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Abstract. Let g : Ω = [0, 1]d → R denote a Lipschitz function that can be evaluated at each point, but at the
price of a heavy computational time. Let X stand for a random variable with values in Ω such that one is able
to simulate, at least approximately, according to the restriction of the law of X to any subset of Ω. For example,
thanks to Markov chain Monte Carlo techniques, this is always possible when X admits a density that is known
up to a normalizing constant. In this context, given a deterministic threshold T such that the failure probability
p := P(g(X) > T ) may be very low, our goal is to estimate the latter with a minimal number of calls to g. In this
aim, building on Cohen et al. [9], we propose a recursive and (in a certain sens) optimal algorithm that selects on
the fly areas of interest and estimates their respective probabilities.

2020 Mathematics Subject Classification. 60J20, 65C05, 65C05, 68Q25, 68W20.
Keywords. Sequential design, Probability of failure, Sequential Monte Carlo, Tree based algorithms, High
dimension.

1. Introduction

Let g : Ω = [0, 1]d → R denote a function that can be evaluated at any point x ∈ Ω. Then, considering
a random variable X with values in Ω that we can easily simulate, we want to estimate the so-called
failure probability

p := P(g(X) > T ),
where T is a fixed threshold such that p is strictly positive but possibly very low. We are motivated
by applications where each evaluation of the function g at a given x ∈ Ω is costly. For example, it
could be the result of a numerical simulation or of a physical experiment, that has to be repeated for
each new value of x. Therefore, one would like to limitate as much as possible the number of queries
x 7→ g(x).

In this framework, a naive Monte Carlo method consists in simulating n independent and identically
distributed (i.i.d.) random variables X1, . . . , Xn with the same law as X, and considering the estimator

pn := 1
n

n∑
i=1

1g(Xi)>T .

This work was partially supported by the French Agence Nationale de la Recherche under grant ANR-21-CE40-0006.
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Since the random variables 1g(Xi)>T are i.i.d. with Bernoulli law B(p), this estimator is unbiased,
strongly consistent, and satisfies the following central limit theorem:

√
n(pn − p)

D−−−→
n→∞

N (0, p(1− p)).

However, this is an asymptotic result that is of no practical interest unless n is of order 1/p. Indeed,
if n � 1/p, as is the case in the situations we have in mind, then most of the time pn = 0 and this
estimator is useless.

To circumvent this issue, the purpose of variance reduction techniques is to make the rare event
less rare and, in turn, decrease the previous asymptotic variance, that is σ2 = p(1− p). For example,
instead of simulating according to the law µ of X, the idea of Importance Sampling is to consider an
auxiliary distribution µ̃ such that, if X̃ ∼ µ̃, the event {g(X̃) > T} is not rare. If this is possible, one
then just has to simulate X̃1, . . . , X̃n i.i.d. according to µ̃, and consider the estimator

p̃n := 1
n

n∑
i=1

dµ

dµ̃
(X̃i)1g(X̃i)>T ,

where dµ
dµ̃ stands for the Radon-Nikodym derivative of µ w.r.t. µ̃. This technique has been widely

applied in practice and may indeed lead to dramatic variance reductions. However, it requires a lot of
information about both the failure domain

F := {x ∈ Ω : g(x) > T},
and the law µ in order to find a relevant instrumental distribution µ̃. There is a huge amount of
literature on this topic. Among the first references, we can mention the paper by Kahn and Harris in
particle physics [14], while the application to structural safety dates back at least to Harbitz [13]. We
refer for example to the monograph [5] for details.

Another classical variance reduction technique is Importance Splitting, introduced by Kahn and
Harris [14]. The principle is to consider several intermediate levels −∞ = T0 < T1 < · · · < TK = T

such that each conditional probability p(k) := P(g(X) > Tk|g(X) > Tk−1) is not small, and to apply
the corresponding Bayes formula p = p(1) . . . p(K). Accordingly, if p̂(k)

n is an estimator of p(k), then a
natural estimator for p is simply

p̂n = p̂(1)
n . . . p̂(K)

n .

In our specific context, this is the purpose of Subset Simulation [1, 2] and Adaptive Multilevel Split-
ting [6, 7, 8]. This is particularly suitable when X has a density fX that is known up to a normal-
izing constant, like for example in Bayesian statistics and statistical physics, for one may then apply
Markov Chain Monte Carlo (MCMC) techniques to estimate each intermediate probability pk. As
explained in [12], the best asymptotic variance that one can expect through splitting techniques is
s2 = p2 log(p−1), which is indeed much lower than σ2 = p(1− p). Nonetheless, if t stands for the num-
ber of steps of each Markov chain constructed at each step k, this necessitates about tn log(n) log(p−1)
calls to g, which is much larger than the number n of calls required for a naive Monte Carlo estimator.
Therefore, when the simulation budget is severely limited, we can not directly apply these splitting
techniques, even if we will recycle some of their ingredients in what follows.

In uncertainty quantification, a standard approach is to make more or less agressive assumptions
on the failure domain F and/or the function g. One may trace back this idea to First (respectively
Second) Order Reliability Methods, or FORM (respectively SORM) for short. In a nutshell, they
assume that one can rewrite the probability of interest as p = P(L(Z) < 0), where Z stands for a
standard Gaussian random vector in dimension d. Denoting z? := argmin{‖z‖2 : L(z) = 0} the
so-called most probable point, the idea is to approximate p by the probability that Z falls in the
neighborhood of z?. We refer to [10] and references therein for more details.
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Alternatively, a widespread Bayesian framework consists in assuming that the function g is the
realization of a Gaussian random field, defined as a prior model. Conditionally on observed values of
the function, the posterior model is still Gaussian. Its mean function provides a surrogate model used
to approximate g while the variance represents the uncertainty of the model (see, e.g., [16]). It is then
possible to construct sequential sampling strategies to estimate the probability of failure. It basically
consists in determining each new evaluation of g by minimizing a criterion that ensures that the
precision of the considered estimator is improved. For instance, one may apply Stepwise Uncertainty
Reduction strategies, which are formalized in [3] in this Bayesian framework. Combined with Subset
Simulation, this approach can also be found in [4] for the estimation of very small probabilities. Note
that this Gaussian process modelling approach corresponds to an assumption on the regularity of g,
notably through the choice of the correlation function (see, e.g., [16]).

