tridiagonal component of the matrix.

0 5 10 15 20 25
0

5

10

15

20

25

Figure 2.3. Matrix representation [[H]] of H.

3. Some elements of the Grafidi library

3.1. First steps with the Grafidi library

We introduce the Grafidi library by presenting some very basic manipulations on an example:
we describe the 3-edges star graph G3,sg drawn on Figure 2.1 with V = {O,A,B,C} and E =
{[OA], [OB], [OC]}. We assume that the length of each edge is 10. Our goal in this simple exam-
ple is to draw a function u that lives on the graph G3,sg, given by

u(x) =


e−x

2 for x ∈ [OA],
e−x

2 for x ∈ [OB],
e−x

2 for x ∈ [OC].
(3.1)

The result is achieved using the code given in Listing 1.
We now describe each part of this simple example. The functionalities of the Grafidi library rely on

the following Python libraries: networkx, numpy and matplotlib, which we first import. The networkx

7



C. Besse, R. Duboscq & S. Le Coz

C. Besse, R. Duboscq, & S. Le Coz

3. Some elements of the Grafidi library

3.1. First steps with the Grafidi library

We introduce the Grafidi library by presenting some very basic manipulations on an example: we de-
scribe the 3-edges star graph G3,sg drawn on Figure 1 with V = {O,A,B,C} and E = {[OA], [OB], [OC]}.
We assume that the length of each edge is 10. Our goal in this simple example is to draw a function
u that lives on the graph G3,sg, given by

u(x) =





e−x2
for x ∈ [OA],

e−x2
for x ∈ [OB],

e−x2
for x ∈ [OC].

(3.1)

The result is achieved using the code given in Listing 1. We now describe each part of this simple

import networkx as nx

import numpy as np

import matplotlib.pyplot as plt

from Grafidi import Graph as GR

from Grafidi import WFGraph as WF

g_list=["O A {’Length’:10}", "O B {’Length’:10}", "O C {’Length’:10}"]

g_nx = nx.parse_edgelist(g_list,create_using=nx.MultiDiGraph())

g = GR(g_nx)

fun = {}

fun[(’O’, ’A’, ’0’)]=lambda x: np.exp(-x**2)

fun[(’O’, ’B’, ’0’)]=lambda x: np.exp(-x**2)

fun[(’O’, ’C’, ’0’)]=lambda x: np.exp(-x**2)

u = WF(fun,g)

_ = WF.draw(u)

Listing 1. Simple Python example to draw a function on a 3-star graph G3,sg.

example. The functionalities of the Grafidi library rely on the following Python libraries: networkx,
numpy and matplotlib, which we first import. The networkx library is mandatory and should be
imported after starting Python. Depending on the desire to make drawings and to make linear algebra
operations, it is recommended to import matplotlib and numpy. We then need to import the Grafidi
library. It is made of two main classes: Graph and WFGraph, which we choose to import respectively
as GR and WF.

We then begin by creating a variable g_nx, an instance of the classes.multidigraph.MultiDiGraph
of the networkx class. This choice is motivated by the need of the description of a directed graph and
the possibility of multiple edges connecting the same two nodes. Observe here that we have to choose
an arbitrary orientation of the non-oriented graph for numerical purposes. We choose to describe the
metric graph in the Python list g_list. We identify each vertex by a Python string. Each element
of g_list corresponds to an edge connecting two vertices. The length of each edge of the graph is
defined with the keyword Length.

Then, we define the function that we wish to plot through a dictionary where each key corresponds
to an edge. The available keys can be found by the Python instruction g.Edges.keys(). Each key is
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library is mandatory and should be imported after starting Python. Depending on the desire to make
drawings and to make linear algebra operations, it is recommended to import matplotlib and numpy.
We then need to import the Grafidi library. It is made of two main classes: Graph and WFGraph,
which we choose to import respectively as GR and WF.

We then begin by creating a variable g_nx, an instance of the classes.multidigraph.MultiDiGraph
of the networkx class. This choice is motivated by the need of the description of a directed graph
and the possibility of multiple edges connecting the same two nodes. Observe here that we have to
choose an arbitrary orientation of the non-oriented graph for numerical purposes. We choose to de-
scribe the metric graph in the Python list g_list. We identify each vertex by a Python string. Each
element of g_list corresponds to an edge connecting two vertices. The length of each edge of the
graph is defined with the keyword Length.

Then, we define the function that we wish to plot through a dictionary where each key corresponds
to an edge. The available keys can be found by the Python instruction g.Edges.keys(). Each key is
a tuple made of three strings. The two first are the vertices labels defining the edge and the third one
is an identifier that will be explained later. The values are Python lambda functions with x belonging
to the interval [0, le], where le is the length of the directed edge e ∈ E . So, x = 0 corresponds to the
initial vertex of e and x = le to the last one. We construct an instance of the WFGraph class with
the constructor WFGraph with as arguments the dictionary fun and the instance of the graph g. Since
we import the class WFGraph as WF, the instruction may be shorten as it appears in the listing. It
remains to use the draw method of the WFGraph class to plot the function u on G3,sg. The result is
available on Figure 3.1. Since the draw function of the WFGraph class delivers outputs, we use the
Python instruction _ = to avoid their display.

We use the networkx library to determine the geometric positions of each vertex on the plane
(Oxy). More specifically, the function networkx.drawing.layout.kamada_kawai_layout is executed
on g_nx within Graph class automatically to compute them. The length of each edge is however not
taken into account (indeed, the networkx library is implemented for non metric graphs). To overcome
this issue, we have implemented the method Position in Graph class. This method allows the user to
define by hand the geometric positions of each vertex. Its single argument is one dictionary where the
geometric position is given for each vertex. Finally, we draw the graph G3,sg with the method draw.
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Figure 3.1. Plot of the function u on graph G3,sg.

For example, the definition of the geometric positions and the representation of the graph is proposed
in Listing 2.

SIMULATIONS ON NONLINEAR QUANTUM GRAPHS WITH GRAFIDI

a tuple made of three strings. The two first are the vertices labels defining the edge and the third one
is an identifier that will be explained later. The values are Python lambda functions with x belonging
to the interval [0, le], where le is the length of the directed edge e ∈ E . So, x = 0 corresponds to the
initial vertex of e and x = le to the last one. We construct an instance of the WFGraph class with
the constructor WFGraph with as arguments the dictionary fun and the instance of the graph g. Since
we import the class WFGraph as WF, the instruction may be shorten as it appears in the listing. It
remains to use the draw method of the WFGraph class to plot the function u on G3,sg. The result
is available on Figure 4. Since the draw function of the WFGraph class delivers outputs, we use the
Python instruction _ = to avoid their display.

Figure 4. Plot of the function u on graph G3,sg.

We use the networkx library to determine the geometric positions of each vertex on the plane
(Oxy). More specifically, the function networkx.drawing.layout.kamada_kawai_layout is executed
on g_nx within Graph class automatically to compute them. The length of each edge is however not
taken into account (indeed, the networkx library is implemented for non metric graphs). To overcome
this issue, we have implemented the method Position in Graph class. This method allows the user to
define by hand the geometric positions of each vertex. Its single argument is one dictionary where the
geometric position is given for each vertex. Finally, we draw the graph G3,sg with the method draw.
For example, the definition of the geometric positions and the representation of the graph is proposed
in Listing 2.

NewPos={’O’:[0,0],’A’:[-10,0],’B’:[10,0],’C’:[0,10]}

GR.Position(g,NewPos)

_ = GR.draw(g)

Listing 2. Definition of geometric positions of vertices.

The new plot of the function u on G3,sg and the representation of the graph are provided in Figure 5.

3.2. Basic elements of the Graph class

The purpose of the Grafidi library is to provide tools to compute numerical solutions of partial dif-
ferential equations involving the Laplace operator H defined by (2.1)-(2.2). Actually, the instruction
g = GR(g_nx) in Listing 1 automatically creates the discretization matrix [[H]] of the operator H
following the rules defined in Section 2. By default, the standard Kirchhoff-Neumann conditions are
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Listing 2. Definition of geometric positions of vertices.

The new plot of the function u on G3,sg and the representation of the graph are provided in Figure 3.2.
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Figure 3.2. Plot of the graph G3,sg (left) and of the function u on it (right).

3.2. Basic elements of the Graph class

The purpose of the Grafidi library is to provide tools to compute numerical solutions of partial dif-
ferential equations involving the Laplace operator H defined by (2.1)-(2.2). Actually, the instruction
g = GR(g_nx) in Listing 1 automatically creates the discretization matrix [[H]] of the operator H
following the rules defined in Section 2. By default, the standard Kirchhoff-Neumann conditions are
considered at each vertex and Ne = 100 nodes are used to discretize each edge e ∈ E . The total number
of discretization nodes is N =

∑
e∈E Ne. The matrix is stored in a sparse matrix in Compressed Sparse

Column format in -g.Lap (actually, g.Lap is the approximation matrix of −H). If needed, the user
may declare other boundary conditions at each vertex. The boundary conditions at each vertex are
stored in a Python dictionary, which we call here bc. Each key corresponds to a vertex and the values

9
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are lists. We provide in the Grafidi library various standard boundary conditions (Kirchhoff-Neumann,
Dirichlet, δ, δ′), but more general can be constructed by defining matrices A and B at each vertex
as in (2.2). We consider again the graph G3,sg and assume that the space discretization has to be
made with 3000 interior nodes, and that boundary conditions are of homogeneous Dirichlet type at
the vertices A, B and C, and of δ type with strength 1 for the vertex O. We therefore modify the
instruction g = GR(g_nx) of Listing 1 to construct a new graph taking into account the new boundary
conditions and total number of discretization points (see Listing 3).

C. Besse, R. Duboscq, & S. Le Coz
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Figure 5. Plot of the graph G3,sg (left) and of the function u on it (right).

considered at each vertex and Ne = 100 nodes are used to discretize each edge e ∈ E . The total number
of discretization nodes is N =

�
e∈E Ne. The matrix is stored in a sparse matrix in Compressed Sparse

Column format in -g.Lap (actually, g.Lap is the approximation matrix of −H). If needed, the user
may declare other boundary conditions at each vertex. The boundary conditions at each vertex are
stored in a Python dictionary, which we call here bc. Each key corresponds to a vertex and the values
are lists. We provide in the Grafidi library various standard boundary conditions (Kirchhoff-Neumann,
Dirichlet, δ, δ�), but more general can be constructed by defining matrices A and B at each vertex as
in (2.2). We consider again the graph G3,sg and assume that the space discretization has to be made
with 3000 interior nodes, and that boundary conditions are of homogeneous Dirichlet type at the ver-
tices A, B and C, and of δ type with strength 1 for the vertex O. We therefore modify the instruction
g = GR(g_nx) of Listing 1 to construct a new graph taking into account the new boundary conditions
and total number of discretization points (see Listing 3). Indeed, the constructor Graph actually takes

bc = {’O’:[’Delta’,1], ’A’:[’Dirichlet’], ’B’:[’Dirichlet’], ’C’:[’Dirichlet’]}

N=3000

g = GR(g_nx,N,bc)

Listing 3. Definition of boundary conditions at vertices and discretization parameter.

three arguments: the mandatory instance of the networkx graph g_nx, and two optional arguments,
the total number of discretization nodes N and the dictionary bc describing the boundary conditions
at each vertex of graph G.

During the creation of the graph g, two additional variables are also automatically created: g.Edges
and g.Nodes. They allow to store information related to the mesh of G. We describe them on the simple
two-edges star graph G2,sg (see Figure 6). It is made of three vertices A, B, C, A being the central
node, and two edges [AB] and [AC] with identical length L.

•
B

•
A

•
C

L L

Figure 6. Simple two edges star graph G2,sg.
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Listing 3. Definition of boundary conditions at vertices and discretization parameter.

