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Abstract. Boundary element methods are a well-established technique for solving linear boundary value problems
for electrostatic potentials. In this context we present a novel way to approximate the forces exerted by electrostatic
fields on conducting objects. Like the standard post-processing technique employing surface integrals derived from
the Maxwell stress tensor the new approach solely relies on surface integrals, but, compared to the former, offers
better accuracy and faster convergence.

The new formulas arise from the interpretation of forces fields as shape derivatives, in the spirit of the virtual work
principle, combined with the adjoint approach from shape optimization. In contrast to standard formulas, they meet
the continuity and smoothing requirements of abstract duality arguments, which supply a rigorous underpinning
for their observed superior performance.
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1. Introduction

1.1. Model Problem

A solid conducting object filling the bounded open connected Lipschitz domain D ⊂ Rd, d = 2, 3,
is embedded in a non-conducting homogeneous isotropic dielectric medium. Both together occupy a
larger bounded open Lipschitz domain B ⊂ Rd, D ⊂ B, which represents the geometry of a container
with metal walls.

A potential difference U is imposed between the object and the metal box by a voltage source, see
Figure 1.1. For d = 3 this arrangement represents a realistic laboratory setup, for d = 2 it is to be read
as a cross-section description of a situation with translational symmetry. We use the short notations
Ω := B \ D for the “field domain”, Γ := ∂D for the boundary of the object, and assume that Γ is
connected.

The (non-dimensional, rescaled) electrostatic scalar potential u : Ω → R can be obtained as the
unique weak solution in H1(Ω)1 of the linear elliptic boundary value problem

∆u = 0 in Ω , u = 0 on ∂B , u = g on Γ := ∂D . (1.1)
The physical setting of Figure 1.1 corresponds to constant Dirichlet data g ≡ U , but we prefer to
admit general g ∈ H

1
2 (∂Ω) at this point.

Remark 1.1. The model problem was chosen for the sake of simplicity. We emphasize that the
ideas and techniques pursued in this work can straightforwardly be extended to the situation of two
conducting objects in free space, with either a potential drop imposed between them (Figure 1.2, left)
or some total electric charges put on them (Figure 1.2, right).

1We use standard notations for function spaces and, in particular, Sobolev spaces: C∞(Ω), L2(Ω), Hs(Ω), W m,∞(Ω),
etc., where Ω denotes a “generic domain”. We adopt the conventions of [28, Sect 2.3 & 2.4].
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Abstract. Boundary element methods are a well-established technique for solving linear bound-
ary value problems for electrostatic potentials. In this context we present a novel way to ap-
proximate the forces exerted by electrostatic fields on conducting objects. Like the standard
post-processing technique employing surface integrals derived from the Maxwell stress tensor
the new approach solely relies on surface integrals, but, compared to the former, offers better
accuracy and faster convergence.

The new formulas arise from the interpretation of forces fields as shape derivatives, in the
spirit of the virtual work principle, combined with the adjoint approach from shape optimiza-
tion. In contrast to standard formulas, they meet the continuity and smoothing requirements of
abstract duality arguments, which supply a rigorous underpinning for their observed superior
performance.

1. Introduction

1.1. Model Problem

A solid conducting object filling the bounded
open connected Lipschitz domain D ⊂ R

d, d =
2, 3, is embedded in a non-conducting homo-
geneous isotropic dielectric medium. Both to-
gether occupy a larger bounded open Lipschitz
domain B ⊂ R

d, D ⊂ B, which represents the
geometry of a container with metal walls.
A potential difference U is imposed between the
object and the metal box by a voltage source, see
Figure 1. For d = 3 this arrangement represents
a realistic laboratory setup, for d = 2 it is to be
read as a cross-section description of a situation
with translational symmetry. We use the short
notations Ω := B \ D for the “field domain”,
Γ := ∂D for the boundary of the object, and
assume that Γ is connected.
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Ω

Γ
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D

Figure 1. Geometric setting
for model problem

The (non-dimensional, rescaled) electrostatic scalar potential u : Ω → R can be obtained as
the unique weak solution in H1(Ω)1 of the linear elliptic boundary value problem

Δu = 0 in Ω , u = 0 on ∂B , u = g on Γ := ∂D . (1.1)

1We use standard notations for function spaces and, in particular, Sobolev spaces: C∞(Ω), L2(Ω), Hs(Ω),
W

m,∞(Ω), etc., where Ω denotes a “generic domain”. We adopt the conventions of [21, Sect 2.3 & 2.4].
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Figure 1.1. Geometric setting for model problem
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The physical setting of Figure 1 corresponds to constant Dirichlet data g ≡ U , but we prefer to

admit general g ∈ H
1

2 (∂Ω) at this point.

Remark 1.1. The model problem was chosen for the sake of simplicity. We emphasize that the
ideas and techniques pursued in this work can straightforwardly be extended to the situation
of two conducting objects in free space, with either a potential drop imposed between them
(Figure 2, left) or some total electric charges put on them (Figure 2, right).
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Figure 2. More general arrangements of conducting objects in free space R
d

1.2. Classical Formulas for Electrostatic Forces

This work is concerned with a new numerical method for computing the total force, torque,
as well as surface forces acting on the object. We remind that standard methods employ the
Maxwell stress tensor2 [17, Section 6.9]

T(u) := ∇u∇u⊤ − 1
2 ||∇u||2 Id : Ω → R

d,d , (1.2)

involving the electrostatic potential u, which solves (1.1). Then, writing n for the exterior unit
normal vector field on ∂Ω, the vector field fΓ(x) := T(u(x))n(x), x ∈ Γ. gives the electrostatic
surface force density, and, consequently,

F :=

Z

Γ
fΓ dS =

Z

Γ
T(u)n dS =

1

2

Z

Γ
|∇u · n|2n dS (1.3)

is the total force on the object, where the last equality holds for constant Dirichlet data g ≡ U .
Since ∇ ·T(u) = 0, by elementary computations using Δu = 0, integration by parts yields the
equivalent formula 3

F =

Z

Ω
T(u)∇w dx =

Z

Ω
∇u(∇u ·∇w)− 1

2 ||∇u||2∇w dx . (1.4)

for any w ∈ W 1,∞(Ω) with w|Γ ≡ 1 and w|∂B ≡ 0.

Experiment 1. We solved (1.1) for g ≡ 1 by means of piecewise linear C0 finite elements on
quasi-uniform shape-regular sequences of triangular meshes for d = 2, and

(i) a smooth “kite-shaped” D, given by the parameterization γ : [0, 2π] → R
2, t 7→ [0.3 +

0.35 cos(t) + 0.1625 cos(2t), 0.5 + 0.35 sin(t)] and a square-shaped B =]−2, 2[×]−2, 2[,
and

(ii) a unit square D :=]0, 1[2 inside B :=]−3, 3[×]−3, 3[.

2Id stands for the d× d identity matrix.
3We write · for the inner product in Euclidean space R

d and || · || for the associated norm.
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Figure 1.2. More general arrangements of conducting objects in free space Rd

1.2. Classical Formulas for Electrostatic Forces

This work is concerned with a new numerical method for computing the total force, torque, as well
as surface forces acting on the object. We remind that standard methods employ the Maxwell stress
tensor2 [22, §6.9]

T(u) := ∇u∇u> − 1
2‖∇u‖2 Id : Ω→ Rd,d , (1.2)

involving the electrostatic potential u, which solves (1.1). Then, writing n for the exterior unit normal
vector field on ∂Ω, the vector field fΓ(x) := T(u(x))n(x), x ∈ Γ. gives the electrostatic surface force
density, and, consequently,

F :=
∫

Γ
fΓ dS =

∫
Γ

T(u)n dS = 1
2

∫
Γ
|∇u · n|2n dS (1.3)

is the total force on the object, where the last equality holds for constant Dirichlet data g ≡ U . Since
∇ · T(u) = 0, by elementary computations using ∆u = 0, integration by parts yields the equivalent
formula 3

F =
∫

Ω
T(u)∇w dx =

∫
Ω

∇u(∇u ·∇w)− 1
2‖∇u‖2∇w dx . (1.4)

2Id stands for the d× d identity matrix.
3We write · for the inner product in Euclidean space Rd and ‖ · ‖ for the associated norm.
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for any w ∈W 1,∞(Ω) with w|Γ ≡ 1 and w|∂B ≡ 0.

Experiment 1. We solved (1.1) for g ≡ 1 by means of piecewise linear C0 finite elements on quasi-
uniform shape-regular sequences of triangular meshes for d = 2, and

(i) a smooth “kite-shaped” D, given by the parameterization γ : [0, 2π] → R2, t 7→ [0.3 +
0.35 cos(t) + 0.1625 cos(2t), 0.5 + 0.35 sin(t)] and a square-shaped B = ]−2, 2[× ]−2, 2[, and

(ii) a unit square D := ]0, 1[2 inside B := ]−3, 3[× ]−3, 3[.

The coarsest meshes used for each geometry are displayed in Figure 1.3.
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(b) Square-shaped D

Figure 1.3. Geometries and coarsest finite element meshes for the numerical tests
covered in Experiment 1

We directly evaluate both formulas for the finite element solution and use the following C1 cut-off
function in the volume-based formula (1.4):

w(x) :=


1 for ‖x‖ < 1.2 ,
cos2(‖x‖−1.2

0.7
)

for 1.2 ≤ ‖x‖ ≤ 1.9 ,
0 for ‖x‖ > 1.9 ,

(1.5)

The Euclidean norm of the error in the computed forces is shown in Figure 1.4 as a function of the
mesh width h of the underlying triangulations. 4

We make the striking observation that, when used with a finite-element solution, the volume-based
formula (1.4) enjoys a vast superiority over the boundary-based formula (1.3), both in terms of absolute
accuracy and in terms of rate of asymptotic (algebraic) convergence.