Let us also finally mention that polynomial chaos expansions represent another set of popular non-
intrusive metamodelling techniques. The principle is to approximate the mapping g by a series of
multivariate polynomials which are orthogonal with respect to the distributions of the input random
variables X1, . . . , Xd (see, e.g., [17] and references therein). In particular, it allows one to compute
analytically Sobol’ indices, which are a standard tool in uncertainty quantification.

Here we do not adopt a Bayesian/metamodelling approach. Concerning the function g, we suppose
that it is L-Lipschitz, with L known, and satisfies a so-called level set condition (see Assumption 3).
As for the law of X, we assume that it admits a bounded density fX that is known up to a normalizing
constant, or that we are able to simulate at least approximately according to the restriction of fX
to any subset of Ω. In this framework, building on [9], we show that the failure probability p admits
a deterministic lower (resp. upper) bound p−n (resp. p+

n ) based on n calls to g, and such that the
approximation error satisfies, for d ≥ 2,

En := p+
n − p−n ≤ Cn

− 1
d−1 . (1.1)

Even if this rate of convergence is classic in deterministic numerical integration, one may notice that
the quantity of interest

p =
∫

Ω
1g(x)>T fX(x)dx

is the integral of a non regular function, which makes the problem non trivial. In fact, we prove in
Section 6 that this rate is in a certain sens optimal, meaning that under this set of assumptions, no
deterministic algorithm which (adaptively or not) queries the function g at points x1, . . . , xn and based
on values g(x1), . . . , g(xn) can achieve a better approximation error.

Nevertheless, besides n calls to g, our algorithm requires the sequential evaluation of probabilities
of the form P(X ∈ Q), where Q stands for a generic dyadic subcube of Ω. It is generally impossible
to do this exactly, but in many situations of interest we may apply standard MCMC techniques to
estimate these probabilities with an arbitrary small (random) error. More explicitly, we propose to
adopt here the same idea as in the abovementioned splitting techniques, by generating for each Q a
sample of size N that is approximately i.i.d. according to the restriction of the law of X to Q.

Putting all pieces together, we propose a sequential algorithm that produces two consistent and
asymptotically Gaussian estimators p̂−n,N and p̂+

n,N of p−n and p+
n with global stochastic error

|ÊNn | :=
∣∣∣p̂+
n,N − p̂

−
n,N

∣∣∣ ≤ Cn− 1
d−1 +Op(1/

√
N). (1.2)

We point out that, in the latter, since the second term does not require any supplementary evaluation
of g, it can easily be made arbitrarily small, so that only the first one matters and, as already explained,
this first term is in a certain sens optimal for our set of assumptions.
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The article is organized as follows. Section 2 gives in more details the assumptions and the main
results of this work. Section 3 explains the deterministic algorithm that allows us to reach the ap-
proximation error En in (1.1), while the proof of its optimality is deferred to Section 6. Section 4
makes more explicit the term Op(1/

√
N) in (1.2) and provides asymptotic confidence intervals for

our estimators. All of these results are illustrated on a toy example in Section 5, and the proof of
Theorem 4.4 is detailed in Section 7.

Before proceeding, let us stress that the upper-bound in (1.2) is just a theoretical bound. In most
situations, it is very pessimistic, but it is not such a problem since the true error is in fact estimated
by |p̂+

n,N − p̂−n,N |, together with asymptotic confidence intervals. This phenomenon is clear on the
numerical example of Section 5, in particular through the right-hand side of Figure 5.4.

2. Assumptions and main results

Let X be a random variable on Ω = [0, 1]d and g : Ω→ R. For a given threshold T ∈ R, let us denote
by F the failure domain and p the failure probability, i.e.,

F = {x ∈ Ω : g(x) > T} and p = P(X ∈ F ) = P(g(X) > T ).

We intend to present and analyse an algorithm to estimate this failure probability as precisely as
possible for a given total number n of calls to g. In all what follows, the upcoming assumptions will
be of constant use.

Assumption 1 (Absolute continuity of the distribution of X). The distribution of X on Ω admits a
bounded density function fX with respect to the Lebesgue measure λ. In other words

‖fX‖L∞ = K <∞.

Assumption 2 (Lipschitz smoothness). The function g is assumed to be L-Lipschitz with respect to
the supremum norm on Rd, i.e.,

|g(x)− g(x̃)| ≤ L ‖x− x̃‖∞ , x, x̃ ∈ Ω.

Equivalently, ∇g ∈ L∞(Ω) with ‖∇g(x)‖1 ≤ L almost everywhere in Ω.

Here, we denote by ‖z‖p the `p norm of a vector z ∈ Rd. For the Euclidean norm, we sometime
simply write |z| := ‖z‖2.

Assumption 3 (Level set condition). There exists a constant M > 0 such that

λ ({x ∈ Ω : |g(x)− T | ≤ δ}) ≤Mδ, δ > 0.