Indeed, the constructor Graph actually takes three arguments: the mandatory instance of the net-
workx graph g_nx, and two optional arguments, the total number of discretization nodes N and the
dictionary bc describing the boundary conditions at each vertex of graph G.

During the creation of the graph g, two additional variables are also automatically created: g.Edges
and g.Nodes. They allow to store information related to the mesh of G. We describe them on the simple
two-edges star graph G2,sg (see Figure 3.3). It is made of three vertices A, B, C, A being the central
node, and two edges [AB] and [AC] with identical length L.
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Figure 3.3. Simple two edges star graph G2,sg.

We describe the mesh on the graph G2,sg. We assume that L = 5 and we discretize the graph with
N = 18 interior nodes. Thus, δxi = δx = 1/2 and each edge is discretized with Ni = 9, i = 1, 2, nodes.
The associated mesh is drawn on Figure 3.4.
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Figure 3.4. Mesh on the simple star graph G2,sg.

The discretization nodes on the edge [AB] are indexed from 0 to 8 and the ones on [AC] are indexed
from 9 to 17. All this information is stored in the dictionary g.Edges. The keys are the edges of the
graph made of the vertices of each edge and a label (two vertices can be linked by many edges). For
the simple two-edges graph, the dictionary is given in Listing 4 (more detailed explanations of the
content of the dictionary is provided in the next section).

The second important variable is the dictionary g.Nodes that contains various important pieces of
information to build the finite differences approximation of the operator H on G. The keys of g.Nodes
are the identifiers for each vertex. For the simple 2-star graph, they are ’A’, ’B’ and ’C’. We associate
to each vertex a dictionary with various keys. We describe below the most relevant keys.
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We describe the mesh on the graph G2,sg. We assume that L = 5 and we discretize the graph with
N = 18 interior nodes. Thus, δxi = δx = 1/2 and each edge is discretized with Ni = 9, i = 1, 2, nodes.
The associated mesh is drawn on Figure 7.
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Figure 7. Mesh on the simple star graph G2,sg.

The discretization nodes on the edge [AB] are indexed from 0 to 8 and the ones on [AC] are indexed
from 9 to 17. All this information is stored in the dictionary g.Edges. The keys are the edges of the
graph made of the vertices of each edge and a label (two vertices can be linked by many edges). For
the simple two-edges graph, the dictionary is given in Listing 4 (more detailed explanations of the
content of the dictionary is provided in the next section).

Edges = {

(’B’,’A’,’0’) : {’N’:9, ’L’:5, ’dx’:0.5, ’Nodes’:[’B’,’A’], ’TypeC’:’S’, ’Indexes’:[0,8]},

(’A’,’C’,’0’) : {’N’:9, ’L’:5, ’dx’:0.5, ’Nodes’:[’A’,’C’], ’TypeC’:’S’, ’Indexes’:[9,17]}

}

Listing 4. The dictionary g.Edges.

The second important variable is the dictionary g.Nodes that contains various important pieces of
information to build the finite differences approximation of the operator H on G. The keys of g.Nodes
are the identifiers for each vertex. For the simple 2-star graph, they are ’A’, ’B’ and ’C’. We associate
to each vertex a dictionary with various keys. We describe below the most relevant keys.

• ’Degree’ is an integer containing the degree dv of the vertex v.

• ’Boundary conditions’ is a string containing the boundary condition set on the vertex v.
The current possibilities are

– [’Dirichlet’],
– [’Kirchhoff’],
– [’Delta’, val], where val is the characteristic value of the δ condition,
– [’Delta Prime’, val], where val is the characteristic value of the δ� condition,
– [’UserDefined’, [A_v,B_v]], where [A_v,B_v] are matrices used to describe the bound-

ary condition at the vertex v.

• ’Position’ is a list [x, y] representing the geometric coordinates of the vertex v.

We already met the method draw of Graph class. Some options are available to control figure
name, color, width, markersize, textsize of the drawing of the graph (for a complete description, see
Appendix). The method draw returns figure and axes matplotlib identifiers. This allows to have a fine
control of the figure and its contained elements with matplotlib primitives.
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Listing 4. The dictionary g.Edges.

• ’Degree’ is an integer containing the degree dv of the vertex v.

• ’Boundary conditions’ is a string containing the boundary condition set on the vertex v.
The current possibilities are
– [’Dirichlet’],
– [’Kirchhoff’],
– [’Delta’, val], where val is the characteristic value of the δ condition,
– [’Delta Prime’, val], where val is the characteristic value of the δ′ condition,
– [’UserDefined’, [A_v,B_v]], where [A_v,B_v] are matrices used to describe the

boundary condition at the vertex v.

• ’Position’ is a list [x, y] representing the geometric coordinates of the vertex v.

We already met the method draw of Graph class. Some options are available to control figure
name, color, width, markersize, textsize of the drawing of the graph (for a complete description, see
Appendix). The method draw returns figure and axes matplotlib identifiers. This allows to have a fine
control of the figure and its contained elements with matplotlib primitives.

3.3. A first concrete example: eigenelements of the triple-bridge

We are now able to handle more complex graphs. Since the Grafidi library relies on the MultiDiGraph
- Directed graphs with self loops and parallel edges - class of networkx library, we can handle loops
and many edges between two single vertices. The declaration of such complex graphs is easy with the
Graph class, as we illustrate in the following example.

We want to represent the graph Gd defined on Figure 3.5.

ABD C
0

0

0

1

0

Figure 3.5. Directed graph Gd.

The vertices A and B are connected by three edges:

• one edge oriented from the vertex A to the vertex B,

• two edges oriented from the vertex B to the vertex A.

The vertices A and B are also respectively connected to the vertices C and D. We provide in Listing 5
an example of a standard declaration.

The library automatically assigns an Id (such as the ones indicated in Figure 3.5) and a type
“segment” ’S’ or “curve” ’C’ to each edge. This operation is transparent for the user. If only one

11
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3.3. A first concrete example: eigenelements of the triple-bridge

We are now able to handle more complex graphs. Since the Grafidi library relies on the MultiDiGraph
- Directed graphs with self loops and parallel edges - class of networkx library, we can handle loops
and many edges between two single vertices. The declaration of such complex graphs is easy with the
Graph class, as we illustrate in the following example.

We want to represent the graph Gd defined on Figure 8.

ABD C
0

0

0

1

0

Figure 8. Directed graph Gd.

The vertices A and B are connected by three edges:

• one edge oriented from the vertex A to the vertex B,

• two edges oriented from the vertex B to the vertex A.

The vertices A and B are also respectively connected to the vertices C and D. We provide in Listing 5
an example of a standard declaration. The library automatically assigns an Id (such as the ones

g_list=["B A {’Length’:5}", "B A {’Length’:10}", "A B {’Length’:10}",\

"C A {’Length’:20}", "D B {’Length’:20}"]

Listing 5. Declaration of a complex graph.

indicated in Figure 8) and a type “segment” ’S’ or “curve” ’C’ to each edge. This operation is
transparent for the user. If only one edge connects two vertices, the Id is set to ’0’ and the chosen
type is ’S’. On the contrary, the algorithm chooses between ’S’ and ’C’ and the Id is incrementally
increased starting from ’0’ when multiple edges connect the same two vertices. If a selected edge is

of type ’C’, it will be represented as curved line
�
AB (actually an half-ellipsis of length Length) going

from A to B counterclockwise (as a consequence, the edge will be “up” or “down” depending on the
position of the vertices, see Figure 9).

•

•

A

B

•

•

B

A

Figure 9. The two configurations “up” and “down” of the oriented curved edge
�
AB.

The user can also explicitly provide the edge type and Id as in Listing 6.
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Listing 5. Declaration of a complex graph.

edge connects two vertices, the Id is set to ’0’ and the chosen type is ’S’. On the contrary, the
algorithm chooses between ’S’ and ’C’ and the Id is incrementally increased starting from ’0’ when
multiple edges connect the same two vertices. If a selected edge is of type ’C’, it will be represented
as curved line

y
AB (actually an half-ellipsis of length Length) going from A to B counterclockwise

(as a consequence, the edge will be “up” or “down” depending on the position of the vertices, see
Figure 3.6).

•

•

A

B

•

•

B

A

Figure 3.6. The two configurations “up” and “down” of the oriented curved edge
y
AB.

The user can also explicitly provide the edge type and Id as in Listing 6.
SIMULATIONS ON NONLINEAR QUANTUM GRAPHS WITH GRAFIDI

g_list=["B A {’Length’: 5,’Line’:’S’,’Id’:’0’}",\

"B A {’Length’:10,’Line’:’C’,’Id’:’1’}",\

"A B {’Length’:10,’Line’:’C’,’Id’:’0’}",\

"C A {’Length’:20,’Line’:’S’,’Id’:’0’}",\

"D B {’Length’:20,’Line’:’S’,’Id’:’0’}"]

Listing 6. User defined description of the graph Gd.

Figure 10. Plot of the graph Gd with Grafidi library.

The plot with the Grafidi library of the graph Gd with positions adjusted is presented on Figure 10.

As an illustration, we now present the computations of some eigenelements of the operator H on
the graph Gd with Kirchhoff boundary conditions at the vertices A and B and Dirichlet ones at the
vertices C and D. Since the approximation matrix of ∂xx is automatically generated and stored in
g.Lap, we can compute the eigenelements of [[H ]] = −g.Lap. We present in Listing 7 the easiest way
to compute the first four eigenvalues/eigenvectors and to draw the eigenvectors on Gd. It is understood
that all libraries appearing in Listing 1 are already imported.

Listing 7 works as follows. To compute the eigenelements of [[H ]], we use the function linalg.eigs

of the library scipy.sparse. We transform each eigenfunction (stored in the matrix EigVecs) as
an instance of the WFGraph class by the instruction EigVec = WF(np.real(EigVecs[:,k]),g),
where g is the graph instance of Graph class representing Gd. Next, we normalize the eigenfunc-
tion. One notices that the L2 norm of an instance of WFGraph can be simply computed with the
instruction WF.norm(EigVec,2). We are also able to divide a WFGraph entity by a scalar, as in
the expression (EigVec/WF.norm(EigVec,2)). Each eigenvector is finally plotted with the command
WF.draw(EigVec,AxId=ax). The option AxId allows to plot the eigenvector on the matplotlib axes
ax. The fours eigenvectors with their associated eigenvalues λj are represented in Figure 11.
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Figure 11. The first four eigenvectors of [[H]] on graph Gd.
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Listing 6. User defined description of the graph Gd.

The plot with the Grafidi library of the graph Gd with positions adjusted is presented on Figure 3.7.

Figure 3.7. Plot of the graph Gd with Grafidi library.

As an illustration, we now present the computations of some eigenelements of the operator H on
the graph Gd with Kirchhoff boundary conditions at the vertices A and B and Dirichlet ones at the
vertices C and D. Since the approximation matrix of ∂xx is automatically generated and stored in
g.Lap, we can compute the eigenelements of [[H]] = −g.Lap. We present in Listing 7 the easiest way
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import scipy.sparse as scs

g_list=["B A {’Length’:5}", "B A {’Length’:10}", "A B {’Length’:10}",\

"C A {’Length’:20}", "D B {’Length’:20}"]

g_nx = nx.parse_edgelist(g_list,create_using=nx.MultiDiGraph())

g = GR(g_nx)

bc = {’A’:[’Kirchhoff’], ’B’:[’Kirchhoff’], ’C’:[’Dirichlet’], ’D’:[’Dirichlet’]}

N=3000

g = GR(g_nx,N,bc)

NewPos={’A’:[0,0],’B’:[-5,0],’C’:[20,0],’D’:[-25,0]}

GR.Position(g,NewPos)

[EigVals, EigVecs] = scs.linalg.eigs(-g.Lap,k=4,sigma=0)

Fig=plt.figure(figsize=[9,6])

for k in range(EigVals.size):

ax=Fig.add_subplot(2,2,k+1,projection=’3d’)

EigVec = WF(np.real(EigVecs[:,k]),g)

EigVec = EigVec/WF.norm(EigVec,2)

_=WF.draw(EigVec,AxId=ax)

ax.set_title(r’$\lambda_{}=$’.format(k)+f’{np.real(EigVals[k]):f}’)

Listing 7. Computation of some eigenelements of [[H]] on Gd.