4As reference solution we used the total force computed by the pullback approach (4.17) on a uniform mesh with 9000
(kite-shaped D)/7200 (square-shaped D) cells
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Figure 1.4. Euclidean norm of errors in approximate total force for finite-element
solution inserted into (1.3) (blue, “Stress tensor (FEM)”) and (1.4) (green, “Volume
formula”), respectively. The dashed lines represent the linear regression fit.

1.3. Benefits of Smoothness

Duality arguments will shed light on the surprising outcome of Experiment 1. We start from the
variational formulation of (1.1) in the Sobolev space V := H1(Ω):

u ∈ Vg := H1
0 (Ω) + g̃ : a(u, v) :=

∫
Ω

∇u ·∇v dx = 0 ∀v ∈ V0 := H1
0 (Ω) , (1.6)

where g̃ ∈ H1(Ω) extends the Dirichlet data g, g̃|Γ = g, and vanishes on ∂B. Let V0,h ⊂ V0 denote
an H1(Ω)-conforming finite-element space. Ignoring potentially necessary approximations of g̃, the
finite-element solution uh is obtained as

uh ∈ Vg,h := V0,h + g̃ : a(uh, vh) = 0 ∀vh ∈ V0,h . (1.7)

Following [1, §2.1] let F : V → R be a twice continuously differentiable “output” functional. We write
D`F , ` = 1, 2, for its `-th derivative, which is a continuous mapping from Ω into the `-multilinear
forms on V . Now, essentially keeping the notations, we switch to a more abstract setting.

Proposition 1.2. Let V0,h ⊂ V0 ⊂ V be closed subspaces of a Banach space V , and let a : V ×V → R
be a bounded V0-elliptic bilinear form, ` ∈ V ′, g̃ ∈ V , and consider the variational problems

u ∈ V0 + g̃ : a(u, v) = `(v) ∀v ∈ V0 , (1.8)
uh ∈ V0,h + g̃ : a(uh, vh) = `(vh) ∀vh ∈ V0,h . (1.9)

If F ∈ C2(V,R), then the output error estimate5

|F (u)−F (uh)| ≤ ‖a‖ ‖u− uh‖V inf
vh∈V0,h

‖z − vh‖V +1
2 max

0≤τ≤1

∥∥∥D2F (τuh + (1− τ)u)
∥∥∥ ‖u− uh‖2V (1.10)

holds true, where u, uh designate the solutions of (1.8) and (1.9), respectively, and z ∈ V0 is the
solution of the adjoint variational problem

z ∈ V0 : a(v, z) = DF (u)(v) ∀v ∈ V0 . (1.11)
5‖a‖ and

∥∥D2F
∥∥ designate the operator norms of bounded bilinear mappings V × V → R
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EM Forces with BEM

Proof. By the Lax-Milgram lemma [5, §6.2] existence and uniqueness of both u and uh is guaranteed.
We write e := uh−u ∈ V0 for the Galerkin discretization error and recall its property known as Galerkin
orthogonality: a(e, vh) = 0 for all vh ∈ V0,h. By second-order Taylor expansion [5, Thm. 7.9-1] we find

F (u+ e)− F (u) = DF (u)(e) +
∫ 1

0
(1− t)D2F (u+ te)(e, e) dt . (1.12)

Thanks to the defining equation (1.11) for z ∈ V0 and Galerkin orthogonality, we can rewrite
DF (u)(e) = a(e, z) = a(e, z − vh) ∀vh ∈ V0,h . (1.13)

The continuity estimate |a(v, v′)| ≤ ‖a‖ ‖v‖V ‖v′‖V for all v, v′ ∈ V0 together with the definition of the
norm of D2F finishes the proof.

For the h-version of the finite-element method (FEM) the message of Proposition 1.2 is that the
output error F (u)−F (uh) can converge to zero faster than the energy norm ‖u− uh‖V of the Galerkin
discretization error provided that the best-approximation error infvh∈V0,h

‖z − vh‖V for the solution z of
the adjoint variational problem tends to zero with some rate. In this case we observe superconvergence
of F (uh)→ F (u) for h→ 0.

Proposition 1.2 is key to understanding Experiment 1: The boundary-based output functional (1.3)
is not even continuous on H1(Ω), let alone differentiable. We conclude this from the failure of the
co-normal trace u 7→ ∇u · n|Γ to map from H1(Ω) into L2(Γ). Conversely, if w ∈ W 1,∞(Ω), then
the volume-based functional (1.4) is a smooth quadratic functional on H1(Ω). If w ∈ W 2,∞(Ω) as in
Experiment 1 and u ∈ H2(Ω), then the first derivative of the volume-based force functional will even
be continuous on L2(Ω), which entails extra smoothness of the dual solution z by virtue of elliptic
lifting results. This explains the “superconvergence” of the forces computed by means of (1.4) in
Experiment 1.

Remark 1.3. In computational engineering the use of a volume-based formula for the computation
of electromagnetic forces on bounded objects is known as the “eggshell method” [17, 15, 24].

1.4. Outline and Novelty

In this work we harness the superconvergence afforded by the duality arguments of Proposition 1.2
by means of new formulas for electrostatic forces that exclusively rely on integration over ∂Ω. These
formulas are based on the virtual work principle that offers a natural interpretation of force fields
as shape derivatives. We have elaborated this idea in Section 3. The actual derivation of the new
formulas is presented in Section 4.1 and Section 4.2. It relies on the reformulation of the boundary
value problem (1.1) as a weakly singular first-kind boundary integral equation (BIE) in Section 2.1,
the adjoint method borrowed from constrained optimization, and an idea we introduce as “pullback
approach”. Forces are then approximated using boundary element Galerkin solutions of the BIEs in
variational form, see Section 4.3. In Section 4.4 we confirm that we can expect the extra regularities
required for the superconvergence of approximate forces. This superconvergence clearly manifests itself
in the numerical experiments reported in Section 5.

2. Boundary Element Method (BEM)

For the numerical solution of the boundary value problem (1.1) we opt for a low-order boundary-
element Galerkin discretization based on a direct first-kind boundary integral equation. As regards
this widely used standard method we just refer to the textbooks [28, Ch. 3 & 4] and [30, Ch. 6–8].
There the reader can also find information about the trace space H

1
2 (∂Ω) and its dual space H−

1
2 (∂Ω).
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2.1. Variational Boundary Integral Equations (BIEs)

From [28, §2.9.2.1], [25, Thm. 7.5] we learn that the unknown co-normal/Neumann trace ψ :=
∇u · n|∂Ω of the solution of (1.1) can be recovered as the solution of the following first-kind boundary
integral equation

ψ ∈ H−
1
2 (∂Ω) : aV (ψ,ϕ) = 1

2`g(ϕ) + bK(g, ϕ) ∀ϕ ∈ H−
1
2 (∂Ω) , (2.1)

with

aV (ψ,ϕ) :=
∫
∂Ω

∫
∂Ω
G(x,y)ψ(y)ϕ(x) dS(y)dS(x) ,

bK(g, ϕ) :=
∫
∂Ω

∫
∂Ω

∇yG(x,y) · n(y) g(y)ϕ(x) dS(y)dS(x) ,

`g(ϕ) :=
∫
∂Ω
g(x)ϕ(x) dS(x) ,

(2.2)

and the fundamental solutions G : {(x,y) ∈ Rd × Rd, x 6= y} → R

G(x,y) := − 1
2π log(‖x− y‖) for d = 2 , G(x,y) := 1

4π‖x− y‖
for d = 3 .

Existence and uniqueness of the solution of (2.1) follows from the H−
1
2 (∂Ω)-ellipticity of aV [28,

Thm. 3.5.3], ensured after a suitable rescaling for d = 2.

2.2. Boundary-Element Galerkin Discretization

We introduce a mesh partition ∂Ωh of ∂Ω whose cells are curve segments (d = 2) or curved triangular
panels (d = 3). We perform a Galerkin discretization of (2.1) employing so-called boundary element
spaces S−1

q (∂Ωh) of ∂Ωh-piecewise (mapped) polynomial functions of degree q ∈ N0. The simplest
option q = 0 uses the boundary element space spanned by the characteristic functions of the cells of
the mesh. For the details of the construction of S−1

q (∂Ωh) refer to [30, Ch. 10] or [28, Ch. 4]. The
choice of basis functions and the computation of the Galerkin matrices is presented in [28, Ch. 5].

We restrict ourselves to the boundary element space S−1
0 (∂Ωh) and write ψh ∈ S−1

0 (∂Ωh) for the
Galerkin boundary element solution of (2.1). The results of [28, §4.3] predict asymptotic convergence
‖ψ − ψh‖

H−
1
2 (∂Ω)

= O(h3/2) when the meshwidth h of ∂Ωh is sent to zero through uniform regular
refinement, and the exact solution ψ of (2.1) is sufficiently smooth.

2.3. Surface Forces from BEM Solution

With ψh at our disposal and in light of the fact that ψh ≈ ∇u · n|∂Ω we can take the cue from (1.3)
and try to approximate the surface force density fΓ(x) := 1

2 |∇u(x) · n(x)|2n(x), x ∈ Γ, by fΓ
h (x) :=

1
2 |ψh(x)|2n(x). Thus we can compute an approximation of the total force as

Fh :=
∫

Γ
fΓ
h (x) dS(x) = 1

2

∫
Γ
|ψh(x)|2n(x) dS(x) . (2.3)

However, this expression fails to be continuous on the trace space H−
1
2 (∂Ω) on which the variational

BIE (2.1) is posed, as we only have the embedding L2(∂Ω) ⊂ H−
1
2 (∂Ω) and the norm of L2(∂Ω) is

strictly stronger than that of H−
1
2 (∂Ω).