The constants L and M in Assumptions 2 and 3 are jointly coupled. Indeed, since the failure
probability p is such that 0 < p < 1, there exists xT such that g(xT ) = T , and for all x ∈ Ω, we have

|g(x)− T | ≤ L‖x− xT ‖∞ ≤ L,

so that, if Assumption 3 is satisfied,

1 = λ ({x ∈ Ω : |g(x)− T | ≤ L}) ≤ML,

which shows that ML ≥ 1. We introduce the constant

C := ML, (2.1)

which will appear in the error estimates established for the algorithm presented and analyzed further.
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Remark 2.1. The level set Assumption 3 may be thought as reflecting the fact that the function g
is not too much flat in the vicinity of the level set ST = g−1({T}). Indeed, when d = 1, if xT is a
point such that g(xT ) = T and assuming that g is continuously differentiable, then g′(xT ) < 2M−1

would contradict Assumption 3 for δ small enough. In the case d ≥ 2, assuming that g is continuously
differentiable with ∇g(x) 6= 0 for any x ∈ ST , then ST is a compact submanifold of dimension (d− 1)
and the coarea formula (see, e.g., [11], Proposition 3 page 118) says that, for δ small enough,

λ ({x ∈ Ω : |g(x)− T | ≤ δ}) =
∫ T+δ

T−δ

(∫
St

ds

|∇g(s)|

)
dt, (2.2)

where ds stands for the (d − 1)-dimensional Hausdorff measure on the level set St = g−1({t}). As a
consequence, Assumption 3 is fulfilled with constant M for δ small enough as soon as

|∇g(x)| > 2H
M

,

where H is the (d− 1)-dimensional Hausdorff measure of ST , and therefore for all δ up to raising the
value of M .

The proof of the following result is housed in Section 3.3 for the first part (definition of the algorithm
and error rates), and in Section 6 for the second part (optimality).

Theorem 2.2. Under Assumptions 1, 2, and 3, there exists an algorithm that, based on n calls to g,
constructs two deterministic bounds p−n ≤ p ≤ p+

n such that the approximation error En := p+
n − p−n

satisfies

• If d = 1, En ≤ 2CK 2−
n

2C .

• If d ≥ 2, En ≤ 8C
d

d−1K n−
1

d−1 .

In addition, these rates of convergence are optimal.

Remark 2.3. As it will become clear in Section 3, the algorithm that we propose only requires the
knowledge of the Lipschitz constant L (or an upper-bound), while that of K and M is not needed.

The quantities p−n and p+
n are defined as the measures of certain sets of dyadic cubes that are

determined by our algorithm. When fX = 1, that is when X is uniformly distributed, this measure
can be computed exactly, otherwise it may need to be estimated. This requires possibly many samples
of X, but not any additional call of g.

We begin with an idealized situation. The following result is established in Section 4.1.

Theorem 2.4. If for each dyadic cube Q of Ω, one is able to simulate an N i.i.d. sample according
to the restriction of the law of X to Q, then, without any additional call to g, we can construct two
unbiased, strongly consistent and asymptotically Gaussian estimators p−n,N and p+

n,N of the previous
lower and upper bounds, i.e.,

√
N
(
p±n,N − p

±
n

) D−−−−→
N→∞

N (0, (σ±n )2),

along with consistent estimators σ−n,N and σ+
n,N of the latter asymptotic standard deviations.

Unfortunately, it is usually not possible to simulate an N sample that is exactly i.i.d. according to
the restriction of the law of X to Q. However, if the pdf fX is known up to a normalizing constant
(as is the case in many situations of interest), then one can do it at least approximately thanks to
a Metropolis-Hastings algorithm. The upcoming proposition gives a flavor of the type of results we
obtain in this context.
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Proposition 2.5. If fX is continuous strictly positive on Ω, and known up to a normalizing constant,
then, without any additional call to g, we can construct two estimators p̂−n,N and p̂+

n,N such that, for
all t ∈ N?,

P
(
p̂±n,N = p±n,N

)
≥
(
1−Art

)mN
.

for some constants A > 0, 0 < r < 1, and m ∈ N?. The same result holds true for σ−n,N and σ+
n,N .

The proof of this proposition is detailed in Section 4.2.

3. Approximation error

3.1. Neveu’s notation

Let us denote D the set of all dyadic subcubes of Ω, and Dj the set of all dyadic cubes with sidelength
2−j for j ≥ 1. Given a dyadic cube Q in D, cQ stands for the center of Q. Each dyadic cube Q has 2d
children numbered from 1 to 2d and each Q 6= Ω has exactly one parent.

In the sequel, we will identify a dyadic cube in D to a vertex in the infinite 2d-regular tree T . It will
be referred to thanks to Neveu’s notation (see [15]): the root of the tree, associated to Ω, is denoted by
∅ and, for any k ∈ N? and 1 ≤ u1, . . . , uk ≤ 2d, the vertex (u1, . . . , uk) is the uthk child of (u1, . . . , uk−1).
A vertex u = (u1, . . . , uk) in T is then associated to a cube Q(u) in D. Notice that the sidelength of
Q(u) is 2−k where k is the depth of u (distance between the root and u).

If v is a vertex in T , v̄ (resp. C(v)) denotes the parent (resp. the set of the 2d children) of v. The
vertex v is said to be an ancestor of u, and we denote v ≤ u, if Q(u) ⊂ Q(v) or, equivalently, if v
is a prefix of u. Notice that u ≤ u. In the sequel, a(v) stands for the set made of the ancestors of v,
including v but excluding the root for convenience. Finally, if v and w are two vertices, then v ∧ w
stands for the most recent common ancestor of v and w.

We say that Λ is a finite 2d-regular tree, if it is a finite subset of T such that u ∈ Λ and v ≤ u
implies that v ∈ Λ. For any finite 2d-regular tree Λ of T , the leaves (resp. internal vertices) of Λ are
the vertices in Λ with no child (resp. with 2d children) in Λ. The depth of Λ is defined as the maximal
depth of the vertices in Λ. See Figure 3.1 for an illustration.