4. Numerical methods for stationary and time dependent Schrödinger equations

In this section, we discuss the implementation with the Grafidi library of various methods to compute
grounds states or dynamical solutions of time-dependent Schrdinger equations on nonlinear quantum
graphs.

4.1. Computation of ground states on quantum graphs

We begin with the computation of ground states. For a given second order differential operator H on a
quantum graph G, a ground state is a minimizer of the Schrödinger energy E at fixed mass M , where

E(u) =
1

2
�Hu, u� − 1

2

�

G
G(|u|2)dx, G� = g, M(u) = �u�2L2(G),

where g is the nonlinearity. In the following, we consider the case of a power-type nonlinearity

g(u) = |u|p−1u, p > 1.

To compute ground states, the most common methods are gradient methods. Here, we will cover
two popular gradient methods: the Continuous Normalized Gradient Flow (CNGF), which we have
analyzed in the context of quantum graphs in [18], and a nonlinear (preconditioned) conjugate gradient
flow (see [12, 22]), which we implement in the particular context of graphs without further theoretical
analysis.

4.1.1. The continuous normalized gradient flow

We start with the CNGF method. We fix δt > 0 a certain gradient step and m > 0 the mass of
the ground state. Let ρ =

√
m be the L2-norm of the ground state. The method is divided into two

steps: first a semi-implicit gradient descent step then a projection on the constraint manifold (here

14

Listing 7. Computation of some eigenelements of [[H]] on Gd.

to compute the first four eigenvalues/eigenvectors and to draw the eigenvectors on Gd. It is understood
that all libraries appearing in Listing 1 are already imported.

Listing 7 works as follows. To compute the eigenelements of [[H]], we use the function linalg.eigs
of the library scipy.sparse. We transform each eigenfunction (stored in the matrix EigVecs) as
an instance of the WFGraph class by the instruction EigVec = WF(np.real(EigVecs[:,k]),g),
where g is the graph instance of Graph class representing Gd. Next, we normalize the eigenfunc-
tion. One notices that the L2 norm of an instance of WFGraph can be simply computed with the
instruction WF.norm(EigVec,2). We are also able to divide a WFGraph entity by a scalar, as in
the expression (EigVec/WF.norm(EigVec,2)). Each eigenvector is finally plotted with the command
WF.draw(EigVec,AxId=ax). The option AxId allows to plot the eigenvector on the matplotlib axes
ax. The fours eigenvectors with their associated eigenvalues λj are represented in Figure 3.8.
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Figure 3.8. The first four eigenvectors of [[H]] on graph Gd.
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4. Numerical methods for stationary and time dependent Schrödinger equations

In this section, we discuss the implementation with the Grafidi library of various methods to compute
grounds states or dynamical solutions of time-dependent Schrödinger equations on nonlinear quantum
graphs.

4.1. Computation of ground states on quantum graphs

We begin with the computation of ground states. For a given second order differential operator H
on a quantum graph G, a ground state is a minimizer of the Schrödinger energy E at fixed mass M ,
where

E(u) = 1
2 〈Hu, u〉 −

1
2

∫
G
G(|u|2)dx, G′ = g, M(u) = ‖u‖2L2(G),

where g is the nonlinearity. In the following, we consider the case of a power-type nonlinearity
g(u) = |u|p−1u, p > 1.

To compute ground states, the most common methods are gradient methods. Here, we will cover
two popular gradient methods: the Continuous Normalized Gradient Flow (CNGF), which we have
analyzed in the context of quantum graphs in [17], and a nonlinear (preconditioned) conjugate gradient
flow (see [12, 22]), which we implement in the particular context of graphs without further theoretical
analysis.

4.1.1. The continuous normalized gradient flow

We start with the CNGF method. We fix δt > 0 a certain gradient step and m > 0 the mass of
the ground state. Let ρ =

√
m be the L2-norm of the ground state. The method is divided into two

steps: first a semi-implicit gradient descent step then a projection on the constraint manifold (here
the L2-sphere of radius ρ). In practice, we construct a sequence {un}n>0 (which will converge to the
ground state) given by {

un+1
∗ = un − δt

(
Hun+1
∗ − |un|p−1un+1

∗
)
,

un+1 = ρun+1
∗ /‖un+1

∗ ‖L2(G),

where the initial data u0 ∈ L2(G) is chosen such that ‖u0‖L2(G) = ρ. The implementation is described
in Algorithm 1, where we have chosen a stopping criterion corresponding to the stagnation of the
sequence of vectors [un] in the `2-norm. The gradient step requires to solve a linear system whose
matrix is

[[Mn]] = [[Id]] + δt
(
[[H]]− [[|un|p−1]]

)
.

Here, the matrix [[|un|p−1]] is a diagonal matrix constructed from the vector [|un|p−1].

Algorithm 1 CNGF algorithm.
Require: [u0] ∈ `2(G) with ‖[u0]‖`2 = ρ, ε > 0, Stop_Crit = True, n = 0 and Iter_max = 1000
while Stop_Crit and n 6 Iter_max do

Solve
(
[[Id]] + δt[[H]]− δt[[|un|p−1]]

)
[un+1
∗ ] = [un]

[un+1]← ρ[un+1
∗ ]/‖[un+1

∗ ]‖`2
Stop_Crit← ‖[un+1]− [un]‖`2/‖[un]‖`2 > ε
n← n+ 1

end while

We now proceed to translate Algorithm 1 (with p = 3) into a Python script using the Grafidi
library. First, we need to construct a quantum graph. We choose to use the same graph as in Listing 7.
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Our code can be seen in Listing 8 (we avoid repetition in the listings, and consider that Listing 7 is
executed prior to Listing 8).

C. Besse, R. Duboscq, & S. Le Coz

import scipy.sparse as scs

g_list=["B A {’Length’:5}", "B A {’Length’:10}", "A B {’Length’:10}",\

"C A {’Length’:20}", "D B {’Length’:20}"]

g_nx = nx.parse_edgelist(g_list,create_using=nx.MultiDiGraph())

g = GR(g_nx)

bc = {’A’:[’Kirchhoff’], ’B’:[’Kirchhoff’], ’C’:[’Dirichlet’], ’D’:[’Dirichlet’]}

N=3000

g = GR(g_nx,N,bc)

NewPos={’A’:[0,0],’B’:[-5,0],’C’:[20,0],’D’:[-25,0]}

GR.Position(g,NewPos)

[EigVals, EigVecs] = scs.linalg.eigs(-g.Lap,k=4,sigma=0)

Fig=plt.figure(figsize=[9,6])

for k in range(EigVals.size):

ax=Fig.add_subplot(2,2,k+1,projection=’3d’)

EigVec = WF(np.real(EigVecs[:,k]),g)

EigVec = EigVec/WF.norm(EigVec,2)

_=WF.draw(EigVec,AxId=ax)

ax.set_title(r’$\lambda_{}=$’.format(k)+f’{np.real(EigVals[k]):f}’)

Listing 7. Computation of some eigenelements of [[H]] on Gd.

4. Numerical methods for stationary and time dependent Schrödinger equations

In this section, we discuss the implementation with the Grafidi library of various methods to compute
grounds states or dynamical solutions of time-dependent Schrdinger equations on nonlinear quantum
graphs.

4.1. Computation of ground states on quantum graphs

We begin with the computation of ground states. For a given second order differential operator H on a
quantum graph G, a ground state is a minimizer of the Schrödinger energy E at fixed mass M , where

E(u) =
1

2
�Hu, u� − 1

2

�

G
G(|u|2)dx, G� = g, M(u) = �u�2L2(G),

where g is the nonlinearity. In the following, we consider the case of a power-type nonlinearity

g(u) = |u|p−1u, p > 1.

To compute ground states, the most common methods are gradient methods. Here, we will cover
two popular gradient methods: the Continuous Normalized Gradient Flow (CNGF), which we have
analyzed in the context of quantum graphs in [18], and a nonlinear (preconditioned) conjugate gradient
flow (see [12, 22]), which we implement in the particular context of graphs without further theoretical
analysis.

4.1.1. The continuous normalized gradient flow

We start with the CNGF method. We fix δt > 0 a certain gradient step and m > 0 the mass of
the ground state. Let ρ =

√
m be the L2-norm of the ground state. The method is divided into two

steps: first a semi-implicit gradient descent step then a projection on the constraint manifold (here

14

Listing 8. Computation of a ground state using the CNGF method.

A few comments are in order. The initial data u0 is set as a function that is quadratic on the edges
connecting A and B, increasing from D to B as exp(−0.01(x− 20)2) (where 20 is the length of [DB])
and increasing from C to A as exp(−0.01(x− 20)2) (where 20 is the length of [CA]). An instance u of
WFGraph on g which corresponds to u0 is constructed accordingly. The variable ρ = 1 corresponding
to the L2-norm is set and the variable u is normalized by using the function norm of WFGraph. A
function E is defined that corresponds to the energy and we can see that we have used the Lap function
of WFGraph to apply the operator [[H]] to u as well as the function dot to compute the scalar product.
We set the variables δt = 10−1 and ε = 10−8. The part of the matrix [[Mn]] that is independent of n is
built in the variable M_1 which is the sum of [[Id]] (given by the variable g.Id from Graph class) and
−δt[[H]] (where −[[H]] is given by the variable g.Lap from Graph class) and we also note that the
matrix is sparse. When entering the loop (with at most 1000 iterations), we make a copy of u, then
construct the matrix [[Mn]] by adding the diagonal matrix from the nonlinearity (given through the
function GR.Diag from Graph). The linear system whose matrix is [[Mn]] and right-hand-side [[un]] is
solved thanks to the function Solve from WFGraph. Then, the variable u is normalized, the evolution
of the energy is printed, the stopping criterion is computed through the boolean variable Stop_Crit
and, finally, we verify if the stopping criterion is attained (in which case we exit the loop and draw u).

In the end, we obtain a ground state depicted in Figure 4.1 which is computed in 665 iterations.

4.1.2. The nonlinear conjugate gradient flow

We now turn to the more sophisticated nonlinear conjugate gradient method. It is an extension of
the conjugate gradient method that is used to solve linear systems. Here, we choose to use in the
context of quantum graphs the method described for full spaces in [12, Algorithm 2], which uses a
preconditioner providing robustness. The method consists in the construction of a sequence {un}n>0

15
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Figure 4.1. Initial data (left) and ground state (right) obtained with the code from
Listing 8.

(converging to the ground state), which is recursively defined by

rn = PT,un(Hun − |un|p−1un)
βn = max

(
0, 〈rn − rn−1, P rn〉/〈rn−1, P rn−1〉

)
dn = −Prn + βnp

n−1

pn = PT,undn

θn = argminθ∈[−π,π]E(cos(θ)un + sin(θ)PSpn)
un+1 = cos(θn)un + sin(θn)PSpn

where PT,u is the orthogonal projection on the tangent manifold of the sphere Sρ = {u ∈ L2(G) :
‖u‖L2 = ρ} at u given by

PT,uv = v − 〈v, u〉
‖u‖2L2

u,

PS is the orthogonal projection on Sρ given by

PSv = ρv

‖v‖L2
,

and P = (1 + H)−1 is the preconditioner. The implementation of the method is described in Algo-
rithm 2, where we have added a preliminary gradient descent step to initialize the iterative procedure.