Thus, Proposition 1.2 cannot be applied and we cannot expect that (2.3) will enjoy the superior
accuracy and superconvergence gained by plugging Galerkin boundary element solutions into a twice
continuously differentiable functional on H−

1
2 (∂Ω).
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Experiment 2. We tackle the computation of total force for the 2D test cases of Experiment 1.
We evaluate (2.3) for S−1

0 (∂Ωh) boundary-element Galerkin solutions on quasi-uniform sequences of
mesh partitions ∂Ωh of ∂Ω with increasing resolution. An exact parametric representation of curved
boundary parts was employed along with polar-coordinate transformation techniques for singular
integrals [14, §9.4.5]. We add the resulting error curves to the plots of Experiment 1, see Figure 2.1.
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Figure 2.1. Error of S−1
0 (∂Ωh)-BEM based forces by (2.3) (“Stress tensor (BEM)”)

as a function of the meshwidth h of ∂Ωh. Dashed lines represent the linear regression
fits.

For the non-smooth square-shaped object we observe that both accuracy and convergence of the
forces obtained from (2.3) are as poor as those for the boundary-based formula discussed in Section 1.2.
Yet, for the kite-shaped smooth object, (2.3) delivers remarkable accuracy almost on par with that of
volume-based formula used with the FEM.

In Experiment 1 volume-based force formula offered an attractive alternative to its boundary-based
counterpart. Yet, the possibility to dispense with meshing Ω is a major advantage of boundary element
methods that must not be sacrificed. Switching to volume-based formulas is not feasible in a BEM
context. Hence, we need a Γ-based approach that is better behaved than (2.3).

3. Forces through Shape Differentiation

3.1. Virtual Work Principle

By the virtual work principle [17, 6, 4, 16, 3] in stationary settings force can be recovered as a shape
derivative of the total co-energy E = E(Ω), which, for the linear electrostatic setting presented in
Section 1.1, is the sum of the energy of the electric field in Ω

EF (Ω) := 1
2

∫
Ω
‖∇u(x)‖2 dx = 1

2

∫
Γ
g(x)∇u(x) · n(x) dS(x) , (3.1)

where u = u(Ω) is the solution of (1.1), and of the energy EB stored in the voltage source: E = EF +EB.
Above we have indicated the dependence of both the electrostatic potential u and of the field energy

EF on the field domain Ω; both are “functions of the shape Ω”. Of course, this entails specifying Dirichlet
data g ∈ H

1
2 (Γ) for families of boundaries. We do this by regarding g as the restriction of a given
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g̃ ∈ H1
0 (B) to Γ: g := g̃|Γ. Of course, for the practical situation g ≡ U we choose g̃ to be constant in

a neighborhood of Γ.
Next, we use the tools of shape calculus, in particular the so-called perturbation approach [29, §2.8],

to give a rigorous meaning to what it means to “differentiate Ω 7→ EF (Ω)” with respect to Ω. We start
with the directional, Gateaux-type shape derivative with respect to a fixed smooth deformation vector
field V ∈

(
C∞0 (B)

)d compactly supported in the hold-all domain B. It spawns the one-parameter
family of perturbation maps

TtV : B → Rd , TtV(x) := x + tV(x) , t ∈ R , (3.2)

The implicit function theorem ensures that there is δ = δ(V) > 0 such that TtV is a C∞-diffeomorphism,
if |t| < δ(V). Therefore, all the deformed domains

Ωt := TtV(Ω) , |t| < δ(V) , (3.3)

will still possess Lipschitz boundaries and all interfaces Γt := TtV(Γ) will be connected. Note that
Ω0 = Ω and Γ0 = Γ.

Then we call the limit
dEF
dΩ (Ω; V) := lim

t→0

EF (Ωt)− EF (Ω)
t

= d
dt{t 7→ EF (Ωt)}

∣∣∣∣
t=0

, (3.4)

if it exists, the shape (Gateaux) derivative of EF at Ω in the direction of V . If, in addition, V 7→
dEF
dΩ (Ω; V) ∈ R is a distribution on

(
C∞0 (B)

)d, a 1-current in the parlance of de Rham [8, Ch. 3, §8],
then Ω 7→ EF (Ω) is called shape-differentiable and that distribution is the shape derivative dEF

dΩ (Ω) of
EF in Ω. It is also our notion of force field for the electrostatic setting:

force field =̂ The negative shape derivative, −dEF
dΩ (Ω), of the field energy EF

Remark 3.1. What about the energy supplied by the voltage source, which sustains a constant
voltage U? The change E∆

B of the energy stored by the voltage source when deforming Ω = Ω0 into
Ωt, |t| < δ, is

E∆
B = −U(Qt −Q0) with charge Qt :=

∫
Γt

∇u(Ωt; x) · n(x) dS(x) , (3.5)

where u = u(Ωt) is the solution of (1.1) with g ≡ U on Γt. From (3.1) we immediately see that
E∆
B = −2E∆

F , which means dE
dΩ(Ω) = −dEF

dΩ (Ω). This motivates the above definition of the force field,
and in the sequel we focus on EF .

Remark 3.2. The Hadamard structure theorem [9, Ch. 9, Thm. 3.6] states that if Γ is C∞-smooth,
the shape derivative V 7→ dEF

dΩ (Ω; V) admits a representative h in the space of distributions on C∞(Γ)
dEF
dΩ (Ω; V) = 〈h, V ·nnn|Γ〉 , V ∈

(
C∞0 (B)

)d
. (3.6)

This distribution h can be regarded as representing a normal surface force density.

Remark 3.3. The Cartesian components of the total force F = (F1, . . . , Fd) ∈ Rd acting on D are
the shape derivatives with respect to deformation fields that agree with Cartesian coordinate vectors
in a neighborhood of Γ:

Fk = −dEF
dΩ (Ω; {x 7→ ekχ(x)}) , (3.7)

where χ ∈ C∞0 (B), χ ≡ 1 close to Γ.
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The total torque T experienced by D with respect to the pivot point c ∈ B (and axis a ∈ R3,
‖a‖ = 1, for d = 3) is given by

T =

−
dEF
dΩ (Ω, {x 7→ (x− c)⊥}) for d = 2 ,

−dEF
dΩ (Ω, {x 7→ a× (x− c)}) for d = 3 ,

(3.8)

with ⊥ indicating a plane rotation by π/2 and × denoting the vector product.

3.2. Forces from Volume Variational Formulations

The derivation of formulas for the directional shape derivative dEF
dΩ (Ω; V) is well established for the

standard variational formulation (1.6) of (1.1), see [20, 9, 29]. With details postponed to Appendix A,
we remark that “implicit shape differentiation” of (1.6) yields the boundary-based formula

dEF
dΩ (Ω; V) = 1

2

∫
Γ

((
(∇g̃ −∇u) · n

)(
∇u · n

)
+ ∇g̃ ·∇u

)
(V · n) dS , (3.9)

where u is the solution of (1.1), and V ∈
(
C∞0 (B)

)d. Obviously, extra smoothness of u and g̃ beyond
merely u ∈ H1(Ω) and g̃ ∈ H1

0 (B) is required to render (3.9) meaningful. For g̃ ≡ U and V constant
in a neighborhood of Γ we recover the classical formula (1.3).

In fact, also the volume-based force formula (1.4) can be obtained as a shape derivative. Again, we
start from the standard variational formulation on Ωt:

u = u(Ωt) ∈ H1
0 (Ωt) + g̃ :

∫
Ωt

∇u(x) ·∇v(x) dx = 0 ∀v ∈ H1
0 (Ωt) , (3.10)

and then pull it back to Ω = Ω0. We arrive at a variational characterization of the pullback û(t) :=
u(Ωt) ◦ TtV : Seek û = û(t) ∈ H1

0 (Ω) + g̃ ◦ TtV such that∫
Ω

(
(DTtV(x̂))−1(DTtV(x̂))−>∇û(x̂)

)
·∇v(x̂) |det DTtV(x̂)|dx̂ = 0 (3.11)

for all v ∈ H1
0 (Ω). This confines the t-dependence to the integrand. The same trick works for the field

energy

EF (t) :=
∫

Ω
‖(DTtV(x̂))−>∇û(t)(x̂)‖2|det DTtV(x̂)|dx̂ . (3.12)

Then computing the shape derivative dEF
dΩ (Ω; V) = dEF

dt (0) using the adjoint approach from PDE-
constraint optimization, see Appendix B, yields a volume-based formula, which boils down to (1.4) for
g̃ ≡ U in a neighborhood of Γ and suitably chosen V .

4. BIE-Based Shape Derivative of Field Energy

4.1. Pullback of BIEs

In Section 3.2, see also Appendix B, we learned that via the pullback approach to shape differenti-
ation we obtain volume-based expressions that are smooth functionals on H1(Ω), the function space
framework for the standard variational formulation. The gist of the pullback approach is to avoid
t-dependent domains of integration Ωt by mapping to the fixed domain Ω.