Definition 3.1 (Label of a cube). The dyadic cube Q with side length 2−j and center cQ is labelled

• I (inside) if g(cQ) > T + L2−j−1,

• O (outside) if g(cQ) < T − L2−j−1,

• U (uncertain) otherwise.

A cube with label I is included in the failure set F . Indeed, for any Q ∈ Dj and any x ∈ Q,

|g(x)− g(cQ)| ≤ L ‖x− cQ‖∞ ≤ L2−j−1.

As a consequence, if the label of Q is I, then, for any x ∈ Q, we have

g(x) ≥ g(cQ)− L2−j−1 > T.

Likewise, a cube with label O is included in F c := Ω \ F . Finally, a cube with label U may intersect
F and/or F c.
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∅

(1) (2)

(2, 1) u ∧ v

(2, 2, 1) v

ū (2, 2, 1, 2)

u (2, 2, 1, 1, 2)

Figure 3.1. Example of a 2-regular finite tree of depth 5 in dimension 1. The red line
represents the set a(u) of the ancestors of the leaf u.

3.2. Recursive construction of relevant trees

The algorithm starts with Λ(0) = {Ω}, where Ω has the label U and the depth of Λ(0) is 0. At a given
step k > 0, a finite 2d-regular tree Λ(k) of depth k has been constructed with the following features:

(i) internal vertices are all labelled as U ,

(ii) leaves of depth lower than k are labelled I or O,

(iii) leaves of depth k can have any label.

Then, the tree Λ(k + 1) is obtained by performing a 2d-split on each leaf with label U and evaluating
g at their center in order to label the new leaves according to Definition 3.1. Clearly the new tree
Λ(k + 1) of depth (k + 1) has similar properties (see Figure 3.2).

Denoting |Λ(k)| the cardinal of Λ(k), the number nk of evaluations of g that is involved in the
construction of Λ(k) is therefore given by n0 = 0 and, for all k ≥ 1,

nk = |Λ(k)| − 1,
since the evaluation at the center of Ω is useless when p > 0. The following result gives an upper
bound on this number. Recall that C is the constant defined by (2.1).

Proposition 3.2. Let k ≥ 0. If d = 1, the number nk of evaluations of g satisfies
nk ≤ 2Ck.

If d ≥ 2, then we have
nk ≤ 4C 2(d−1)k.

Proof. Since n0 = 0, the result is clear for k = 0. Therefore, let us consider the case where k ≥ 1.
For any 0 ≤ j ≤ k − 1, let us denote by U(j) the set of leaves of Λ(j) with label U (see Figure 3.2).
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U ∅

O (1) U (2)

U ∅

O (1) U (2)

O (2, 1) U (2, 2)

U ∅

O (1) U (2)

O (2, 1) U (2, 2)

U (2, 2, 1) I (2, 2, 2)

U ∅

O (1) U (2)

O (2, 1) U (2, 2)

U (2, 2, 1) I (2, 2, 2)

U (2, 2, 1, 1) I (2, 2, 1, 2)

Figure 3.2. Example of a recursive construction of Λ(1), . . . ,Λ(4) for d = 1.

Recall from Definition 3.1 that this set is made of dyadic cubes with side length 2−j such that, for
any Q ∈ U(j),

|g(cQ)− T | ≤ L

2j+1 .

As a consequence, for any x ∈ Q ∈ U(j), Assumption 2 gives

|g(x)− T | ≤ |g(x)− g(cQ)|+ |g(cQ)− T | ≤ L

2j .
This ensures that ⋃

Q∈U(j)
Q ⊂

{
x ∈ Ω : |g(x)− T | ≤ L

2j
}
.

Since the volume of each cube in U(j) is 2−jd, this yields
|U(j)|

2jd ≤ λ
({

x ∈ Ω : |g(x)− T | ≤ L

2j
})

,

with the understanding that |U(j)| is the cardinal of U(j). Thanks to Assumption 3, we get that

|U(j)| ≤
(
C

L

L

2j
)

2jd = C2j(d−1) =: µj . (3.1)

Thus, the construction of Λ(j + 1) requires at most 2dµj evaluations of g. As a consequence, we can
bound the total number nk of calls to g to construct Λ(k) as follows:

nk ≤
k−1∑
j=0

2dµj .

If d ≥ 2, we are led to

nk ≤ C2d 2(d−1)k − 1
2d−1 − 1 ≤ 4C 2(d−1)k.

In the case d = 1, we obtain nk ≤ 2Ck.
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3.3. Control of the error

For any k ≥ 0, we denote by I(k) (resp. U(k)) the leaves of Λ(k) with label I (resp. U). We can readily
estimate the failure probability p thanks to the tree Λ(k) as follows:

p−(k) ≤ p ≤ p+(k),
where

p−(k) :=
∑

Q∈I(k)
P(X ∈ Q) and p+(k) := p−(k) +

∑
Q∈U(k)

P(X ∈ Q).

Lemma 3.3 (Control of the error). For any k ≥ 0, the estimations p−(k) and p+(k) of the failure
probability p given by the tree Λ(k) are such that

0 ≤ p+(k)− p−(k) ≤ CK2−k.

Proof. Under Assumption 1, for any k ∈ N and Q ∈ U(k), we have
λ(Q) = 2−dk and P(X ∈ Q) ≤ 2−dkK.

As a consequence, the definition of p−(k) and p+(k) together with Equation (3.1) ensure that

p+(k)− p−(k) =
∑

Q∈U(k)
P(X ∈ Q) ≤ |U(k)|K

2dk ≤ CK 2k(d−1)

2dk .

This concludes the proof.