The corresponding code in Python, with the help of the Grafidi library, is given in Listings 9. We
use the same quantum graph as in Section 3.1, with in particular a δ condition with parameter 1 at O.
The initial function will be the function u defined in (3.1), normalized to verify the mass constraint.
Listings 1-3 are assumed to have been executed prior to Listings 9.

As for Listing 8, a few comments are in order. The initial data u0 is set as a function that is
decreasing from O to A, O to B and O to C as exp(−x2). A function P_S is defined that corresponds
to PS , another one P_T corresponds to PT,u and another one GradE corresponds to the gradient of the
energy. Furthermore, a function Pr computes the application of the preconditioner [[P ]] to an instance
of WFGraph and returns the result as an instance of WFGraph. The function E_proj computes the
energy E(cos(θ)u+ sin(θ)v) with variables u, v as instance of WFGraph and θ a scalar. The function
argmin_E is defined to return w = cos(θ)u + sin(θ)v where θ is the solution of the minimum of
f(θ) = E(cos(θ)u+ sin(θ)v) and, moreover, it uses the function fminbound from Scipy (the maximum
of iterations is fixed to 500 and the tolerance to 10−8).

In the end, we obtain a ground state depicted in Figure 4.2 which is computed in 9 iterations.
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Algorithm 2 Nonlinear Conjugate Gradient algorithm.
Require: [u−1] ∈ `2(G) with ‖[u−1]‖`2 = ρ, ε > 0, Stop_Crit = True, n = 0 and Iter_max = 500
λ−1 ← 〈[[H]][u−1]− [[|u−1|p−1]][u−1], [u−1]〉/‖[u−1]‖`2
[r−1]← [[H]][u−1]− [[|u−1|p−1]][u−1]− λ−1[u−1]
Solve (α[[Id]] + [[H]])[v−1] = [r−1]
[p−1]← [v−1]− 〈[v−1], [u−1]〉/‖[u−1]‖`2 [u−1]
[`−1]← ρ[p−1]/‖[p−1]‖`2
Minimize f(θ−1) = E(cos(θ−1)[u−1] + sin(θ−1)[`−1]), θ−1 ∈ [−π, π]
[u0]← cos(θ−1)[u−1] + sin(θ−1)[`−1]
while Stop_Crit and n 6 Iter_max do
λn ← 〈[[H]][un]− [[|un|p−1]][un], [un]〉/‖[un]‖`2
[rn]← [[H]][un]− [[|un|p−1]][un]− λn[un]
Solve (α[[Id]] + [[H]])[vn] = [rn]
βn ← max

(
0, 〈[rn]− [rn−1], [vn]〉/〈[rn−1], [vn−1]〉

)
[dn]← −[vn] + βn[pn−1]
[pn]← [dn]− 〈[dn], [un]〉/‖[un]‖`2 [un]
[`n]← ρ[pn]/‖[pn]‖`2
Minimize f(θn) = E(cos(θn)[un] + sin(θn)[`n]), θn ∈ [−π, π]
[un+1]← cos(θn)[un] + sin(θn)[`n]
Stop_Crit← ‖[un+1]− [un]‖`2/‖[un]‖`2 > ε
n← n+ 1

end while
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Figure 4.2. Initial data (left) and ground state (right) obtained with the code from
Listing 9.

4.2. Simulation of solutions of time-dependent nonlinear Schrödinger equations on graphs

In this section, we discuss the dynamical simulations of nonlinear Schrödinger equations on quantum
graphs. To be more specific, we wish to simulate the solution on R+×G of the following time-dependent
equation {

i∂tψ = Hψ − |ψ|2ψ,
ψ(t = 0) = ψ0 ∈ L2(G). (4.1)

We have chosen to present our results for the cubic power nonlinearity, but the extension to other
types of nonlinearity is straightforward.
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import scipy.optimize as sco

rho = 2

Epsilon = 10e-8

u = rho*u/WF.norm(u,2)

def E(u):

return -0.5*WF.Lap(u).dot(u) - 0.25*WF.norm(u,4)**4

def P_S(u):

return rho*u/WF.norm(u,2)

def P_T(u,v):

return v - v.dot(u)/(WF.norm(u,2)**2)*u

def GradE(u):

return -WF.Lap(u)-WF.abs(u)**2*u

def Pr(u):

return WF.Solve(0.5*g.Id-g.Lap,u)

def E_proj(theta,u,v):

return E(np.cos(theta)*u+np.sin(theta)*v)

def argmin_E(u,v):

theta = sco.fminbound(E_proj,-np.pi,np.pi,(u,v),xtol = 1e-14,maxfun = 1000)

return np.cos(theta)*u+np.sin(theta)*v

En = E(u)

rm1 = P_T(u,-GradE(u))

vm1 = Pr(rm1)

pnm1 = P_T(u,Pr(rm1))

lm1 = P_S(pnm1)

u = argmin_E(u,lm1)

for n in range(500):

r = P_T(u,-GradE(u))

v = Pr(r)

beta = max(0,(r-rm1).dot(v)/rm1.dot(vm1))

rm1 = r

vm1 = v

d = -v + beta*pnm1

p = P_T(u,d)

pm1 = p

l = P_S(p)

um1 = u

u = argmin_E(u,l)

En0 = En

En = E(u)

print(f"Energy evolution: {En-En0 : 12.8e}",end=’\r’)

Stop_crit = WF.norm(u-um1,2)/WF.norm(um1,2)<Epsilon

if Stop_crit:

break

_=WF.draw(u)

print()

Listing 9. Computation of a ground state using the nonlinear conjugate gradient method.
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Listing 9. Computation of a ground state using the nonlinear conjugate gradient
method.

18



Simulations on Nonlinear Quantum Graphs with GraFiDi

4.2.1. The Crank-Nicolson relaxation scheme

One popular scheme to discretize (4.1) in time is the Crank-Nicolson scheme [23] which is of second
order. Since the equation is nonlinear, the main drawback of the Crank-Nicolson scheme is the need
to use a fixed-point method at each time step, which can be quite costly. To avoid this issue, we use
the relaxation scheme proposed in [16] which is semi-implicit and of second order. Let δt > 0 be the
time step. The relaxation scheme applied to (4.1) is given by

φn+ 1
2 + φn−

1
2

2 = −|ψn|2

i

(
ψn+1 − ψn

δt

)
= H

(
ψn+1 + ψn

2

)
+ φn+ 1

2

(
ψn+1 + ψn

2

)
, ∀n > 0,

φ−
1
2 = −|ψ0|2 and ψ0 = ψ0 ∈ L2(G),

(4.2)

where ψn is an approximation of the solution ψ of (4.1) at time nδt. By introducing the intermediate
variable ψn+ 1

2 = (ψn+1 + ψn)/2, we deduce Algorithm 3.

Algorithm 3 Relaxation scheme .
Require: [ψ0] ∈ `2(G), δt > 0, T > 0 and N = dT/δte

[φ−
1
2 ] = −|[ψ0]|2

for n = 1, . . . , N do
[φn+ 1

2 ] = −2|[ψn]|2 − [φn−
1
2 ]

Solve
(
[[Id]] + iδt/2[[H]] + iδt/2[[φn+ 1

2 ]]
)

[ψn+ 1
2 ] = [ψn]

[ψn+1]← 2[ψn+ 1
2 ]− [ψn]

end for

We now wish to perform a simulation on the tadpole graph depicted in Figure 4.3 with the following
lengths: |AB| = 6 and |BC| = |CB| = π. Observe here that we have to introduce an auxiliary vertex
C with Kirchhoff condition, and the loop is constructed as two half-loop edges connecting B and C.
This is of no consequence for the behavior of wave functions on the loop, as it was observed in [14,
Remark 1.3.3] that a vertex with Kirchhoff conditions with only two incident edges can always be
removed.

−2 0 2 4
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−0.5
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0.5

1.0

A B C

Figure 4.3. Graph for the simulation with the relaxation scheme.

The boundary conditions that we take for the operator H are Dirichlet at A and Kirchhoff at B
and C. The initial datum is taken as a bright soliton in the middle of the segment [AB] with an initial
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velocity, i.e.

ψ0(x) =


m

2
√

2
sech

(
m(x− 3)

4

)
eicx, for x ∈ [AB],

0, for x ∈ [BC] ∪ [CB],

with m = 20 and c = 3. Our simulation ends at time T = 1 with a step time of δt = 10−3. We
observe that the numerical scheme (4.2) involves complex valued functions ψn+1, ψn and φn+1/2.
We therefore have to explicitly declare WFGraph instances with complex type. To this aim, we set
WF(fun,g,Dtype=’complex’). The argument Dtype is by default set to ’float’. The argument hoice
Dtype=’complex’ allows to use numpy.complex128 arrays for linear algebra operations. This leads us
to Listing 10 where we implemented the relaxation scheme with the Grafidi library. This listing gives
us the opportunity to discuss the outputs of draw function of WFGraph and their usage. The return
of draw is a three components tuple K,fig,ax:

• fig is the matplotlib figure identifier where the plots are made,

• ax is the matplotlib axes included in fig,

• K collection of elements actually drawn in ax.

When we call draw with K as second argument, it automatically updates the collection of elements in
K into the figure fig without completely redrawing it, which is more efficient. In order to apply this
modification, we need to use both fig.canvas.draw() and plt.pause(0.01).

The result of the simulation can be seen in Figure 4.4 where the absolute value of ψ at different
times is given.
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Figure 4.4. Simulation of (4.1) at times T = 0, 0.4, 0.6, 0.8 with the relaxation
scheme.

4.2.2. The Strang splitting scheme

Another popular approach for the simulation of nonlinear Schrödinger evolution is the so-called split-
ting method [61]. As is well-known, the idea behind splitting methods is to “split” the full evolution
equation into several (simpler) dynamical equations which are solved successively at each time step.
In the case of (4.1), we split the equation into a linear part and a nonlinear part. The equation
corresponding to the linear part is

i∂tψ = Hψ, (4.3)
and the equation associated to the nonlinear part is

i∂tψ = −|ψ|2ψ.
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WF(fun,g,Dtype=’complex’). The argument Dtype is by default set to ’float’. The argument hoice
Dtype=’complex’ allows to use numpy.complex128 arrays for linear algebra operations. This leads us
to Listing 10 where we implemented the relaxation scheme with the Grafidi library. This listing gives
us the opportunity to discuss the outputs of draw function of WFGraph and their usage. The return
of draw is a three components tuple K,fig,ax:

• fig is the matplotlib figure identifier where the plots are made,

• ax is the matplotlib axes included in fig,

• K collection of elements actually drawn in ax.

When we call draw with K as second argument, it automatically updates the collection of elements in
K into the figure fig without completely redrawing it, which is more efficient. In order to apply this
modification, we need to use both fig.canvas.draw() and plt.pause(0.01).

g_list = ["A B {’Length’: 6}", "B C {’Length’:3.14159}", "C B {’Length’:3.14159}"]

g_nx = nx.parse_edgelist(g_list,create_using=nx.MultiDiGraph())

bc = {’A’:[’Dirichlet’], ’B’:[’Kirchhoff’], ’C’:[’Kirchhoff’]}

N=3000

g = GR(g_nx,N,bc)

NewPos={’A’:[-3,0],’B’:[3,0],’C’:[5,0]}

GR.Position(g,NewPos)

m = 20

c = 3

fun = {}

fun[(’A’, ’B’, ’0’)]=lambda x: m/2/np.sqrt(2)/np.cosh(m*(x-3)/4)*np.exp(1j*c*x)

psi = WF(fun,g,Dtype=’complex’)

K,fig,ax=WF.draw(WF.abs(psi))

T = 1

delta_t = 1e-3

phi = -WF.abs(psi)**2

M_1 = g.Id - 1j*delta_t/2*g.Lap

for n in range(int(T/delta_t)+1):

phi = -2*WF.abs(psi)**2 - phi

M = M_1 + 1j*delta_t/2*GR.Diag(g,phi)

varphi = WF.Solve(M,psi)

psi = 2*varphi - psi

if n%100==0:

_=WF.draw(WF.abs(psi),K)

fig.canvas.draw()

plt.pause(0.01)

_=WF.draw(WF.abs(psi),K)

Listing 10. Simulation of a soliton traveling in a quantum graph with a relaxation scheme.