Now we pursue this policy for the variational boundary integral equation (2.1). As in (3.3) we write(
Ωt := TtV(Ω)

)
|t|<δ for the 1-parameter family of slightly deformed domains induced by a given defor-

mation vector field V ∈
(
C∞0 (B)

)d. Replacing ∂Ω→ ∂Ωt and Γ→ Γt := TtV(Γ) in the formulas (2.2)
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yields a t-dependent version of (2.1): for t ∈ ]−δ, δ[

ψ(t) ∈ H−
1
2 (∂Ωt) : aV (t;ψ(t), ϕ) = 1

2`g(t;ϕ) + bK(t; g, ϕ) ∀ϕ ∈ H−
1
2 (∂Ωt) . (4.1)

In these formulas, g ∈ H
1
2 (∂Ωt) should be understood as the trace g̃|Γt

of a g̃ ∈ H1
0 (B). The field

energy as given in (3.1) also becomes a function of t:

EF (t) = J(t;ψ(t)) , J(t;ϕ) := 1
2

∫
Γt

ϕ(x)g̃(x) dS(x) , ϕ ∈ H−
1
2 (Γt) . (4.2)

The surface integrals can be transformed to ∂Ω using the following identity [9, Ch. 9, §4.2, eq. 4.9],
[29, §2.17]: ∫

∂Ωt

f(xxx) dS(xxx) =
∫
∂Ω
f(TtV(x̂xx)) ωt(x̂xx) dS(x̂xx), ωt(x̂xx) = ‖C(DTtV(x̂xx)) nnn(x̂xx)‖ , (4.3)

where C(M) denotes the co-factor matrix for M ∈ Rd,d. We also need a transformation rule for the
unit normal vector field nt on ∂Ωt [9, Ch. 9, Thm. 4.4]:

nnnt(x) = C(DTtV(x̂xx)) nnn(x̂xx)
‖C(DTtV(x̂xx)) nnn(x̂xx)‖ = C(DTtV(x̂xx)) nnn(x̂xx)

ωt(x̂xx) , x := TtV(x̂), x̂ ∈ ∂Ω . (4.4)

Using these transformation rules the building blocks of (4.1) can be written by means of integrals
over ∂Ω:

aV (t;ψ,ϕ) =
∫
∂Ω

∫
∂Ω
G(TtV(x̂),TtV(ŷ))ψ(TtV(ŷ))ϕ(TtV(x̂))ωt(ŷ)ωt(x̂) dS(ŷ)dS(x̂) ,

bK(t; g, ϕ) =
∫
∂Ω

∫
∂Ω

{
∇yG(TtV(x̂),TtV(ŷ)) ·C(DTtV(ŷ))n(ŷ)

}
· g(TtV(ŷ))ϕ(TtV(x̂))ωt(x̂) dS(ŷ)dS(x̂) ,

`g(t;ϕ) =
∫
∂Ω
g(TtV(x̂))ϕ(TtV(x̂))ωt(x̂) dS(x̂) ,

and the expression for the energy becomes

J(t;ψ) = 1
2

∫
Γ
ψ(TtV(x̂)) g(TtV(x̂))ωt(x̂) dS(x̂) .

Since the nature of ψ(t) is that of a surface charge density, we pull back ψ(t) to the space H−
1
2 (∂Ω)

using the pullback of surface densities, which is generically defined as

ϕ̂(x̂) := ϕ(TtV(x̂))ωt(x̂) , x̂ ∈ ∂Ω , ϕ ∈ H−
1
2 (∂Ωt) . (4.5)

Thus, we find that ψ̂(t) satisfies the transformed variational boundary integral equation

ψ̂(t) ∈ H−
1
2 (∂Ω) : âV (t; ψ̂, ϕ̂) = 1

2
̂̀̃
g(t; ϕ̂) + b̂K(t; g̃, ϕ) ∀ϕ̂ ∈ H−

1
2 (∂Ω) , (4.6)

with the abbreviations (σ̂, ϕ̂ ∈ H−
1
2 (∂Ω))

âV (t; σ̂, ϕ̂) :=
∫
∂Ω

∫
∂Ω
G(TtV(x̂),TtV(ŷ)) σ̂(ŷ) ϕ̂(x̂) dS(ŷ)dS(x̂) , (4.7a)

b̂K(t; g̃, ϕ̂) :=
∫
∂Ω

∫
∂Ω

{
∇yG(TtV(x̂),TtV(ŷ)) ·C(DTtV(ŷ))n(ŷ)

}
· g̃(TtV(ŷ)) ϕ̂(x̂) dS(ŷ)dS(x̂) ,

(4.7b)

̂̀̃
g(t; ϕ̂) :=

∫
∂Ω
g̃(TtV(x̂)) ϕ̂(x̂) dS(x̂) . (4.7c)
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The transformed expression for the energy turns out as

ÊF (V ; t) := Ĵ(t; ψ̂(t)) , Ĵ(t; ϕ̂) := 1
2

∫
Γ
ϕ̂(x̂) g̃(TtV(x̂)) dS(x̂) . (4.8)

4.2. BIE-Constrained Shape Derivative

In order to compute the shape derivative dEF
dΩ (Ω; V) = dÊF

dt (V ; 0) for t 7→ ÊF (V ; t) from (4.8) with
t 7→ ψ̂(t) defined through the linear variational equation (4.6) we resort to the well-established adjoint
approach [19, §1.6.4]. The relevant Lagrangian is given by

L(t; σ̂, ϕ̂) := Ĵ(t; σ̂) + âV (t; σ̂, ϕ̂)− 1
2
̂̀̃
g(t; ϕ̂)− b̂K(t; g̃, ϕ̂) , σ̂, ϕ̂ ∈ H−

1
2 (∂Ω) , (4.9)

and, writing ψ̂(t) for the solution of (4.6), it permits us to express ÊF (V ; t) as

ÊF (V ; t) = Ĵ(t; ψ̂(t)) = L(t; ψ̂(t), ϕ̂) ∀ϕ̂ ∈ H−
1
2 (∂Ω) . (4.10)

We exploit the freedom of being able to insert any ϕ̂ ∈ H−
1
2 (∂Ω) into (4.10) and choose it as the

solution ρ of the adjoint variational problem: seek ρ ∈ H−
1
2 (∂Ω) such that

âV (0; ϕ̂, ρ) = −
〈
∂Ĵ

∂ψ̂
(0; ψ̂(0)), ϕ̂

〉
∀ϕ̂ ∈ H−

1
2 (∂Ω)

⇐⇒ aV (ϕ, ρ) = −1
2

∫
Γ
ϕ(x̂) g(x̂) dS(x̂) ∀ϕ ∈ H−

1
2 (∂Ω) . (4.11)

Noting that ψ̂(0) = ψ, ψ the solution of the BIE (2.1), this yields the formula

dÊF
dt (V ; 0) = ∂L

∂t
(0; ψ̂(0), ρ) = ∂Ĵ

∂t
(0;ψ) + ∂âV

∂t
(0;ψ, ρ)− 1

2
∂ ̂̀̃g
∂t

(0; ρ)− b̂K
∂t

(0; g̃, ρ) . (4.12)

It expresses the directional shape derivative of ÊF by means of partial derivatives with respect to t
of the terms in (4.6). Those partial derivatives can be computed using the definition of TtV and the
formulas [29, §2.13]

d(DTtV)
dt

∣∣∣∣∣
t=0

= DV ,
d det(DTtV)

dt

∣∣∣∣∣
t=0

= ∇ · V ,
d(f ◦ TtV)

dt

∣∣∣∣∣
t=0

= ∇f · V , (4.13)

along with the expressions

d
(
DTtV

)−1

dt

∣∣∣∣∣
t=0

= −
(
DTtV

)−1 d DTtV
dt

(
DTtV

)−1
∣∣∣∣∣
t=0

= −Id DV Id = −DV , (4.14)

dC(DTtV)
dt

∣∣∣∣∣
t=0

=
d
(
det DTtV

(
DTtV

)−>)
dt

∣∣∣∣∣∣
t=0

= (∇ · V) Id − (DV)> , (4.15)

dωt
dt

∣∣∣∣
t=0

= d‖C(DTtV)n‖
dt

∣∣∣∣∣
t=0

= n · (∇ · V n− (DV)>n) = ∇ · V − n · (DV)>n . (4.16)
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Thus, swapping differentiation and integration in (4.7) we get

∂âV
∂t

(0;ψ, ρ) =
∫
∂Ω

∫
∂Ω

dG(TtV(x̂xx),TtV(ŷyy))
dt

∣∣∣∣∣
t=0

ψ(ŷyy) ρ(x̂xx) dS(ŷ)dS(x̂) ,

=
∫
∂Ω

∫
∂Ω

(
∇xG(x̂xx, ŷyy) · V(x̂xx) + ∇yG(x̂xx, ŷyy) · V(ŷyy)

)
ψ(ŷyy) ρ(x̂xx) dS(ŷ)dS(x̂) .

∂b̂K
∂t

(0; g̃, ρ) =
∫
∂Ω

∫
∂Ω
ρ(x̂xx)

d(
(
∇yG(TtV(x̂xx),TtV(ŷyy)) ·C(DTtV(ŷyy)) nnn(ŷyy)

)
g̃(TtV(ŷyy)))

dt

∣∣∣∣∣
t=0
dS(ŷ)dS(x̂)

=
∫
∂Ω

∫
∂Ω
p(x̂xx) g̃(ŷyy) d∇yG(TtV(x̂xx),TtV(ŷyy))

dt

∣∣∣∣∣
t=0
·nnn(ŷyy) dS(ŷ)dS(x̂)

+
∫
∂Ω

∫
∂Ω
ρ(x̂xx) g̃(ŷyy) ∇yG(x̂xx, ŷyy) ·

(
∇ · V(ŷyy) nnn(ŷyy)− DV>(ŷyy)nnn(ŷyy)

)
dS(ŷ)dS(x̂)

+
∫
∂Ω

∫
∂Ω
ρ(x̂xx)

(
∇yG(x̂xx, ŷyy) ·nnn(ŷyy)

)(
∇g̃(ŷyy) · V(ŷyy)

)
dS(ŷ)dS(x̂) ,

∂ ̂̀̃g
∂t

(0; ρ) =
∫
∂Ω
ρ(x̂xx) d g̃(TtV(x̂xx))

dt

∣∣∣∣∣
t=0

dS(xxx) =
∫
∂Ω
ρ(x̂xx)∇g̃(x̂xx) · V(x̂xx) dS(x̂xx) ,

∂Ĵ

∂t
(0;ψ) = 1

2

∫
Γ
ψ(x̂xx) d g̃(Tt(x̂xx))

dt

∣∣∣∣
t=0

dS(xxx) = 1
2

∫
Γ
ψ(x̂xx)∇g̃(x̂xx) · V(x̂xx) dS(x̂xx) .