Before going further, let us notice that, for any n ≥ 1, there exists k ≥ 0 such that nk ≤ n < nk+1,
with the convention n0 = 0. We can apply the same algorithm as before, with the understanding that
all the leaves of the tree Λ(k) are explored while this is the case only for (n − nk) leaves with depth
(k + 1) of the tree Λ(k + 1). This defines a subtree Λn of Λ(k + 1). With obvious notation, the leaves
of Λn can be partitioned as In ∪ Un ∪On. In this respect, we deduce upper and lower bounds p−n and
p+
n for p as follows:

p−n :=
∑
Q∈In

P(X ∈ Q) and p+
n := p−n +

∑
Q∈Un

P(X ∈ Q).

Clearly, we have
p−(k) ≤ p−n ≤ p ≤ p+

n ≤ p+(k),
so that the approximation error En := p+

n − p−n satisfies En ≤ p+(k)− p−(k).
With this in mind, we can now complete the proof of Theorem 2.2. When d ≥ 2, according to

Proposition 3.2, we may write

n < nk+1 ≤ 4C 2(d−1)(k+1) or, equivalently, 2−k ≤ 2
(
n

4C

)− 1
d−1

.

Hence, Lemma 3.3 yields

En ≤ p+(k)− p−(k) ≤ CK2−k ≤ 8C
d

d−1Kn−
1

d−1 .

When d = 1, the same reasoning gives
n < nk+1 ≤ 2C(k + 1) or, equivalently, 2−k ≤ 21− n

2C ,

so that
En ≤ p+(k)− p−(k) ≤ 2CK 2−

n
2C .
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This terminates the proof of the first part of Theorem 2.2. The fact that this error is optimal is shown
in Section 6.

4. Estimation error

We return to the notation of Section 3.3 and recall that, for any n ≥ 2, we denote by In (resp. Un)
the leaves of Λn with label I (resp. U), so that

p−n ≤ p ≤ p+
n ,

where
p−n :=

∑
Q∈In

P(X ∈ Q) and p+
n := p−n +

∑
Q∈Un

P(X ∈ Q). (4.1)

Our goal in this section is to estimate p−n and p+
n with no additional call to g. We first do it by assuming

that, for each vertex u ∈ Λn, we can simulate an N i.i.d. sample distributed according to the law of
X given that it belongs to Q(u). This allows us to propose in Section 4.1 two idealized estimators
p−n,N and p+

n,N along with their asymptotic variances. In Section 4.2, thanks to MCMC techniques, we
construct two estimators p̂−n,N and p̂+

n,N of the latters provided that the density fX is known up to a
normalizing constant.

4.1. Estimation error in an idealized case

From a given tree Λn, one can estimate the failure probability p thanks to p−n and p+
n defined in

Equation (4.1). To that end, one has to compute (or estimate) the probability
p(u) := P(X ∈ Q(u)),

for each leaf u of Λn. If u is far from the root, then p(u) should be very small and difficult to estimate
directly through a naive Monte Carlo method, as explained in Section 1. Therefore, we propose to
apply a splitting strategy inspired by rare event estimation.

For a given leaf u ∈ Λn, recall that a(u) stands for the set of the ancestors of u, including u but
excluding the root for convenience. Since P(X ∈ Ω) = 1, Bayes formula ensures that

P(X ∈ Q(u)) =
∏

v∈a(u)
P(X ∈ Q(v)|X ∈ Q(v̄)),

which can be reformulated as follows
p(u) =

∏
v∈a(u)

q(v) where q(v) := P(X ∈ Q(v)|X ∈ Q(v̄)).

Assumption 4 (Perfect samplings). Recall that T stands for the infinite 2d-regular tree. For any
v ∈ T , consider a sequence (Xv

i )i≥1 of i.i.d. random variables with distribution L(X|X ∈ Q(v)) and
assume that the sequences (Xv)v∈T are independent.

Definition 4.1 (Ideal estimators). For N ≥ 1 and u, v ∈ T , we define

CvN :=
N∑
i=1

1X v̄
i ∈Q(v), qN (v) := CvN

N
and pN (u) :=

∏
v∈a(u)

qN (v). (4.2)

Remark 4.2 (Multinomial distribution and unbiasedness). The random variable CvN is the number
of random variables (X v̄

i )1≤i≤N which are in fact in the cube Q(v). Let w be a fixed vertex. The
distribution of the random vector (CvN )v∈c(w) is the multinomial distribution with parameters N and
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(q(v))v∈c(w). As a consequence, qN (v) is a strongly consistent and unbiased estimator of q(v). In
addition, for k different vertices w1, w2, . . . , wk in T , the vectors

(CvN )v∈c(w1), (C
v
N )v∈c(w2), . . . , (C

v
N )v∈c(wk)

are independent. From this we deduce that pN (u) is also unbiased.
Remark 4.3. The random variables (qN (v))v∈a(u) are independent. Nevertheless, for two different
leaves u and u′, pN (u) and pN (u′) are not independent.

Our next result, whose proof is deferred to Section 7, provides asymptotic properties (namely,
consistency and asymptotic normality) for the estimator pN (S) of the probability p(S) associated to
any set of leaves S. One may keep in mind that, for our problem, we will apply this result with S = In
and S = In∪Un, in which case p(S) (respectively pN (S)) corresponds to p−n and p+

n (respectively p−n,N
and p+

n,N ).

Theorem 4.4. For any set S of leaves of a tree Λ, one can estimate
p(S) :=

∑
u∈S

p(u) by pN (S) :=
∑
u∈S

pN (u),

where pN (u) is defined in (4.2). The estimator pN (S) is unbiased and strongly consistent:
pN (S) a.s.−−−−→

N→∞
p(S).