The result of the simulation can be seen in Figure 15 where the absolute value of ψ at different
times is given.

21

Listing 10. Simulation of a soliton traveling in a quantum graph with a relaxation
scheme.

This is motivated by the fact that the solution for the nonlinear part can be obtained explicitly. We
use a Strang splitting scheme of second order [57]. For a given time step δt > 0, we obtain the following
method, for any n > 0, 

ψn+ 1
3 = eiδt/2|ψ

n|2ψn,

ψn+ 2
3−ψn+ 1

3
δt = H

(
ψn+ 2

3 +ψn+ 1
3

2

)
,

ψn+1 = eiδt/2|ψ
n+ 2

3 |2ψn+ 2
3 ,

where we have used a Crank-Nicolson scheme to discretize in time Equation (4.3). Through the
introduction of an intermediate variable ψn+ 1

2 = (ψn+ 2
3 + ψn+ 1

3 )/2, we deduce Algorithm 4.
We now wish to perform a simulation on the graph depicted in Figure 4.5 with the following lengths:

|AB| = 6, |BC| = |BD| = 10.61 and |CE| = |CF | = |DG| = |DH| = 9.96.
The boundary conditions that we would like for the operator H are Kirchhoff at B, C and D and

Dirichlet for all the others. The initial data is a bright soliton in the middle of segment [AB] with an
initial velocity c = 3 and m = 15. Our simulation ends at time T = 2 with a step time of δt = 10−3.
This leads us to Listing 11 where we implemented the Strang splitting scheme with the Grafidi library.
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Algorithm 4 Strang splitting scheme.
Require: [ψ0] ∈ `2(G), δt > 0, T > 0 and N = dT/δte
for n = 1, . . . , N do

[ψn+ 1
3 ]← exp(iδt/2|[ψn]|2)[ψn]

Solve ([[Id]] + iδt/2[[H]]) [ψn+ 1
2 ] = [ψn+ 1

3 ]
[ψn+ 2

3 ]← 2[ψn+ 1
2 ]− [ψn+ 1

3 ]
[ψn+1]← exp(iδt/2|[ψn+ 2

3 ]|2)[ψn+ 2
3 ]

end for
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Figure 4.5. Graph of the simulation for the splitting scheme.

The result of the simulation can be seen in Figure 4.6 where the absolute value of ψ is plotted at
different times. The ripples are expected to appear, as when reaching a vertex the solution will split
between waves going through the vertex and a reflected wave, which will itself interact with the rest
of the incident wave.
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Figure 4.6. Simulation of (4.1) at times t = 0, 0.6, 1.2, 2 with a splitting scheme.

5. Ground states: numerical experiments and theoretical validation

In this section, we present various numerical computations of ground states. In many cases, explicit
exact solutions are available. We show the efficiency of the CNGF scheme for all these cases. Even
though the CNGF method was built for a general nonlinearity, we focus in this section on the com-
putations of the ground states of the focusing cubic nonlinear Schrödinger (NLS) equation on a graph
G, that reads

iψt = Hψ − λ|ψ|p−1ψ, x ∈ G, (5.1)
with λ > 0.

Unless otherwise specified, we assume that λ = 1 and p = 3.
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g_list=["A B {’Length’:7.20}", "B C {’Length’:10.61}", "B D {’Length’:10.61}",\

"C E {’Length’:9.96}", "C F {’Length’:9.96}", "D G {’Length’:9.96}", \

"D H {’Length’:9.96}"]

g_nx = nx.parse_edgelist(g_list,create_using=nx.MultiDiGraph())

bc = {’A’:[’Dirichlet’],’B’:[’Kirchhoff’],’C’:[’Kirchhoff’],\

’D’:[’Kirchhoff’],’E’:[’Dirichlet’],’F’:[’Dirichlet’],\

’G’:[’Dirichlet’],’H’:[’Dirichlet’]}

N=3000

g = GR(g_nx,N,bc)

NewPos = {

’A’: [22.656, 21.756], ’B’: [22.656, 14.556], ’C’: [12.473, 11.573],\

’D’: [32.838, 11.573], ’E’: [2.7, 13.49], ’F’: [14.39, 1.8],\

’G’: [30.922, 1.8], ’H’: [42.612, 13.49]}

GR.Position(g,NewPos)

m = 15

c = 3

x0 = 7.2/2

fun = {}

fun[(’A’, ’B’, ’0’)]=lambda x: m/2/np.sqrt(2)/np.cosh(m*(x-x0)/4)*np.exp(1j*c*x)

psi = WF(fun,g,Dtype=’complex’)

K,fig,ax=WF.draw(WF.abs(psi))

T = 2

delta_t = 1e-3

M = g.Id - 1j*delta_t*g.Lap/2

for n in range(int(T/delta_t)):

psi = psi*WF.exp(1j*delta_t/2*WF.abs(psi)**2)

varphi = WF.Solve(M,psi)

psi = 2*varphi - psi

psi = psi*WF.exp(1j*delta_t/2*WF.abs(psi)**2)

if n%100==0:

_=WF.draw(WF.abs(psi),K)

fig.canvas.draw()

plt.pause(0.01)

_=WF.draw(WF.abs(psi),K)

Listing 11. Simulation of a soliton traveling in a tree-shaped quantum graph with a
splitting scheme.

possible exponents, e.g. for the 2-d grid Z2, which is locally 1-d but globally 2-d (we will comment on
that later on).

For the cubic nonlinear Schrödinger equation on a graph with finitely many vertices and (bounded or
unbounded) edges, and at sufficiently large mass, Berkolaiko, Marzuola and Pelinovsky [15] established
the following results. For any edge of the graph, there exists a bound state located on the edge, i.e.
it is positive, achieves its maximum on the edge, and the mass of the bound state is concentrated on
the edge up to an exponentially small error (see [15, Theorem 1.1] for a precise statement). Moreover,
comparing the energies of these bound states, the authors are able to find the one with the smallest
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Listing 11. Simulation of a soliton traveling in a tree-shaped quantum graph with a
splitting scheme.

In what follows, we discuss only the power case nonlinearity and we focus on the results involving
the obtention of ground states by minimization of the energy under a fixed mass constraint. It is in
general not an easy task to prove that the standing wave profiles obtained by other techniques (e.g.
bifurcation) are (or are not) minimizers at fixed mass (even locally).

Recall that for the classical nonlinear Schrödinger equation, the equation is said to be L2-subcritical
if (in one dimension) 1 < p < 5. This is also the range of exponents for which standing waves are
stables, and for which they can be obtained as minimizers of the energy at fixed mass. Metric graphs
being based on one dimensional structures (segments and half-lines), the interesting range of exponents
for the nonlinearity is 1 < p 6 5, with the expectation of additional difficulties in the analysis at the
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critical case p = 5. The global dimension of the graph might induce further restriction on the set of
possible exponents, e.g. for the 2-d grid Z2, which is locally 1-d but globally 2-d (we will comment on
that later on).

For the cubic nonlinear Schrödinger equation on a graph with finitely many vertices and (bounded or
unbounded) edges, and at sufficiently large mass, Berkolaiko, Marzuola and Pelinovsky [15] established
the following results. For any edge of the graph, there exists a bound state located on the edge, i.e.
it is positive, achieves its maximum on the edge, and the mass of the bound state is concentrated on
the edge up to an exponentially small error (see [15, Theorem 1.1] for a precise statement). Moreover,
comparing the energies of these bound states, the authors are able to find the one with the smallest
energy at fixed mass. Note, however, that the bound state with the smallest energy has not been
proven yet to be the ground state. Heuristic arguments in favor of this hypothesis are given in [15,
Section 4.4]. The results of [15] have to be put in perspective with the results established by Adami,
Serra and Tilli [9] for generic sub-critical power type nonlinearities. Indeed, by very elegant purely
variational techniques, Adami, Serra and Tilli [9] established for non-compact graphs the existence
of positive bound states achieving their maximum on any chosen finite edge. These bound states are
obtained by purely variational techniques: it is proved that they are global minimizers of the energy
among the class of functions with fixed mass, and the additional constraint that the functions should
achieve their maximum on the given edge. It turns out unexpectedly that the minimizer so obtained
lies in fact in the interior of the constraint, hence it may also be characterized as a local (but obviously
not necessarily global) minimizer of the energy at fixed mass. In the same vein, the existence of local
minimizers of the energy for fixed mass has also been established by Pierotti, Soave and Verzini [53]
in cases where no ground state exists. As the estimates [15, (4.6) and (4.7)] indicate, a pendant edge
is clearly preferable to a non-pendant one. However, for non-pendant edges, the differences between
energies are quite small.

From the preceding discussion, we infer that extra-care is required when performing numerical
experiments, as the outcome of the algorithm may very be only a local minimizer and not a global
one.

We have divided this section into four parts, depending on the kind of graphs considered: compact
graphs, graphs with finitely many edges, one of which is semi-infinite, periodic graphs and, finally,
trees. If the vertices conditions are not specified, it means that Kirchhoff conditions are assumed.

5.1. Compact graphs

Compact graphs are made of a finite number of edges, all of which are of finite length. On compact
graphs, the existence of minimizers in the subcritical case 1 < p < 5 is granted by Gagliardo-Nirenberg
inequality and the compactness of the injection of H1(G) into Lp(G) for 1 6 p 6 ∞. Hence the main
question becomes to identify (or, in the absence of suitable candidates, to describe) the minimizer.
Several works have been recently devoted to general compact graphs : [15, 20, 24, 26, 43]. For the
simplest compact graphs like the line segment or the ring, the minimizer is (usually) known and this
offers us good test cases for our algorithm. Results applying to general compact graphs are not always
easy to test numerically (e.g. in [24], Dovetta proved for any compact graph, for any 1 < p < 5 and for
any mass the existence of a sequence of bound states whose energy goes to infinity, but capturing this
sequence at the numerical level would require the development of new specific tools). However, it was
established in [20] that constant solutions on compact graphs are the ground state (for sub-critical
nonlinearities) for sufficiently small mass, a feature which is easy to observe numerically.

The simplest of compact graphs are the segment (two vertices connected by an edge) and the ring
(one vertex and an edge connecting the vertex to himself). As the ring case was considered in detail
from a variational point of view in [35], we chose to conduct experiments in this case and compare the
numerical outcomes with the theoretical results of [35]. Beside the elementary cases of the segment
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and the ring, many compact graphs are of interest. We will present some experiments performed in the
case of the dumbbell graph, for which several recent solid theoretical studies exist (see e.g. [33, 45]).