Adding up individual contributions gives us the directional shape derivative

dÊF
dt (V ; 0) [ψ, ρ]

= 1
2

∫
Γ
ψ(x̂xx) (∇g̃(x̂xx) · V(x̂xx)) dS(x̂xx) =: T1(ψ)

+
∫
∂Ω

∫
∂Ω
ψ(ŷyy)

{
∇xG(x̂xx, ŷyy) · V(x̂xx) + ∇yG(x̂xx, ŷyy) · V(ŷyy)

}
ρ(x̂xx) dS(ŷ)dS(x̂) =: T2(ψ, ρ)

−
∫
∂Ω

∫
∂Ω
ρ(x̂xx)g̃(ŷyy) d∇yG(TtV(x̂xx),TtV(ŷyy))

dt

∣∣∣∣∣
t=0
·nnn(ŷyy) dS(ŷ)dS(x̂) =: T3(ρ)

+
∫
∂Ω

∫
∂Ω
ρ(x̂xx)g̃(ŷyy) ∇yG(x̂xx, ŷyy) ·

(
(DV)>(ŷyy)nnn(ŷyy)

)
dS(ŷ)dS(x̂) =: T4(ρ)

−
∫
∂Ω

∫
∂Ω
ρ(x̂xx)

(
∇yG(x̂xx, ŷyy) · n̂nn(ŷyy)

)
∇ ·

(
g̃(ŷyy)V(ŷyy)

)
dS(ŷ)dS(x̂) =: T5(ρ)

− 1
2

∫
∂Ω
ρ(x̂xx) (∇g̃(x̂xx) · V(x̂xx)) dS(x̂) . =: T6(ρ)

(4.17)

The notation dÊF
dt (V ; 0) [ψ, ρ] hints that this expression can be viewed as a function of the two ar-

guments ψ ∈ H−
1
2 (∂Ω) and ρ ∈ H−

1
2 (∂Ω), for which we have to plug in the solutions of the “state

problem” (2.1) and of the adjoint problem (4.11), respectively, in order to recover the force in direc-
tion V .

4.3. BEM-Based Approximation of Forces

To evaluate the shape derivative (4.17) for a displacement vector field V , beside the data g̃ we need the
solutions ψ ∈ H−

1
2 (∂Ω) (state solution) and ρ ∈ H−

1
2 (∂Ω) (adjoint solution) of the weakly singular

variational boundary integral equations (2.1) and (4.11), respectively.
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In general, those will only be available through boundary element Galerkin approximations as
introduced in Section 2.2. In other words, we evaluate (4.17) after replacing ψ and ρ with Galerkin
approximations ψh and ρh. This gives an approximation for the action of the surface force density on
the displacement V , the “force in direction V”,∫

Γ
fΓ(x) · V(x) dS(x) ≈ −dÊF

dt (V ; 0) [ψh, ρh] . (4.18)

Neglecting potential variational crimes this perfectly fits the abstract framework of Section 1.3 and
Proposition 1.2 with V := H−

1
2 (∂Ω)×H−

1
2 (∂Ω), a := aV × aV , and F ((ϕ, σ)) := dÊF

dt (V ; 0) [ϕ, σ].
Obviously the mapping (ϕ, σ) ∈ H−

1
2 (∂Ω)×H−

1
2 (∂Ω) 7→ F ((ϕ, σ)) is a quadratic functional:

F ((ϕ, σ)) := dÊF
dt (V ; 0) [ϕ, σ] = qV((ϕ, σ), (ϕ, σ)) + pV(ϕ) + rV(σ) , (4.19)

with a bilinear form qV on H−
1
2 (∂Ω)×H−

1
2 (∂Ω) and linear forms pV and rV , given as

qV((ϕ, σ), (ϕ, σ)) ↔ T2(ϕ, σ) , pV(ϕ) ↔ T1(ϕ) , (4.20)
rV(σ) ↔ T3(σ) + T4(σ) + T5(σ) + T6(σ) , (4.21)

in terms of the abbreviations from (4.17). Thus, F will be C∞-smooth with first derivative
DF ((ϕ, σ))((ϕ′, σ′)) = qV((ϕ, σ), (ϕ′, σ′)) + qV((ϕ′, σ′), (ϕ, σ)) + pV(ϕ′) + rV(σ′) , (4.22)

and constant second derivative, if and only if qV and pV , rV are bounded on H−
1
2 (∂Ω) × H−

1
2 (∂Ω)

and H−
1
2 (∂Ω), respectively.

From (4.22) we also learn that the adjoint variational problem (1.11) becomes: seek (ν, κ) ∈
H−

1
2 (∂Ω)×H−

1
2 (∂Ω) such that

aV (ϕ, ν) + aV (σ, κ) = qV((ψ, ρ), (ϕ, σ)) + qV((ϕ, σ), (ψ, ρ)) + pV(ϕ) + rV(σ) (4.23)

for all (ϕ, σ) ∈ H−
1
2 (∂Ω) ×H−

1
2 (∂Ω). A decoupling is possible: From the special structure of T2 we

infer
qV((0, σ), (ϕ′, σ′)) = qV((ϕ, σ), (ϕ′, 0)) = 0 ∀ϕ,ϕ′, σ, σ′ ∈ H−

1
2 (∂Ω) .

This reveals that (4.23) is equivalent to the two decoupled variational equations

aV (ϕ, ν) = qV((ϕ, 0), (ψ, ρ)) + pV(ϕ) ∀ϕ ∈ H−
1
2 (∂Ω) , (4.24a)

aV (σ, κ) = qV((ψ, ρ), (0, σ)) + rV(σ) ∀σ ∈ H−
1
2 (∂Ω) . (4.24b)

Proposition 1.2 sends the message that for predicting superconvergence of forces it will be important
to establish enhanced smoothness of the solutions ν and κ of (4.24). Therefore we have to understand
the regularity of the right-hand sides of these variational equations.

4.4. Mapping properties of Shape Derivative

In this section we study the continuity of the quadratic functional (ϕ, σ) ∈ H−
1
2 (∂Ω) ×H−

1
2 (∂Ω) 7→

F ((ϕ, σ)) := dÊF
dt (V ; 0) [ϕ, σ] from (4.19), (4.20). This boils down to establishing the continuity of its

bilinear and linear terms qV , pV , rV on the trace space H−
1
2 (∂Ω). We do this by a close inspection

of the integral kernels occurring in (4.17). To avoid technical complications we impose smoothness
requirements on V and g̃, which can certainly be relaxed.

Assumption 1. We assume that both V ∈
(
C∞0 (B)

)d and g̃ ∈ C∞0 (B).
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4.4.1. Analysis of qV

Using elementary properties of the fundamental solutions

G(xxx,yyy) =
{
− 1

2π log ‖xxx− yyy‖ for d = 2 ,
1

4π‖x−y‖ for d = 3 ,
∇yG(xxx,yyy) = 1

2d−1π

xxx− yyy
‖xxx− yyy‖d

, (4.25)

and the fact ∇xG(xxx,yyy) = −∇yG(xxx,yyy) the term T2 from (4.17) can be recast as

qV((ϕ, σ), (ϕ′, σ′)) =
∫
∂Ω

∫
∂Ω
ϕ(yyy)

{
∇xG(xxx,yyy) · V(xxx) + ∇yG(xxx,yyy) · V(yyy)

}
σ′(xxx) dS(y)dS(x)

= − 1
2d−1π

∫
∂Ω

∫
∂Ω
ϕ(yyy) σ′(xxx) xxx− yyy

‖xxx− yyy‖d
· (V(xxx)− V(yyy)) dS(xxx)dS(yyy) .

Thus, qV can be expressed as

qV((ϕ, σ), (ϕ′, σ′)) = −
∫
∂Ω

V(ϕ)(x)σ′(x) dS(x) , (4.26)

with an integral operator

V(ψ)(x) :=
∫
∂Ω
KV (x,x− y)ψ(y)dS(yyy) , x ∈ ∂Ω , (4.27a)

whose kernel is given by (z := x− y)

KV (x, z) := 1
2d−1π

z

‖z‖d
· (V(xxx)− V(xxx− z)) , x, z ∈ Rd, z 6= 0 . (4.27b)

Thanks to Assumption 1 we can insert a local Taylor expansion of V

V(xxx)− V(xxx− z) = DV(x)z − 1
2D2V(x)(z, z) +O(‖z‖3) for z → 0 , (4.28)

and the apparently strong singularity of the kernel can be canceled. For d = 2 we find

KV (x, z) = K0(x, z) + K̃V (x, z) , K0(x, z) := z>DV(x)z
2π ||z||2

, x, z ∈ R2, z 6= 0 , (4.29)

where

• K0(x, z) is smooth on B × R2 \ {0},

• z ∈ R2 \ {0} 7→∇zK0(x, z) is homogeneous of degree −1 = 1− d and odd,

• z 7→ K̃V (x, z) belongs to W 1,∞(R2) for all x ∈ B.

According to [26, §4.3.3] this qualifies KV as a pseudo-homogeneous kernel of class −1.
For d = 3 we get (redefining notations)

KV (x, z) = z>DV(x)z
||z||3︸ ︷︷ ︸

=:K0(x,z)

− 1
2

z>D2V(x)(z, z)
||z||3︸ ︷︷ ︸

=:K1(x,z)

+ K̃V (x, z) . (4.30)

The terms satisfy that

• both K0 and K1 belong to C∞(B × R2 \ {0}),

• z ∈ R2 \ {0} 7→ ∇zK0(z, z) is homogeneous of degree −2 = 1 − d and odd, and so is
z ∈ R2 \ {0} 7→ D2

zK1(x, z), and,
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• again, z 7→ K̃V (x, z) belongs to W 1,∞(R3) for all x ∈ B.