Moreover, it is asymptotically normal, namely
√
N(pN (S)− p(S)) D−−−−→

N→∞
N (0, σ2),

where

σ2 =
∑
u∈S

p(u)2 ∑
v∈a(u)

1− q(v)
q(v) +

∑
u,u′∈S
u6=u′

p(u)p(u′)

 ∑
v∈a(u∧u′)

1− q(v)
q(v) − 1

 .
Remark that if q(v) = 0 then p(u) = 0 whenever v ≤ u, so that one can cancel u from the set of

leaves S and the expression of σ2 is always well-defined.
Remark 4.5 (Variance estimation). Recall that each q(v) is strictly positive and consistently esti-
mated on the fly by qN (v), so that σ2 is readily estimated by

σ2
N =

∑
u∈S

pN (u)2 ∑
v∈a(u)

1− qN (v)
qN (v) +

∑
u,u′∈S
u6=u′

pN (u)pN (u′)

 ∑
v∈a(u∧u′)

1− qN (v)
qN (v) − 1

 ,
and σ2

N goes almost surely to σ2 when N goes to infinity. Hence, Slutsky’s lemma ensures that
√
N

pN (S)− p(S)
σN

D−−−−→
N→∞

N (0, 1).

In particular, the latter provides asymptotic confidence intervals for p(S).
For our concern, recall that p−n ≤ p ≤ p+

n where

p−n = p(In) =
∑
u∈In

p(u) and p+
n = p(In ∪ Un).

Hence, the sets of leaves of interest are S = In and S = In∪Un. Indeed, the previous results establish
that

p−n,N = pN (In) a.s.−−−−→
N→∞

p−n ≤ p ≤ p+
n

a.s.←−−−−
N→∞

pN (In ∪ Un) = p+
n,N ,
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as well as √
N
(
p±n,N − p

±
n

) D−−−−→
N→∞

N (0, (σ±n )2).

In addition, by Remark 4.5, we can construct on the fly consistent estimators σ−n,N and σ+
n,N of the

latter asymptotic standard deviations. This closes the proof of Theorem 2.4.

Remark 4.6 (Asymptotic confidence intervals). Denote by Φ the cumulative distribution function of
the standard normal distribution so that, for α ∈ (0, 1), Φ−1(1− α/2) is the (1− α/2) quantile. If we
define

mn,N := p−n,N −
Φ−1(1− α/2)σ−n,N√

N
as well as

Mn,N := p+
n,N +

Φ−1(1− α/2)σ+
n,N√

N
,

then [mn,N , 1] and [0,Mn,N ] are 100(1 − α/2)% asymptotic confidence intervals for, respectively, p−n
and p+

n . Since p−n ≤ p ≤ p+
n , the union bound ensures that [mn,N ,Mn,N ] is a 100(1− α)% asymptotic

confidence interval for p.

4.2. Estimation error in practice

The purpose of this section is to prove Proposition 2.5. Recall from Definition 4.1 that each leaf
probability

p(u) = P(X ∈ Q(u)) =
∏

v∈a(u)
P(X ∈ Q(v)|X ∈ Q(v̄)) =

∏
v∈a(u)

q(v)

is estimated by

pN (u) =
∏

v∈a(u)
qN (v) where qN (v) = CvN

N
= 1
N

N∑
i=1

1X v̄
i ∈Q(v).

To apply the results of Theorem 4.4, this supposes that, for each v̄, we have a sample of N i.i.d.
random variables X v̄

i . In addition, for two vertices v and v′ such that v̄ 6= v̄′, these samples must be
independent. The present section explains how to reach this goal, at least approximately.

Consider a fixed vertex v̄, denote µv̄ = L(X|X ∈ Q(v̄)), and fv̄ the corresponding probability
density function, that is

µv̄(dx) = fv̄(x)dx = 1
P(X ∈ Q(v̄))fX(x)1x∈Q(v̄).

Starting from a point X0 ∼ Uv̄ the uniform law on Q(v̄), the Metropolis-Hastings algorithm allows us
to construct a Markov chain (Xn) with asymptotic distribution µv̄.

We refer the interested reader to Tierney [18] for a thorough presentation as well as numerous
theoretical results on Markov chain Monte Carlo methods. For our purpose, we just present the idea
for a specific choice of the Markov dynamics, which turns out to be a particular case of independent
Metropolis.

Here is the mechanism: starting from Xt, simulate X ′t ∼ Uv̄ and set
Xt+1 := X ′t1Ut+1≤fX(X′t)/fX(Xt) +Xt1Ut+1>fX(X′t)/fX(Xt), (4.3)

where (Ut)t∈N? is a sequence of i.i.d. random variables with uniform law on [0, 1]. Needless to say, in
the previous expression, Xt, X ′t, and Ut+1 are also assumed independent. It is readily seen that, if we
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denote by Kv̄ the transition kernel associated to this Markov chain, then Kv̄ is µv̄-reversible so that,
under appropriate assumptions, (Xt) goes in distribution to µv̄.

In order to make this convergence more precise, let us recall that the total variation distance between
two probability measures µ and ν on Q(v̄) is

‖µ− ν‖TV := sup
B∈Bv̄

|µ(B)− ν(B)|,

where Bv̄ is the collection of all Borel sets on Q(v̄). Denoting δx the Dirac measure at x and δxKt
v̄ the

law of Xt for the above Markov chain with initial condition X0 = x, we say that the chain is uniformly
ergodic on Q(v̄) if there exist Av̄ > 0 and 0 < rv̄ < 1 such that, for all t ∈ N?,

sup
x∈Q(v̄)

‖δxKt
v̄ − µv̄‖TV ≤ Av̄rtv̄.