5.1.1. The ring

From a numerical point of view, we obtain a ring (i.e. a one loop graph) by gluing together two half
circles with Kirchhoff conditions at the vertices (as already explained in Section 4.2, it is innocuous
for the functions on the graphs). Considering the loop graph with an edge of length T is equivalent to
work on the line R with T -periodic functions, i.e to work in the functional setting:

H1
loc ∩ PT , PT = {f ∈ L2

loc(R) : f(x+ T ) = f(x), ∀x ∈ R}.
Minimizers in H1

loc ∩ PT of the Schrödinger energy

Ering(ψ) = 1
2

∫ T

0
|ψ′(x)|2 dx− 1

4

∫ T

0
|ψ(x)|4 dx (5.2)

at fixed mass m were described explicitly in [35] in terms of Jacobi elliptic functions. Recall that the
function dn is the Jacobi elliptic function defined by

dn(x; k) =
√

1− k2 sin2(φ), k ∈ (0, 1), (5.3)
where φ is defined through the inverse of the incomplete elliptic integral of the first kind

x = F (φ, k) =
∫ φ

0

dθ√
1− k2 sin2(θ)

.

The snoidal and cnoidal functions are given by
sn(x; k) = sin(φ), cn(x; k) = cos(φ). (5.4)

Recall also that the complete elliptic integrals of first and second kind are given by K(k) = F (π/2; k)
and E(k) = E(π/2; k), where

E(φ; k) =
∫ φ

0

√
1− k2 sin2(θ) dθ.

The solutions of the minimization problem (5.2) are given as follows.

(1) For all 0 < m < 2π2

λT , the unique minimizer (up to a phase shift) is the constant function

ψring =
√
m

T
.

(2) For all 2π2

λT < m <∞, the unique minimizer (up to phase shift and translation) is the rescaled
dnoidal function

dnα,β,k = 1
α

dn
( ·
β

; k
)

where the parameters α, β and k are uniquely determined.

(3) If λ = 2, given k ∈ (0, 1), T = 2K(k), and m = 2E(k), the unique minimizer (up to phase
shift and translation) is

dn = dn(·, k).

We place ourselves in the case of item (3) and compute the ground state on the one loop graph with
perimeter 2π and λ = 2. The parameter k is therefore such that k2 = 0.9691073732421548 and we
fix the mass to 2E(k). We discretize each half circle with Ne = 1000 grid nodes. The gradient step is
δt = 10−2. Our experiment gives a remarkable agreement between the theoretical minimizer and the
numerically computed minimizer, as shown in Figures 5.1 and 5.2.
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Figure 5.1. Ring of radius 1 (left) and the numerical ground state (right) when λ = 2.
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Figure 5.2. Comparison between exact and numerical solution for the ring (where
the log 10 of the difference is depicted on the right).

5.1.2. The dumbbell

The dumbbell graph is a structure made of two rings attached to a central line segment subject to
Kirchhoff conditions at the junctions (see Figure 5.3). Each ring can be assimilated as a loop as in the

−4 −2 0 2 4
x

−1

0

1

y

A BC D

Figure 5.3. The dumbbell graph.

previous section and is therefore numerically made of two glued half circles. The central line segment
has a length 2L and the perimeter of each loop is 2π. We set λ = 2, L = 3 and consider the minimizers
of the energy

Edumbbell(ψ) = 1
2

∫
G
|ψ′(x)|2 − 1

2 |ψ(x)|4 dx

with fixed mass Mdumbbell. According to [45], there exist m∗ and m∗∗ (explicitly known) such that
0 < m∗ < m∗∗ < ∞ and the following behavior for standing wave profiles on the dumbbell graph
holds. For 0 < Mdumbbell < m∗, the ground state is given by the constant solution ψ(x) = p, where p
is implicitly given by

Mdumbbell = 2(L+ 2π)p2.
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This constant solution undertakes a symmetry breaking bifurcation at m∗ and a symmetry preserving
bifurcation at m∗∗, which result in the appearance of new positive non-constant solutions. The asym-
metric standing wave is a ground state for Mdumbbell & m∗, and the symmetric standing wave is not
a ground state for Mdumbbell & m∗∗. In our case, the values for m∗ and m∗∗ are

m∗ = 0.18646428284896863, m∗∗ = 1.2334076715778846.
Observe that the three profiles described above are expected to be local minimizers of the energy at
fixed mass, hence we should be able to find them with our numerical algorithm, provided the initial
data is suitably chosen. We have found that the three following initial data were leading to the various
desired behaviors (in the following, ν is a normalization constant adjusted in such a way that the mass
constraint is verified):

• the constant initial data : ψ1 ≡ ν,

• a gaussian centered on the left loop : ψ2(x)|CA = νe−10x2 and 0 elsewhere,

• a gaussian centered at x = 2 on the central edge : ψ3(x)|AB = νe−10(x−2)2 and 0 elsewhere.

We will run the normalized gradient flow for each of these initial data for the three following masses:
0 < m1 = 0.10 < m∗, m∗ < m2 = 0.75 < m∗∗, m∗∗ < m3 = 1.50.

The parameters of the algorithm are set as follows. The total number of discretization nodes is N =
1000 and δt = 10−2. The stopping criterion is set to 10−8, and the maximal number of iteration
is set to 50000 (which is large enough so that it is never reached in our experiences). The results
are in perfect agreement with the theoretical results, as shown in Figure 5.4. In particular, one can
see that for large mass m3 > m∗∗, it is indeed possible to recover the three bound states described
theoretically, and comparison of the energies shows that the asymmetric bound state centered on a
loop is indeed the ground state. For the smaller mass m2, the algorithm selects the constant or the
asymmetric state, and comparison of the energy shows that the later is indeed the ground state. And
for m1, the algorithm converges in each case towards the constant function. Very small differences in
the final energies (after the eighth digit in the m1 case) may be noted, which are due to our stopping
criterion set at 10−8.

Compactness for graphs may be violated in several ways: with a semi-infinite edge, or with an
infinite number of edges (which may be arranged e.g. periodically or in tree form). We discuss these
cases in the next sections.

5.2. Graphs with a semi-infinite edge

In this section, we consider graphs having a finite number of edges, at least one of which is of semi-
infinite length. A typical example for this kind of graph is the N -star graph, consisting of a vertex to
which N semi-infinite edges are attached. We will discuss this example in Section 5.2.2. Before that,
we will recall in Section 5.2.1 some of the results obtained by Adami and co. concerning a topological
obstruction leading to non existence of ground states on nonlinear quantum graphs. Another example,
the tadpole graph, will be discussed in Section 5.2.3.

5.2.1. The topological obstruction

The existence of ground states with prescribed mass for the focusing nonlinear Schrödinger equa-
tion (5.1) on non-compact finite graphs G equipped with Kirchhoff conditions at the vertices is linked
to the topology of the graph. Actually, a topological hypothesis (H) can prevent a graph from having
ground states for every value of the mass (see [8] for a review). For the sake of clarity, we recall that
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Figure 5.4. Outcomes of the CNGF Algorithm 1 on the dumbbell graph for three
remarkable values of the mass (one for each row) and three possible initial data (one
for each column). In each subcaption, the quantity E given is the final energy.

a trail in a graph is a path made of adjacent edges, in which every edge is run through exactly once.
In a trail vertices can be run through more than once. The assumption (H) has many formulations
(again, see [8]) but we give here only one.

Assumption 1 (Assumption (H)). Every x ∈ G lies in a trail that contains two half-lines.

If a finite non-compact graph with Kirchhoff conditions at the vertices verifies Assumption 1, then
no ground state exists, unless the graph is isomorphic to a tower of bubbles (see Figure 5.5). Examples
of graphs verifying Assumption 1 abound, some are drawn on Figure 5.5. Fortunately, graphs not
satisfying Assumption 1 and for which ground states exist also abound, some are shown on Figure 5.6.
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Figure 5.5. Graphs satisfying Assumption (H) : a generic graph (top), a tower of
bubble (bottom left), a triple bridge (bottom right).
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Figure 5.6. Graphs not satisfying Assumption (H) : a tadpole (top left), a 3-fork (top
right), a line with a pendant (bottom left), a sign-post (bottom right).

5.2.2. Star graphs

Star-graphs provide typical examples for nonlinear quantum graphs, as they are non-trivial graphs
but retain many features of the well-studied half-line. As star-graphs with Kirchhoff condition at the
vertex verify Assumption 1 and therefore do not possess a ground state, one usually studies star graphs
with other vertex conditions such as δ or δ′ conditions.

In this section, we are interested in the computation of ground state solutions for a general N -
edges star-graph G with a central vertex denoted by A with a δ vertex condition at A. Each edge will
be numbered with a label i = 1, . . . , N (see Figure 5.7) and will be identified when necessary with
the right half-line [0,∞). The unknown ψ is the collection of the functions ψi living on every edge:

•
A

x1 x2

x3

x4x5

x6

Figure 5.7. Star-graph with N = 6 edges.

29



C. Besse, R. Duboscq & S. Le Coz

ψ = (ψ1, · · · , ψN )T . The total mass is defined by MN (ψ) =
∑N
i=1

∫
R+ |ψi(xi)|2 dxi.

The δ boundary conditions at A are the generalization for N > 2 of the δ potential on the line (i.e.
the 2-star graph, see e.g. [40, 44] for studies of ground states in this case):

ψj(0) = ψk(0) =: ψ(0), 1 6 j, k 6 N,
N∑
j=1

ψ′j(0) = αψ(0).

Ground states exist only for attractive δ potential, therefore we assume that

α < 0.
We set λ = 1. The energy is given by

EN,δ(ψ) =
N∑
i=1

[1
2

∫
R+
|ψ′i(xi)|2 dxi −

1
4

∫
R+
|ψi(xi)|4 dxi

]
+ α

2 |ψ1(0)|2.

Let m∗ = 4|α|/N . It was proved in [2] that there exists a ground state minimizing EN,δ whenMN = m
if m < m∗ (there is no constraint if N = 2). The ground state is explicitly given in [1] and [2] as
follows. Let ω be implicitly given by

m = 2N
√
ω − 2α.

Let x̄ be defined by

x̄ = 1√
ω
arctanh

( |α|
N
√
ω

)
.

Then, the energy reaches its minimum when ψ = ψδ,ω (up to a phase factor) where each component
of ψδ,ω is given by

ψδ,ω,i(xi) =
√

2ω
cosh(

√
ω(xi + x̄)) , 1 6 i 6 N,

with ω ∈ (α2/N2,+∞). The mass of ψδ,ω is indeed

MN (ψδ,ω) = 2N
√
ω − 2α = m,

and its energy is given by

EN,δ(ψδ,ω) = −N3 ω
3/2 − α3

3N2 .

In order to compute numerically the ground state, each edge of the approximated graph (see Fig-
ure 5.8 (a)) is of length 40 and discretized with Ne = 800 nodes. We add homogeneous Dirichlet
boundary conditions at the terminal end of each edge. The gradient step is δt = 10−2 and we perform
3000 iterations. Each component of the initial data ψ0 is a Gaussian ψ0,i = ρie

−10x2
i and ρi is com-

puted in such a way that the mass of ψ0 is m. We set α = −4 and ω = 1. The outcome is plotted on
Figure 5.8 (b).

We plot on Figure 5.9 the comparison between the exact solution and the numerical one on an edge
(left) and the modulus of the difference in log scale (right), thereby showing the very good agreement
of our numerical computations with the theory.

5.2.3. The tadpole

The classical tadpole graph consists of one loop with a half line attached to it and was considered in
the subcritical case 1 < p < 5 in [7, 21, 28, 49]. The existence of a ground state for any given mass
was established in [7, p. 214], and the loop-centered bound state is the good candidate for the ground
state. A classification of standing waves was performed in the cubic case p = 3 by Cacciapuoti, Finco
and Noja [21], and was later extended to the whole subcritical range 1 < p < 5 by Noja, Pelinovsky,
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Figure 5.8. Star graph with 6 edges and δ-condition.
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Figure 5.9. Comparison between exact and numerical solutions for δ-condition on a
star-graph with 6 edges (where the log 10 of the difference is depicted on the right).

and Shaikhova [49], with some orbital stability results. Uniqueness of the ground state was proved by
Dovetta, Serra and Tilli [28] (as an application of a general result).