As a consequence, also for d = 3, the kernel KV meets the requirements of [26, §4.3.3] for being
pseudo-homogeneous of class −1.

Now we can invoke [26, Thm. 4.3.2] together with results from [12, §1.3] on scales of Sobolev spaces
Hs(∂Ω) supported on boundaries of class Cr,1, r ∈ N0 [12, Def. 1.2.1.1].

Lemma 4.1. Under Assumption 1 and for ∂Ω of class Cr,1, r ∈ N0, the boundary integral operator
V as defined in (4.27) provides a bounded operator Hs− 1

2 (∂Ω)→ Hs+ 1
2 (∂Ω) for all r− 1

2 ≤ s ≤ r+ 1
2 .

This means that for ∂Ω of class Cr,1 the bilinear form qV is continuous as a mapping

qV :
(
H−

1
2 +s(∂Ω)×H−

1
2 +s(∂Ω)

)
×
(
H−

1
2−s(∂Ω)×H−

1
2−s(∂Ω)

)
→ R , (4.31)

for any s ∈ [r − 1
2 , r + 1

2 ].

4.4.2. Analysis of rV

Inspecting (4.17) we see that the linear form rV as introduced in (4.20) can be expressed in terms of
integral operators:

rV(σ) =
∫
∂Ω

R( g̃|∂Ω)(x)σ(x) dS(x) +
∫
∂Ω

K(∇ · (g̃V)|∂Ω)(x)σ(x) dS(x)

− 1
2

∫
∂Ω
σ(x)(∇g̃ · V(x)) dS(x)

(4.32)

with integral operators

R(f)(x) :=
∫
∂Ω
KR(y,x− y)f(y) dS(y) , (4.33)

KR(y, z) := − d ∇yG(TtV(yyy + z),TtV(yyy))
dt

∣∣∣∣∣
t=0
·nnn(yyy)

+ ∇yG(yyy + z, yyy) ·
(
(DV(yyy))>nnn(yyy)

)
, z 6= 0 ,

K(f)(x) :=
∫
∂Ω
KK(y,x− y)f(y) dS(y) , (4.34)

KK(y, z) := ∇yG(y + z,y) · n(y) , z 6= 0 .

To begin with, the boundary integral operator K is the standard double-layer boundary integral
operator for −∆ and, as such, K : Hs(∂Ω) → Hs(∂Ω) is continuous for −r − 1 ≤ s ≤ r + 1, if
∂Ω is of class Cr,1 [25, Thms. 7.1 & 7.2].

We continue with an inspection of the kernels of the integral operator R using (4.25):

− d ∇yG(TtV(yyy + z),TtV(yyy))
dt

∣∣∣∣∣
t=0
·nnn(yyy) + ∇yG(yyy + z, yyy) ·

(
(DV(yyy))>nnn(yyy)

)

= 1
2d−1π

{
−
nnn(yyy) ·

(
V(y + z)− V(yyy)

)
‖z‖d

+ d
z ·nnn(yyy)

(
z ·
(
V(y + z)− V(yyy)

))
‖z‖d+2

+ z

‖z‖d
· DV(y)>n(y)

}
.

(4.35)
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Inserting the Taylor expansion

V(y + z)− V(y) = DV(y)z + 1
2D2V(y)(z, z) +O(‖z‖3) for z → 0 , (4.36)

we are rewarded with a serendipitous cancellation of the third term and get (redefining notation from
Section 4.4.1)

KR(y, z) = d

2d−1π

z · n(y)
‖z‖d

z>DV(y)z
‖z‖2︸ ︷︷ ︸

=:K0(y,z)

+ 1
2d−1π

{
−1

2
n(y) · D2V(y)(z, z)

‖z‖d
+ d

2
z · n(y)
‖z‖d

z · D2V(y)(z, z)
‖z‖2

}
︸ ︷︷ ︸

=:K1(y,z)

+K̃R(y, z) , (4.37)

for which we find that

• as functions of (y, z) both K0 and K1 feature the same smoothness as the kernel KK of the
double-layer boundary integral operator,

• z ∈ R2 \ {0} 7→ K0(y, z) is odd and homogeneous of degree 1− d,

• z ∈ R2 \ {0} 7→∇zK1(y, z) is odd and homogeneous of degree 1− d,

• and K̃R ∈W 1,∞(∂Ω× R2).

We conclude that KR is a pseudo-homogeneous integral kernel of class 0 in the sense of [26, §4.3.3],
which means that the integral operator R enjoys the same continuity properties as K: It maps contin-
uously Hs(∂Ω)→ Hs(∂Ω) for −r − 1 ≤ s ≤ r + 1, if ∂Ω is of class Cr,1 [26, Thm. 4.3.2].

Summing up, under Assumption 1 for ∂Ω of class Cr,1 this ensures

R( g̃|∂Ω) ∈ Hr+1(∂Ω) , K(∇ · (g̃V)|∂Ω) ∈ Hr+1(∂Ω) ,

which means that rV is a continuous linear functional on H−r−1(∂Ω), which, by duality, can be
identified with a function in Hr+1(∂Ω).

4.4.3. Analysis of pV

The simple formula

pV(ϕ) = 1
2

∫
∂Ω
ϕ(x)(∇g̃(x) · V(x)) dS(x) (4.38)

combined with the smoothness assumption Assumption 1 for g̃ and V means that pV is a continuous
linear functional on H−s(∂Ω) for s = r+ 1, if ∂Ω is of class Cr,1. Thus, by duality, pV can be regarded
as an element of Hr+1(∂Ω).

4.5. Section 4.3 continued: BEM-Based Approximation of Forces

As announced in Section 2.2, we consider only the lowest-order boundary element space S−1
0 (∂Ωh)

of ∂Ωh-piecewise constant functions. Then, Proposition 1.2 gives us the following concrete estimate
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for the error of the computed force in the direction V : With a constant C > 0 independent of the
boundary element space∣∣∣∣∣dÊFdt (V ; 0) [ψ, ρ]− dÊF

dt (V ; 0) [ψh, ρh]
∣∣∣∣∣ ≤ CE1(E2 + E1) , (4.39)

with the best approximation error norms, which are equal to the Galerkin discretization error by Cea’s
lemma [30, §8.1, Thm. 8.1]

E1 := inf
ψh∈S−1

0 (∂Ωh)
‖ψ − ψh‖

H−
1
2 (∂Ω)

+ inf
ρh∈S−1

0 (∂Ωh)
‖ρ− ρh‖

H−
1
2 (∂Ω)

,

E2 := inf
κh∈S−1

0 (∂Ωh)
‖κ− κh‖

H−
1
2 (∂Ω)

+ inf
νh∈S−1

0 (∂Ωh)
‖ν − νh‖

H−
1
2 (∂Ω)

,

where ψ, ρ, ν, κ ∈ H−
1
2 (∂Ω) are the solutions of (2.1), (4.11), (4.24a), and (4.24b), respectively.

For the following discussion we maintain Assumption 1 and also assume that ∂Ω is of class Cr,1,
r ∈ N0, which entails that

• the right-hand side of the BIE (2.1) can be regarded as a function in Hr+1(∂Ω),

• the right-hand side of the adjoint variational problem (4.11) belongs to Hr+1(∂Ω), too,

• by the results from Section 4.4.3 the right-hand side of (4.24a) is in Hr+1(∂Ω), and,

• as we have seen in Section 4.4.1 and Section 4.4.2, the right-hand side of (4.24b) corresponds
to a an element of Hmin{s+1,r+1}(∂Ω), if ψ ∈ Hs(∂Ω).

By the following elliptic lifting theorem for the single-layer boundary integral equation, regularity
of the right-hand sides can be transferred to solutions.

Theorem 4.2 ([25, Thm. 7.16]). Given f ∈ H
1
2 (∂Ω) let η ∈ H−

1
2 (∂Ω) be the solution of

aV (η, ϕ) =
∫
∂Ω
f(x)ϕ(x) dS(x) ∀ϕ ∈ H−

1
2 (∂Ω) ,

the integral to be read as duality pairing. Then extra smoothness of f induces more regularity of η:

(i) If ∂Ω is Lipschitz, f ∈ H1(∂Ω), then η ∈ L2(∂Ω).

(ii) If ∂Ω is of class Cr,1, r ∈ N, and f ∈ Hr+ 1
2 (∂Ω), then η ∈ Hr− 1

2 (∂Ω).

In addition, in [28, §4.3.4] we find the following approximation estimate for piecewise smooth ∂Ω
and shape-regular sequences of meshes

inf
ϕh∈S−1

0 (∂Ωh)
‖ϕ− ϕh‖

H−
1
2 (∂Ω)

≤ Chmin{1,s}+ 1
2 ‖ϕ‖Hs(∂Ω) ∀ϕ ∈ Hs(∂Ω) , (4.40)

where h stands for the mesh width of ∂Ωh. We discuss two cases.

(I) If ∂Ω is of class Cr,1 with r ∈ N, then Theorem 4.2 together with the right-hand side regularities
listed above yields

ψ, ρ, ν, κ ∈ Hr− 1
2 (∂Ω) .

The S−1
0 (∂Ωh) best-approximation errors in the H−

1
2 (∂Ω)-norm for all of these functions will

converge like O(hmin{ 3
2 ,r}) for h → 0, for instance on sequences of uniformly refined meshes.