Let gv̄ stand for the density of the uniform distribution on Q(v̄) and

β−1
v̄ := sup

x∈Q(v̄)

fv̄(x)
gv̄(x) ≥ 1, (4.4)

then Corollary 4 in [18] ensures that the Markov chain (Xt) is uniformly ergodic with convergence
rate rv̄ ≤ 1 − βv̄. In our context, notice that the latter is always strictly less than 1 if, for example,
fX is continuous and strictly positive on Ω = [0, 1]d, hence our assumption in Proposition 2.5.

To see the consequence of this result in our context, remember the coupling interpretation of the
total variation distance, that is

‖µ− ν‖TV = inf
(X,Y )

P(X 6= Y ),

where the infimum is over all couples of random variables on Q(v̄) ×Q(v̄) with marginal laws µ and
ν. More precisely, given X with law ν, it is always possible to construct a random variable Y with law
µ such that the equality is achieved, i.e., P(X 6= Y ) = ‖µ− ν‖TV .

Hence, if we consider as above a Markov chain (X v̄
t ) with arbitrary initial condition, for example X v̄

0
with uniform law Uv̄ on Q(v̄), there exists a random variable X v̄

∞ with law µv̄ such that

P(X v̄
t 6= X v̄

∞) = ‖Uv̄Kt
v̄ − µv̄‖TV ≤ Av̄rtv̄.

Therefore, if we start from N i.i.d. initial conditions Xv̄
0 := (X v̄,(1)

0 , . . . , X
v̄,(N)
0 ) with uniform distribu-

tion on Q(v̄), and run independently during t steps the previous Metropolis algorithm to obtain the
sample Xv̄

t := (X v̄,(1)
t , . . . , X

v̄,(N)
t ), we deduce that

P(Xv̄
t = Xv̄

∞) ≥ (1−Av̄rtv̄)N ,

where Xv̄
∞ := (X v̄,(1)

∞ , . . . , X
v̄,(N)
∞ ) ∼ µ⊗nv̄ .

Next, apply the previous procedure to each vertex v̄ of the considered tree Λ, denote by Xt :=
(Xv̄

t )v̄∈Λ all the corresponding sets of N i.i.d. samples, and X∞ := (Xv̄
∞)v̄∈Λ the corresponding sets

of N i.i.d. “idealized” samples. Denoting AΛ := maxv̄∈ΛAv̄ and rΛ := maxv̄∈Λ rv̄ ∈ (0, 1), we deduce
that

P(Xt = X∞) ≥ (1−AΛr
t
Λ)|Λ|N .

For each vertex v and each leaf u, consider the estimators

p̂N (u) :=
∏

v∈a(u)
q̂N (v) where q̂N (v) := 1

N

N∑
i=1

1
X

v̄,(i)
t ∈Q(v),
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and, for any set S of leaves of the tree Λ,
p̂N (S) :=

∑
u∈S

p̂N (u).

Clearly, on the event {Xt = X∞}, we have p̂N (S) = pN (S), which means that

P(p̂N (S) = pN (S)) ≥ (1−AΛr
t
Λ)|Λ|N ,

where pN (S) is the ideal estimator defined in Theorem 4.4. Finally, it suffices to consider S = In and
S = In ∪ Un to conclude the proof of Proposition 2.5.

Remark 4.7 (Confidence intervals in practice). Mutatis mutandis, the result of Remark 4.6 is still
valid. Specifically, if we denote

m̂n,N := p̂−n,N −
Φ−1(1− α/2)σ̂−n,N√

N

as well as

M̂n,N := p̂+
n,N +

Φ−1(1− α/2)σ̂+
n,N√

N
,

then [m̂n,N , M̂n,N ] is a 100(1− α)% asymptotic confidence interval for p in the following sense:

lim
N→∞

lim
t→∞

P
(
m̂n,N ≤ p ≤ M̂n,N

)
= 1− α.

This will be illustrated in Section 5.

Remark 4.8. Returning to (4.4), one can notice that the smaller the side length of Q(v̄), the faster the
convergence of the Metropolis algorithm. Indeed, denoting cQ(v̄) its center and λ(Q(v̄)) its Lebesgue
measure, the continuity of fX ensures that, when λ(Q(v̄))→ 0,

fv̄(x) =
fX(x)1x∈Q(v̄)
P(X ∈ Q(v̄)) ≈

fX(cQ(v̄))1x∈Q(v̄)
fX(cQ(v̄))λ(Q(v̄)) = gv̄(x),

which means that βv̄ goes to 1 or, equivalently, that rv̄ goes to 0.

5. Numerical illustration

To illustrate our algorithm, we consider a toy example which is just a variant of the one proposed in
Section 5.1 of [3]. For all x ∈ [0, 1], we set

g(x) = (0.8x− 0.3) + exp
(
−11.534x1.95

)
+ exp

(
−2(x− 0.9)2

)
,

which is L-Lipschitz with L = supx∈[0,1] |g′(x)| ≈ 1.61. The law of X is the restriction of a Gaussian
distribution N (1/5, 1/25) to [0, 1], i.e.,

fX(x) ∝ exp
{
−25

2

(
x− 1

5

)2
}

1[0,1](x).

Finally, we take T = 1.3, so that a standard numerical integration gives p ≈ 2.08 × 10−3. This is
illustrated on Figure 5.1, together with the first step of the algorithm. Recall that the evaluation of g
at point x = 1/2 is useless. Indeed, since 0 < p < 1, the interval Ω = [0, 1] is necessarily classified as
uncertain (i.e., U). Therefore, the first step consists in computing g(1/4) and g(3/4), which correspond
respectively to vertices (1) and (2) of the tree. From this figure, it is easy to see that (1) is classified
as out (i.e., O) while (2) is classified as uncertain (i.e., U). Therefore, there is no need to further
investigate the interval [0, 1/2].
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Figure 5.1. Representation of the function g (black), the pdf fX (blue), the threshold
T (red), the probability p (blue region), and illustration of the first step of the algorithm.