The generalized tadpole graph consists of one loop with K half-lines attached at the same vertex
(see e.g. Figure 5.10) and was treated in [15]. When K = 2, it is a particular case of the tower of
bubbles on the line, with one bubble, and the ground state is known to be the soliton of the real line,
folded on the bubble (see [6, Example 2.4]). For K > 3, there is no ground state (as Assumption 1 is
verified).

Noja-Pelinovski [50] recently analyzed in details the standing waves on the tadpole graph for the
critical quintic nonlinearity, with an alternative variational technique (minimization of the H1 norm
at fixed L6-norm). In particular, they established the existence of a branch of standing waves for
which three regimes exist, depending of the frequency ω of the wave. There exist 0 < ω0 < ω1 such
that standing waves are ground states if 0 < ω < ω0, local minimizers of the energy at fixed mass if
ω0 < ω < ω1, and saddle points for the energy at fixed mass if ω > ω1.

In this section, we present the computation of the ground state to the NLS equation (5.1) with
λ = 1 on a classical tadpole graph. The graph G is made of a ring of perimeter 2L and a semi-infinite
line (tail) originated from a vertex with Kirchhoff condition. It is conjectured in [21] that the ground
state exists and is made of a dnoidal-type function on the ring and a sech-type function on the tail.
Its explicit formula on the ring is

ψring(x) =
√

2ω
2− k2

∗
dn
(√

ω

2− k2
∗
x; k∗

)
, 0 < k∗ < 1,
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(a) Classical tadpole graph. (b) Generalized tadpole graph
with 2 branches.

(c) Generalized tadpole graph
with 3 branches.

Figure 5.10. Examples of tadpole graphs.

where dn is given by (5.3) and k∗ ∈ (0, 1) is the solution of

3k4

1− k2 cn
2
(

L
√
ω√

2− k2
; k
)[

1− cn2
(

L
√
ω√

2− k2
; k
)]

= 1,

where cn denotes the cnoidal function defined in (5.4). The solution on the tail is

ψtail(x) =
√

2ω
cosh(

√
ω(x− b)) ,

where b is determined by the negative solution of

1
cosh2(

√
ωb)

=
ψ2

ring(L)
2ω .

We take a ring of radius 1/π, so that L = 1, and we approximate the tail by a segment of length
30. We add homogeneous Dirichlet boundary conditions at the terminal vertex. We take ω = 1. With
these quantities, the couple (k∗, b) is given by

k∗ = .81664827149276692790, b = .89507479534736339894.

The mass of the ground state ψtadpole = (ψring, ψtail) is

M(ψtadpole) = 3.1727382562292.

The numerical solution is plotted in Figure 5.11 (a). We also plot the difference in absolute value
between ψtadpole and the numerical solution on Figure 5.11 (b). The maximum value of the error is
4.45 · 10−7.
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Figure 5.11. On the tadpole graph.
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5.3. Periodic graphs

Periodic graphs are graphs with an infinite number of (usually finite length) edges, for which an
elementary structure, the periodicity cell, is repeated in one or more directions.

In the case of 1-d periodic graphs (i.e. graphs for which the periodicity cell is copied in only one
direction), Dovetta [25] proved that the situation is similar to the one of the real line: for 1 < p < 5,
there exists a ground state for every mass. The critical case p = 5 is a bit more complicated. On one
hand, if the graph satisfies the equivalent of the topological Assumption (H) adapted to the periodic
setting (Assumption (Hper)), Dovetta [25] proved the non-existence of ground states. On the other
hand, for graphs violating this topological assumption (see for example Figure 5.12), there may exist
a whole interval of mass for which a ground state exists.

•

•

•

•

•

•

•

•

Figure 5.12. A periodic graph not satisfying Assumption (Hper).

In a somewhat different framework (including in particular periodic potentials in the problem),
Pankov [51] proved, under a spectral assumption on the underlying quantum graph, the existence of
localized and periodic standing wave profile solutions. These profiles are obtained by minimizing the
action (which in our case corresponds to E+ωM for a fixed ω) on the corresponding Nehari manifold,
but, as usual, it is unclear how and in which case these profiles could also be minimizers of the energy
at fixed L2 norm (recall that in the case of the real line minimizers are obtained on the Nehari manifold
for any 1 < p <∞, whereas on the mass constraint they exist only if 1 < p < 5).

That graphs periodic along only one direction essentially mimic the behavior of the real line is
somewhat expected. However, if the periodicity occurs in more than one direction, a new dimensionality
of the problem may appear (which was also absent for non-compact graphs with a finite number of
edges). At the microscopic level, periodic graphs remain clearly 1-d structures. But at the macroscopic
level, periodic graphs may be seen as higher dimensional structures, for examples the 2-d grid (see
Figure 5.13 (a)) or the honeycomb hexagonal grid (see Figure 5.13 (b)) are clearly 2-d structures at
the macroscopic level. This dimensional transition is reflected in the range of critical exponents and
masses. Non-compact graphs with a finite number of edges share the same critical exponent (from a
nonlinear Schrödinger point of view) as the line, i.e. the graphs are subcritical for power nonlinearities
with exponents 1 < p < 5, and minimization of the energy under a fixed mass constraint is possible
only if 1 < p 6 5. On the other hand, it was revealed in [4, 5] that a dimensional crossover with a
continuum of critical exponents occurs for the 2-d grid and the hexagonal grid. More precisely, the
following has been established in [4, 5]. If 1 < p < 3, then there exists a ground state for any possible
value of the mass. If 3 6 p < 5, then there exists a critical value mc of the mass such that ground
states exist if and only if m > mc (unless p = 3, in which case the case m = mc is open). If p > 5,
then a ground state never exists, no matter the value of the mass. Recall that 3 (resp. 5) is the critical
exponent for the nonlinear Schrödinger equation on R2 (resp. on R). Similar results have been obtained
for the 3-d grid by Adami and Dovetta [3].

In what follows, we present some numerical experiments realized in two model cases: the necklace
and the hexagonal grid.
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(a) The 2-d square grid. (b) The hexagonal grid/honeycomb structure/
Graphene model.

Figure 5.13. Doubly periodic metric graphs.

• • • • • •

Figure 5.14. The necklace graph, a periodic graph with alternating loop and single
edge.

5.3.1. The necklace

The necklace graph is a periodic graph consisting of a series of loops alternating with single edges
(see Figure 5.14) and is probably one of the simplest non-trivial periodic graphs. The validity of the
NLS approximation for periodic quantum graphs of necklace type was established by Gilg, Pelinovsky
and Schneider [31]. Moreover, Pelinovsky and Schneider [52] showed the existence, at fixed sufficiently
small frequency ω, of two symmetric positive exponentially decaying bound states, one located at the
center of the single edge and the other equally distributed with respect to the centers of each half-loop.
It is conjectured in [52] that the state located on the single edge should be the ground state at small
mass. On the other hand, for large masses, it was experimentally observed in [15] that their estimates
on edge localized bound states could also be applied in the case of the necklace graph. The conclusion
of this observation is that at large mass the ground state should be centered on the loop if the length
of the internal edge is smaller than the length of the half-loop, and vice versa.

We have performed numerical calculations of the ground states on a necklace consisting of loops of
total length π (i.e. each branch of the loop is of length π/2) and connecting edges of length 1. The
length of the necklace is chosen to be large, but obviously necessarily finite. In practice, the length
needs to be adapted depending on the mass m on which we are minimizing the Schrödinger energy.
Indeed, it is expected (and appears to be so in practice) that the ground state will be decaying as
e−m|x| from some central point on the graph (here, |x| is referring to the (graph) distance with respect
to this point). Therefore, the smaller the mass is, the larger the length of the necklace needs to be
in order to fully capture the tail of the ground state. The conditions at the vertices are Kirchhoff
conditions, apart from the end points where we have chosen to set Dirichlet conditions.

We have chosen to perform a collection of experiments for masses varying from very small to very
large and with three different types of initial data, all positioned on the periodicity cell at the middle
of the necklace: two gaussians concentrated and centered on each of the branches of the loop (referred
to as Init 2, see Figure 5.15 (a)), a gaussian concentrated and centered on the single connecting edge
(referred to as Init 3, see Figure 5.15 (b)), and a gaussian concentrated and centered on a branch of
the circle (referred to as Init 4, see Figure 5.15 (c)).

We first present a global picture (see Figure 5.16) of the ground states for L2 norms ranging from
ρ = 0.1 to ρ = 15 (recall that ρ =

√
m). Since we expected the energy to be of order m3, we have
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(a) Init 2. (b) Init 3. (c) Init 4.

Figure 5.15. The three initial data constructed with Gaussians of the form Ce−10x2 ,
centered on edges, truncated at the end points, and with C adjusted to satisfy the mass
constraint.

presented the mass-energy with ρ6 = m3 log-scale on the horizontal axis. Our expectation is confirmed
by the representation which is indeed a straight line, with a slight shift around ρ = 2.5 corresponding
to a bifurcation (on which we will comment after). We observe that for small masses, the ground
state is scattered across many periodicity cells. As the mass increases, the ground state becomes more
and more concentrated on a loop, first symmetrically on both branches of the loop, then on only one
branch of the loop.

Figure 5.16 was devoted to the ground state. In fact, we may perform a more detailed analysis and
obtain other branches of local minimizers of the energy at fixed mass. Indeed, provided the parameters
of our algorithm are suitably chosen, starting from each of the initial data Init j, j = 2, 3, 4, we
should have convergence towards the closest local minimizer of the energy at fixed mass. The obtained
minimizer should itself enjoy similar features as the initial data (e.g. the place of centering). We
present the outcome of our simulations in Figure 5.17. Each initial datum gives rise to a branch
of local minimizers. For small mass, the branches corresponding to Init 2 and Init 4 coincide and
correspond to the ground state, which is centered on a loop and symmetric with respect to both sides
of the loop. At ρ ' 2.5, we observe a bifurcation and the branches corresponding to Init 2 and Init 4
separate, as the Init 4 branch bifurcates with smaller energy and is formed of ground states peaked
on one side of a loop, whereas the Init 2 branch continues the branch of symmetric states on a loop
(which are not anymore ground states). The Init 3 branch is formed all along of states centered on
a single edge. It is never a ground state branch, but it is meeting the Init 4 branch at small and
large mass, up to a point where they become indistinguishable numerically (for large mass, outside of
Figure 5.17, at ρ ' 10).

5.3.2. The honeycomb

We now turn to the honeycomb grid. This is a graph which is built recursively using a hexagonal
tessellation. As the necklace graph, it is a very simple periodic graph and we can see that it is two-
dimensional on a large scale. In [4], the existence of minimizers for the NLS energy functional is proved
for 1 < p < 3, for any mass. Here, we perform some numerical simulations in the case p = 2. To be
more specific, we use the gradient methods to compute the ground state of the NLS energy functional
under a specified mass. As noted in [4, 5], for low masses, we expect the ground state to display a 2d
structure due to the spreading on the graph. For large masses, on the contrary, the ground state should
be more localized on the graph and we expect a 1d structure. The goal of this numerical investigation
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Figure 5.16. Mass-Energy diagram with sample representations for the ground states
on a necklace graph.

is to describe the transition from the 2d regime to the 1d regime by varying the mass of the ground
state from 1 to 16.

The graph is set such that each edge has a length of 1. We have obtained the Mass-Energy diagram
which is depicted in Figure 5.18. To begin with, we note that there is a linear relation between the
energy and ρ4. We can see that, for low masses, the ground state looks like a 2d ground state in the
Euclidean case. Furthermore, we remark that it is centered on a node (that is, its maximum is located
on a node) and symmetric. As the mass grows larger, the ground state is more concentrated. Then,
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Figure 5.17. Mass-Energy diagram for local minimizers computed with Init 2, Init 3,
and Init 4.

between a mass of 11.4 and 11.5, we observe a structural transition: the minimizer becomes centered
on an edge (still symmetric). For larger masses, it keeps concentrating (slowly) on a single edge and,
thus, it displays a 1d regime.