Plugging this into (4.39), we end up with∣∣∣∣∣dÊFdt (V ; 0) [ψ, ρ]− dÊF
dt (V ; 0) [ψh, ρh]

∣∣∣∣∣ = O(hmin{3,2r}) for h→ 0 . (4.41)
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(II) If we merely know that ∂Ω is Lipschitz, we can still conclude
ψ, ρ, ν, κ ∈ L2(∂Ω) ,

and the H−
1
2 (∂Ω)-norms of the best approximation errors decay asymptotically like O(h

1
2 ) for

h→ 0. By (4.39) this involves a minimal O(h) -convergence of the error in the force.

Remark 4.3. The above crude convergence estimates can be refined for piecewise smooth domains
taking into account the special corner and edge singular functions present in the solutions of the
variational problems [7]. This a-priori knowledge about the structure of the solution can be exploited
through the use of algebraically graded meshes, see [13, Ch. 7], [10], [27], in a BEM framework with
fixed polynomial degree, or by employing geometrically graded meshes combined with hp-BEM, see [31,
18, 23] and [13, Ch. 8]. A flexible alternative is adaptive mesh refinement controlled by an a-posteriori
error estimator, refer to [2] and the references therein.

Remark 4.4. Throughout this section we took for granted a given fixed smooth displacement field
V . As an extension of the investigations in this section one could also aim for V-uniform estimates of
the approximation error for shape derivatives as has been done in [21].

5. Numerical Experiments

Now we study the convergence of the new pullback approach formula from (4.17) empirically. The
convergence studies are done in 2D entirely and are divided into two parts. In the first part we restrict
ourselves to physically meaningful quantities: net forces and torques. In the second part, aligned
with our view of force as a shape derivative, a linear functional on displacements, we examine the
convergence of a dual norm of the approximation error.

5.1. Implementation

Both the pullback approach formula (4.17) and the stress tensor formula (3.9) were implemented
using exact parametrizations for the boundaries6. Quasi-uniform sequences of mesh partitions of ∂Ω
were employed with increasing resolution. As explained in Section 2.2 and Section 4.3, boundary-
element Galerkin discretization with trial and test space S−1

0 (∂Ωh) is employed to solve the variational
equations (2.1) and (4.11) approximately. The obtained solutions ψh and ρh are used to compute
approximations of the forces according to (4.18). For the evaluation of integrals with singular kernels
we use log weighted gauss quadrature and regularization by transformation to polar coordinates [14,
§9.4.5]. All integrals with smooth integrands are evaluated using Gauss quadrature of order 16. The
required derivatives of g̃ and V are assumed to be explicitly available in the implementation.

5.2. Total Force and Torque

Experiment 3. We use the same geometric settings as introduced already in Experiment 1. In
particular we use g̃ ≡ 1 close to ∂D and g̃ ≡ 0 close to ∂B. For constant Dirichlet data we compute
the total force according to (3.7) based on the deformation fields discussed in REMARK 3.3. We
employ both (4.17) (“Pullback approach (BEM)”) and (3.9) (“Stress tensor (BEM)”) on a quasi-
uniform sequence of meshes of ∂Ωh. As before we monitor the Euclidean norm of the error in the
total force as a function of the mesh width. As reference bona-fide close-to-exact solution we used the
total force computed by the pullback approach on a uniform mesh with 9000 (kite-shaped D)/7200

6Code available at https://gitlab.ethz.ch/ppanchal/fcsc.git. Instructions on how to repeat some of the numerical
experiments of this section are given in a README file.
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(square-shaped D) cells. The resulting error curves are added to the plots of Experiment 2 and are
shown in Figure 5.1 for comparison.
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Figure 5.1. Error of S−1
0 (∂Ωh) - BEM based forces as a function of the meshwidth h

of ∂Ωh. Dashed lines represent the linear regression fit.

We see that the pullback approach outperforms every other method not only in terms of the absolute
accuracy but also in terms of the asymptotic rate of (algebraic) convergence. For the smooth kite-
shapedD (Figure 5.1 (A)) it achieves the optimal convergence O(h3) for h→ 0 predicted in Section 4.5.
For the square-shaped D (Figure 5.1 (A)) strong singularities of the electrostatic potential u at the
re-entrant corners make the rates of convergence deteriorate substantially for all methods, with the
pullback approach maintaining its clear lead.

Remark 5.1. The surprisingly good performance of the BEM-based evaluation of the stress tensor
formula (3.9) for smooth Γ remains a mystery. It reminds us of a similarly unexpected fast convergence
of a boundary-based shape-derivative formula reported in [21, §4] and, later, theoretically explained
in [11, §3.2].

Experiment 4. In the setting of Experiment 3 we also compute the net torque on D according
to (3.8), with c = (0.5, 0)> for square-shaped D and c = (0.38, 0.5)> for kite-shaped D, using the
pullback approach (4.17) and stress tensor formula (BEM) (3.9). The errors of the approximate torques
are plotted against the meshwidth h in Figure 5.2.

The observations closely match those made in Experiment 3. The pullback approach gives the
best results both in terms of absolute accuracy and in terms of asymptotic rate of convergence. Its
advantage is more pronounced for non-smooth D.

5.3. Approximation of Force Functionals

Experiment 5. Inspired by [21, §4] we consider the dual norm of the force as a linear mapping from
displacements V to the real numbers over a finite dimensional subspace WN of

(
H1(B)

)2 and measure
the error

err := max
V∈WN

1
‖V‖H1(B)

∣∣∣∣∣dÊFdt (V ; 0) [ψ, ρ]− dÊF
dt (V ; 0) [ψh, ρh]

∣∣∣∣∣ , (5.1)
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Figure 5.2. Errors of S−1
0 (∂Ωh) - BEM based torques by (4.17) (”Pullback approach”)

and (3.9) (“Stress tensor (BEM)”) as a function of the meshwidth h of ∂Ωh

both for the pullback approach (4.17) and stress tensor (BEM) (3.9). We adopt the setting of Exper-
iment 3 and we use the same BEM to compute ψh, ρh ∈ S−1

0 (∂Ωh). Two choices for WN := U ×U are
used in this numerical experiment,

(I) U := span{x = (x, y)> 7→ xmyn, 1 ≤ m,n ≤ 5} , (5.2)
(II) U := span{x = (x, y)> 7→ sin(mx) sin(ny), 1 ≤ m,n ≤ 5} . (5.3)

As reference solutions we use the directional forces obtained by the pullback approach on meshes
created by one more step of refinement. The dual norms (5.1) are plotted in Figure 5.3.
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Figure 5.3. Dual norm errors (5.1) for polynomial (poly) and sinusoidal (sin) basis, as
a function of the meshwidth h of ∂Ωh. Dashed lines represent the linear regression fit.

Obviously, the BEM-based pullback approach (4.17) offers better accuracy also in the approximate
dual norm, but for the kite-shaped D the stress tensor formula (3.9) achieves similar empiric rates
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of convergence for h→ 0. We cannot offer an explanation for this surprising observation. Conversely,
for the square-shaped D the pullback approach is much better also in terms of the rate of asymptotic
(algebraic) convergence. It seems to be less affected by the presence of strong corner singularities in
ψ and ρ.

Experiment 6. In Section 4 we had always taken for granted that the Dirichlet data g possess
a sufficiently regular extension g̃ to the hold-all domain B. In this experiment we demonstrate the
importance of the smoothness of g̃ as regards the approximations of shape derivatives. The experiment
shown next uses two different functions g̃1 and g̃2 such that g̃1|Γ = g̃2|Γ = g. We work with the model
geometry of the square-shaped D from Experiment 1 and with g = 1. For imposing g = 1 on Γ we
use g̃1 ≡ 1 in a neighborhood of Γ and for g̃2 we use four corner singular functions located at the four
corners of the square shaped D. These corner singular functions are rotations and reflections of the
simple function

(r, θ) 7→ r
2
3 sin

(2
3θ
)

(polar coordinates) ,

which is harmonic but its gradient blows up for r → 0. By comparing the green and red curves in Fig-
ure 5.4 we see that a smoother g drastically improves the performance of the pullback approach (4.17)
as regards both absolute accuracy and the asymptotic (algebraic) convergence rates. For the case of
stress tensor formula (3.9), a smoother g makes little difference.
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Figure 5.4. Dual norm errors (5.1) with polynomial basis, using a smooth and non-
smooth g̃, as a function of the meshwidth h of ∂Ωh

6. Conclusion

In this work we have demonstrated how fast and robust convergence of approximate forces in the
context of boundary-element approximations of electrostatic potential boundary value problems can
be achieved by new formulas that merely involve functions and integrals defined on the boundary.
On the one hand, these formulas entail the solution of an adjoint discrete boundary integral equation
and the evaluation of a few singular integrals. On the other hand, in particular in the case of only
piecewise smooth boundaries, they are superior to the simple and classical force formulas obtained
from the Maxwell stress tensor. In our opinion this gain in accuracy and robustness outweighs the
extra cost.
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Techniques from shape calculus paved the way to our new formulas. We expect that these techniques
can also yield new and better formulas for magnetic forces and general electromagnetic forces in
dynamic settings.