5.4. Metric Trees

Metric trees are tree-type graphs endowed with a metric structure. In this section, we are interested in
the case of binary trees, i.e. trees for which each vertex (except for the root, if any) has degree 3 and
all the edges share the same length. Dispersion of the Schrödinger group on trees (with δ conditions
at the vertices) was investigated by Banica and Ignat [13]. Existence of ground states on metric trees
(with Kirchhoff conditions at the vertices) has been considered by Dovetta, Serra and Tilli [27] in the
case of binary trees, either rooted or non-rooted. Let G be a rooted or non-rooted binary tree with
Kirchhoff vertices conditions and (following the notation of [27] and the definition (2.3) of H1

D(G)),
define the minimum of the Schrödinger energy at fixed mass m by

LG(m) = min{E(u) : u ∈ H1
D(G), M(u) = m}.

It was proved in [27] that there exists a critical mass m∗G > 0 such that{
LG(m) = 1

2λ1m, and there is no ground state, if µ ∈ (0,m∗G),
LG(m) < 1

2λ1m, and a ground state exists, if m > m∗G ,

where λ1 is the optimal constant for the Poincaré inequality on the graph. The nonlinearity considered
in [27] is any mass-subcritical power nonlinearity, i.e. |u|p−1u with 1 < p < 5. If 3 < p < 5 or if
1 < p < 5 and minimization is done in the class of radially symmetric functions, the authors of [27]
proved that m∗G > 0. The case 1 < p < 3 is open if no symmetry assumption is made, but the authors
conjecture that m∗G is also positive in this case. Moreover, they conjecture that minimizers should be
radial even when no symmetry assumption is made on the class of function in which minimization is
done. This is confirmed by experiments that we conducted on a binary tree of depth 6 with each branch
of approximate length 10 (we have arranged the vertices in such a way that they are on concentric
circles). We give a sample result of our experiments in Figure 5.19.
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Figure 5.18. Mass-Energy diagram for the minimizers of NLS energy functional on
a honeycomb grid.
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for |u|u nonlinearity.
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Appendix A. Features of the Grafidi library

The Grafidi library relies on the following Python libraries: Matplotlib [39], Networkx [36], Numpy [37],
Scipy [60].

A.1. Methods from the Graph class

A.1.1. __init__

The Graph class constructor builds an instance of a graph which is based on the graphs from the
NetworkX library (Network Analysis in Python).
g = Graph(g_nx,Np,user_bc)

Parameters:

g_nx: an instance of a NetworkX graph that must have for each edge at least the attribute
’Length’ with value a positive scalar.

Np: (optional) an integer corresponding to the total number of discretization points on the
graph. By default, the number of discretization points is set to 100 on each edge.

user_bc: (optional) a dictionary whose keys are the identifiers of vertices used to describe edges
ing_nx andwhose valuesmust be of the form: [’Dirichlet’] forDirichlet boundary condition,
[’Kirchhoff’] for Kirchhoff-Neumann boundary condition, [’Delta’,val] for a δ boundary
condition with a strength equal to val (which must be a scalar), [’Delta_Prime’,val] for
a δ′ boundary condition with a strength equal to val (which must be a scalar) or be set to
[’UserDefined’,[A_v,B_v]] for a user-defined boundary condition with matrices Av and Bv
which must be 2-dimensional numpy.array instances. For a full description of all boundary
conditions (see [17] or [14]). By default, the boundary conditions for all vertices are Kirchhoff-
Neumann boundary conditions.

Return:

g: an instance of the Graph class which contains the finite-differences discretization of the
Laplace operator as well as the identity matrix corresponding to the identity operator on
the graph. We can access these matrices with g.Lap and g.Id which are 2-dimensional
scipy.sparse instances. The sparse format of these instances is csc (Compressed Sparse
Columns).

A.1.2. Position

A method that enables the user to set the position (on the x, y-plane) of every vertex on the graph.
This is only useful when drawing a graph or a wave-function on the graph.
Position(g,dict_nodes)

Parameters:

g: an instance of the Graph class whose edges’ position will be set.

dict_nodes: a dictionary whose keys are the identifiers of the nodes used in g and whose
values must be of the form [posx,posy] where posx and posy must be scalars corresponding
to the desired x and y coordinates associated to the key node.
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A.1.3. draw

A method to plot the graph in the Matplotlib figure named ’QGraph’. Each vertex is represented as
a dot and its associated label is displayed.
draw(g,AxId,Color,Text,TextSize,LineWidth,MarkerSize,FigName)

Parameters:

g: an instance of the Graph class.

AxId: (optional) an Axes instance of the Matplotlib library. Allow to draw the graph g in an
already existing axes.

Color: (optional) by default, the color of the graph is blue. It allows to specify an alternative
color. The user must follow the standard naming color of Matplotlib library.

Text: (optional) Logical variable. This option allows to control the display of the vertices
labels. By default, Text=True. To avoid the display of labels, set Text=False.

TextSize: (optional) a float variable. This allows to control the text size to display vertices
labels. By default, the text size parameter is set to 12.

LineWidth: (optional) a float variable. This allows to control the width of the curve repre-
senting an edge. By default, the value is set to 1.

MarkerSize: (optional) a float variable. This allows to control the size of the marker repre-
senting the vertices of the graph. The default value is 20.

FigName: (optional) a string variable. By default, the name of the figure is ’QGraph’. The
user can change the name of the figure.

Return:

fig: the figure Matplotlib instance containing the axes ax.

ax: the axes Matplotlib instance containing the plot of g.

A.1.4. Diag

A method constructing a diagonal matrix with respect to the discretization points on the graph. The
diagonal is explicitly prescribed.
M = Diag(g,diag_vect)

Parameters:

g: an instance of the Graph class.

diag_vect: either an instance of WFGraph or a 1-dimensional numpy.array corresponding to
the desired diagonal.

Return:

M: a matrix whose diagonal corresponds to diag_vect. It is a 2-dimensional scipy.sparse
instance. The sparse format of this instance is csc (Compressed Sparse Columns).
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A.2. Methods from the WFGraph class

A.2.1. __init__

The WFGraph class constructor builds a discrete function that is described on a discretized graph
(given by an instance of the Graph class).
psi = WFGraph(initWF,g,Dtype)

Parameters:

initWF: either a dictionary whose keys are the identifiers of edges of g and whose values
are lambda functions with a single argument (say x) describing the desired function in an
analytical way on the corresponding edge or a 1-dimensional numpy.array instance which
corresponds to the discretized function on the discretization points of g. Note that, in the first
case, the variable x will take values between 0 and the length of the edge (starting at the node
corresponding to the first coordinate of the edge’s identifier).

g: (optional) an instance of Graph on which the function is described. If it has already been
set in a previous instance of WFGraph, it does not need to be prescribed again.

Dtype: (optional) a string set by default to ’float’. The default data type for numpy.arrays
is np.float64. It is possible to switch to complex arrays by setting Dtype = ’complex’.

Return:

psi: an instance of the WFGraph class which contains vect, a 1-dimensional numpy.array
associated to the discretization points of the graph g.

A.2.2. norm

This method enables to compute the `p-norm of a discrete function on a graph. It is computed with
a trapezoidal rule on each vertex of the graph.
a = norm(psi,p)

Parameters:

psi: an instance of the WFGraph class whose norm is computed on its associated graph.

p: a scalar value that corresponds to the exponent of the `p space.

Return:

a: a scalar value that is the `p-norm of psi on its graph.

A.2.3. dot

A method that computes the `2 (hermitian) inner product between two discrete functions on a graph.
a = dot(psi,phi)

Parameters:

psi: an instance of the WFGraph class.
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phi: an instance of the WFGraph class.

Return:

a: a (complex) scalar value that corresponds to the inner product between psi and phi on their
associated graph.

A.2.4. draw

A method to plot an instance f of the WFGraph class and the graph g (instance of the Graph class)
in the Matplotlib figure named ’Wave function on the graph’. Each vertex of g is represented as
a dot and its associated label is displayed.
draw(f,data_plot,fig_name,Text,AxId,ColorWF,ColorG,TextSize,LineWidth,...

MarkerSize,LineWidthG,AlphaG,xlim,ylim)
Parameters:

f: an instance of the WFGraph class.

data_plot: (optional) a list of elements (matplotlib primitives) representing the plot of f
already existing in the figure. This variable allows to efficiently update the figure containing
the plot of the wave function f without redrawing all the scene.

fig_name: (optional) a string variable. By default, the name of the figure is ’Wave function
on the graph’. The user can change the name of the figure.

Text: (optional) Logical variable. This option allows to control the display of the labels of the
vertices of g. By default, Text=True. To avoid the display of labels, set Text=False.

AxId: (optional) an Axes instance of the Matplotlib library. Allow to draw f and g in an
already existing axes.

ColorWF: (optional) by default, the color of f is blue. It allows to specify an alternative color.
The user must follow the standard naming color of Matplotlib library.

ColorG: (optional) by default, the color of g is dark gray. It allows to specify an alternative
color. The user must follow the standard naming color of Matplotlib library.

TextSize: (optional) a float variable. This allows to control the text size to display labels of
vertices of g. By default, the text size parameter is set to 10.

LineWidth: (optional) a float variable. This allows to control the width of the curve repre-
senting f. By default, the value is set to 1.5.

MarkerSize: (optional) a float variable. This allows to control the size of the marker repre-
senting the vertices of g. The default value is 10.

LineWidthG: (optional) a float variable. This allows to control the width of the curves rep-
resenting the edges of g. By default, the value is set to 0.8.

AlphaG: (optional) a float variable belonging to [0, 1]. It allows to adjust the transparency
(alpha property) of the graph g (both the edges, markers and labels). By defaults, the value
is set to 1. If the user chooses AlphaG=0, the graph g is completely transparent and does not
appear.
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xlim: (optional) a two-components list instance allowing to adjust the x-axis view limits.

ylim: (optional) a two-components list instance allowing to adjust the y-axis view limits.

Return:
K: a list of elements (matplotlib primitives) representing the plot of f in ax.

fig: the figure Matplotlib instance the axes ax.

ax: the axes Matplotlib instance containing the plot of f and g.

A.2.5. Arithmetic operations: +, -, * and /

The basic arithmetic operations can be applied to two instances of WFGraph. As a matter of fact, these
operations are carried pointwise on the vect associated to each instance. The output is an instance of
WFGraph with the resulting vect associated.

A.2.6. Mathematical functions: abs, Real, Imag, **, exp, cos, sin and log

Some basic mathematical functions can be applied to an instance of WFGraph. It turns out that the
function is applied pointwise on the vect associated to the instance. The output is an instance of
WFGraph with the resulting vect associated.

A.2.7. Lap

This method applies the (finite-differences) discretization of the Laplace operator to a discrete function
on a graph.
phi = Lap(psi)

Parameters:
psi: an instance of the WFGraph class on which the discrete Laplace operator is applied (specif-
ically, on its associated vect).

Return:
phi: an instance of the WFGraph class.

A.2.8. Solve

A method that solves a linear system where the matrix is understood as a discrete operator and the
right-hand-side is understood as a discrete function on a graph.
phi = Solve(M,psi)

Parameters:
M: a 2-dimensional scipy.sparse instance which is associated to a discrete operator on the
graph of psi and that we formally want to inverse.

psi: an instance of the WFGraph class which correspond to the right-hand-side of the linear
system.

Return:
phi: an instance of the WFGraph class.
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