Appendix A. Derivation of Boundary-Based Shape Derivative Formula (3.9)

We start from a mixed variational formulation of (1.1) in H1(B) ×HHH(div0, B) [30, §4.1.2]. We seek
(u,µµµ) ∈ H1(B)×HHH(div0, B) such that∫

Ω
∇u ·∇v dx +

∫
∂Ω
v µµµ · n dS = 0 ∀v ∈ H1(B) , (A.1)∫

∂Ω
u λλλ · n dS =

∫
Γ
g λλλ · n dS ∀λλλ ∈HHH(div0, B) , (A.2)

where g = g̃|Γ for a g̃ ∈ H1(B) that vanishes on ∂B. There is a unique solution only for u but not for
the Lagrange multiplier µµµ. We define the associated symmetric bilinear form a and linear form lg̃ for
(w,κκκ), (v,λλλ) ∈ H1(B)×HHH(div0, B):

a((w,κκκ), (v,λλλ)) :=
∫

Ω
∇w ·∇v dx +

∫
∂Ω
v κκκ · n dS +

∫
∂Ω
u λλλ · n dS , (A.3)

lg̃((v,λλλ)) :=
∫

Γ
g λλλ · n dS . (A.4)

The system in (A.1) can be compactly written as: Seek (u,µµµ) ∈ H1(B)×HHH(div0, B):

a((u,µµµ), (v,λλλ)) = lg̃((v,λλλ)) ∀(v,λλλ) ∈ H1(B)×HHH(div0, B) . (A.5)

We use the energy functional from (3.1) in the volume integral form:

EF (Ω) := 1
2

∫
Ω
‖∇u(x)‖2 dx = 1

2a((u,0), (u,0)) , (A.6)

where u = u(Ω) solves (A.1). Following the definitions in Section 4.1, we write
(
Ωt := TtV(Ω)

)
|t|<δ

for the 1-parameter family of slightly deformed domains induced by a given deformation vector field
V ∈

(
C∞0 (B)

)d. Replacing Ω→ Ωt, ∂Ω→ ∂Ωt and Γ→ Γt in (A.3) yields a t-dependent version of its
constituent parts. For (w,κκκ), (v,λλλ) ∈ H1(B)×HHH(div0, B):

a(t; (w,κκκ), (v,λλλ)) :=
∫

Ωt

∇w ·∇v dx +
∫
∂Ωt

v κκκ · n dS +
∫
∂Ωt

u λλλ · n dS , (A.7)

lg̃(t; (v,λλλ)) :=
∫

Γt

g̃ λλλ · n dS . (A.8)

The t dependent energy functional is given as

EF (t) := J(t; (u(t),µµµ(t))) , J(t; (w,κκκ)) := 1
2a(t; (w,0), (w,0)) , (A.9)

where (u(t),µµµ(t)) ∈ H1(B)×HHH(div0, B) solves the state problem on Ωt:

a(t; (u(t),µµµ(t)), (v,λλλ)) = lg̃(t; (v,λλλ)) ∀(v,λλλ) ∈ H1(B)×HHH(div0, B) . (A.10)

Notice that in this derivation, the function space framework is already independent of t. Follow-
ing the adjoint approach [19, §1.6.4] from Section 4.2, we can define the relevant Lagrangian. For
(w,κκκ), (v,λλλ) ∈ H1(B)×HHH(div0, B):

L(t; (w,κκκ), (v,λλλ)) := J(t; (w,κκκ)) + a(t; (w,κκκ), (v,λλλ))− lg̃(t; (v,λλλ)) . (A.11)
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Plugging in (w,κκκ) = (u(t),µµµ(t)), the solution for (A.10), we recover an expression for the field energy

EF (t) = L(t; (u(t),µµµ(t)), (v,λλλ)) ∀(v,λλλ) ∈ H1(B)×HHH(div0, B) . (A.12)

Exploiting the freedom to choose (v,λλλ), we choose it as the adjoint solution (ρ,πππ) ∈ H1(B)×HHH(div0, B)
such that

a(0; (v,λλλ), (ρ,πππ)) = −
〈

∂J

∂(w,κκκ)(0; (u(0),µµµ(0))), (v,λλλ)
〉
∀(v,λλλ) ∈ H1(B)×HHH(div0, B) (A.13)

⇐⇒ a((v,λλλ), (ρ,πππ)) = −a((v,0), (u,0)) ∀(v,λλλ) ∈ H1(B)×HHH(div0, B) , (A.14)

where we used u(0) = u and µµµ(0) = µµµ. The equations can easily be decoupled by putting v = 0
or λλλ = 0. Thus we see that adjoint solution is (ρ,πππ) = (0,−∇u). Now the shape derivative can be
computed using only the partial derivatives with respect to t:

dEF
dt (0) = ∂L

∂t
(0; (u,µµµ), (0,−∇u)) = ∂J

∂t
(0; (u,µµµ)) + ∂a

∂t
(0; (u,µµµ), (0,−∇u))−

∂lg̃
∂t

(0; (0,−∇u)) .
(A.15)

Using the identities in Section 4.2 and [9, Ch. 9, Thm. 4.1], the partial derivatives with respect to t
can be easily computed, because the integrands are independent of t:

∂J

∂t
(0; (u,µµµ)) = 1

2

∫
Γ
‖∇u‖2(V · n) dS , (A.16)

∂a
∂t

(0; (u,µµµ), (0,−∇u)) = −
∫

Γ
‖∇u‖2(V · n) dS , (A.17)

∂lg̃
∂t

(0; (0,−∇u)) = −
∫

Γ
∇u ·∇g̃ (V · n) dS . (A.18)

Summing up and using the fact that ∇g̃ −∇u is in the normal direction at the surface, we get the
shape derivative:

dEF
dΩ (Ω; V) = 1

2

∫
Γ

((
(∇g̃ −∇u) · n

)(
∇u · n

)
+ ∇g̃ ·∇u

)
(V · n) dS . (A.19)

Appendix B. Derivation of Volume-based Shape Derivative Formula

We start from the variational formulation of (1.1) in the Sobolev space H1
0 (Ω) using w := u − g̃ ∈

H1
0 (Ω):

w ∈ H1
0 (Ω) : a(w, v) :=

∫
Ω

∇w ·∇v dx = lg̃(v) := −
∫

Ω
GGG ·∇v dx ∀v ∈ H1

0 (Ω) , (B.1)

where g = g̃|Γ for a g̃ ∈ H1(Ω) that vanishes on ∂B and GGG := ∇g̃. By the Lax-Milgram lemma [5,
§6.2] existence and uniqueness of w is guaranteed. We use the energy functional from (3.1) in the
volume integral form

EF (Ω) := 1
2

∫
Ω
‖∇u(x)‖2 dx = 1

2

∫
Ω
‖∇w(x) +GGG(x)‖2 dx , (B.2)

where w = w(Ω) solves (B.1). Following the definitions in Section 4.1, we write
(
Ωt := TtV(Ω)

)
|t|<δ

for the 1-parameter family of slightly deformed domains induced by a given deformation vector field
V ∈

(
C∞0 (B)

)d. Considering g̃ ∈ H1
0 (B) and replacing Ω→ Ωt in (B.1) yields a t-dependent version:

w(t) ∈ H1
0 (Ωt) : a(t;w(t), v) = lg̃(t; v) ∀v ∈ H1

0 (Ωt) , (B.3)
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where, for w, v ∈ H1
0 (Ωt),

a(t;w, v) :=
∫

Ωt

∇w ·∇v dx, lg̃(t; v) := −
∫

Ωt

GGG ·∇v dx . (B.4)

Transforming integrals back to the reference domain Ω we arrive at a variational characterization of
the pullback ŵ(t) := w(Ωt) ◦ TtV : Seek ŵ(t) ∈ H1

0 (Ω) such that

â(t; ŵ(t), v̂) = l̂g̃(t; v̂) ∀v̂ ∈ H1
0 (Ω) , (B.5)

where, for ŵ, v̂ ∈ H1
0 (Ω),

â(t; ŵ, v̂) :=
∫

Ω
(DTtV(x̂)−>∇ŵ) · (DTtV(x̂)−>∇v̂)|det DTtV(x̂) | dx̂ , (B.6)

l̂g̃(t; v̂) := −
∫

Ω
GGG(TtV(x̂)) · (DTtV(x̂)−>∇v̂) |det DTtV(x̂)| dx̂ . (B.7)

The field energy is also dependent on the parameter t and is given as:

EF (t) = Ĵ(t; ŵ(t)) , Ĵ(t; ŵ) := 1
2

∫
Ω

∥∥∥DTtV(x̂)−>∇ŵ(x̂) +GGG(TtV(x̂))
∥∥∥2
|det DTtV(x̂)| dx̂ . (B.8)

Following the steps in Section 4.2, we use the adjoint approach [19, §1.6.4] and define the relevant
Lagrangian for ŵ, v̂ ∈ H1

0 (Ω):

L(t; ŵ, v̂) := Ĵ(t; ŵ) + â(t; ŵ, v̂)− l̂g̃(t; v̂) . (B.9)
Plugging in ŵ = ŵ(t), we recover the expression for field energy

EF (t) = L(t; ŵ(t), v̂) ∀v̂ ∈ H1
0 (Ω) . (B.10)

Since we are free to choose v̂, we choose it as the adjoint solution ρ which solves

ρ ∈ H1
0 (Ω) : â(0; v̂, ρ) = −

〈
∂Ĵ

∂ŵ
(0; ŵ(0)), v̂

〉
∀v̂ ∈ H1

0 (Ω) (B.11)

⇐⇒ a(v, ρ) = −
∫

Ω
(∇w +GGG) ·∇v dx = 0 ∀v ∈ H1

0 (Ω) , (B.12)

where in the last equality we used (B.1) and the fact that ŵ(0) = w. This gives us the adjoint solution
ρ ≡ 0 and allows us to calculate the shape derivative in terms of partial derivatives of t:

dEF
dt (0) = ∂L

∂t
(0; ŵ(0), ρ) = ∂Ĵ

∂t
(0;w) + ∂â

∂t
(0;w, 0)−

∂ ̂̀̃g
∂t

(0; 0) . (B.13)

The last two terms go to zero and we are left with the partial derivative of Ĵ(0;w) defined in (B.8). We
can swap integration with the partial derivative and using the required expressions from Section 4.2
we get

dEF
dt (0) = 1

2

∫
Ω
‖∇u‖2∇ · V + 2∇u · (−∇V∇u+ ∇V∇g̃ + ∇∇g̃V) dx , (B.14)

where we used w = u− g̃.
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