Figure 5.2. Step 4 of the algorithm.

Figure 5.2 represents step 4 of the algorithm, which consists in evaluating g at points x = 25/32
(i.e., vertex (2, 2, 1, 1)) and x = 27/32 (i.e., vertex (2, 2, 1, 2)). These evaluations lead to classify the
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Figure 5.3. Convergence of p−n and p+
n .

interval [24/32, 26/32] as uncertain (i.e., U) and the interval [26/32, 28/32] as included in the failure
domain (i.e., I). At this point, the deterministic lower and upper bounds for p are thus

p−(4) = P(X ∈ [13/16, 1]) ≈ 1.3× 10−3 ≤ p,

and
p ≤ p+(4) = P(X ∈ [12/16, 1]) ≈ 2.5× 10−3,

and the approximation error is simply

p+(4)− p−(4) = P(X ∈ [12/16, 13/16]) ≈ 2.2× 10−3.

Unsurprisingly, one may notice that the upper bound given by Lemma 3.3 is very pessimistic. Indeed,
since d = 1 we know that C ≥ 1 (see Section 2) and this upper bound can be minorized as follows:

CK2−k ≥ 2−4∫ 1

0
exp

{
−25

2

(
x− 1

5

)2
}
dx

≈ 0.148� 2.2× 10−3.

On this toy example, since the law of X is simply the restriction of a Gaussian distribution, it is
easy to have a very precise numerical approximation of P(X ∈ Q) for any dyadic interval Q and, in
turn, for the lower and upper bounds at each step of the algorithm. In other words, we can easily
compute the (deterministic) approximation error. The evolution of these bounds p−n and p+

n as the
number of evaluation points grows is given in Figure 5.3 for a total budget of n = 35 calls to g.

However, in practice, this is usually not possible, hence the use of MCMC techniques as explained
in Section 4.2. On our example, up to a normalizing constant, the pdf fX is defined by

fX(x) ∝ exp
{
−25

2

(
x− 1

5

)2
}

1[0,1](x).

Thus, for any couple of points (x, x′), the Metropolis ratio fX(x′)/fX(x) that appears in (4.3) is very
easy to compute. We have applied this idea for a sample size N = 105 with t = 25 Markov transitions
for each probability estimation. In this respect, Figure 5.4 shows that when N is much larger than the
approximation error, then the latter is much larger than the estimation error. In order to illustrate
Remark 4.6, the asymptotic confidence intervals are also given.

Remark 5.1. For this specific example, the target probability is p ≈ 2.08× 10−3 and we make only
n = 35 calls to the function g. As illustrated on the right-hand side of Figure 5.4, the resulting
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Figure 5.4. Estimators p̂−n,N and p̂+
n,N of p−n and p+

n , together with asymptotic confi-
dence intervals.

(asymptotic) confidence interval has a radius smaller than 10−4, hence a relative precision of order
10−1. For subset simulation (e.g., the last particle idealized variant detailed in [12]), one has

√
n
p̂n − p
p

D−−−→
n→∞

N (0, log(p−1)),

hence a relative precision equal to
√

log(p−1)/n. Consequently, this relative precision is of order 10−1

if n > 600. In addition, as mentioned in the introduction, the number of calls to g to achieve this
precision is of order tn log(n) log(p−1), where t plays the same role as in our algorithm (i.e., one step
of an MCMC algorithm) except that, this time, each step necessitates a supplementary call to g. All
in all, if we take t = 25 as in our method, the total number of calls to g is this time greater than
6 · 106 (instead of 35) if we want to achieve the same precision. Clearly, the method proposed here
outperforms by far subset simulation. However, this comparison is not completely fair for this method
requires specific assumptions on the function g, whereas subset simulation is much more robust.

6. Optimality

We have established in Theorem 2.2 that after n evaluations of the function g, the approximation
error of our algorithm is of polynomial order n−

1
d−1 when d ≥ 2, and of exponential order 2−βn when

d = 1. The aim of this section is to show that these bounds are in a certain sens optimal, meaning
that they cannot be improved by any other (adaptive or not) deterministic algorithm under the sole
general assumptions that we have made on the function g.

6.1. The case d ≥ 2

When d ≥ 2, we consider the following particular case:

• The random variable X is uniformly distributed on Ω = [0, 1]d;

• The function g is defined by g(x) = −x1 for x = (x1, . . . , xd) ∈ Ω;

• The threshold T is equal to 0.

Thus, in this setting, the failure probability p := P(g(X) > 0) is equal to 0. Clearly the function g
satisfies the Lipschitz Assumption 2 with L = 1 and the level set Assumption 3 with M = 1.
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Let us fix an integer n = 2j(d−1)−1 for some j ∈ N? and n arbitrary points x1, . . . , xn in Ω. In the
sequel, we construct a function g̃ on Ω such that

• g(xi) = g̃(xi) for 1 ≤ i ≤ n;

• p̃ := P(g̃(X) > 0) ≥ cn−
1

d−1 ;

• g̃ satisfies Assumptions 2 and 3 with L and M independent of n.

The first fact ensures that any algorithm based on the points (xi)1≤i≤n leads to the same estimation
for p and p̃. The second one ensures that p̃− p is (at least) of order n−

1
d−1 .

First, let us define the face

C := {x ∈ Ω : g(x) = 0} =
{
x ∈ Ω : x1 = 0

}
.

Consider the set
D?j = {Q ∈ Dj : dist(Q, C) = 0}

of dyadic cubes with side length 2−j which intersect C and the set
D̃j = {Q ∈ D?j : xi /∈ Q, i = 1, . . . , n}

of dyadic cubes that intersect C and do not contain any point xi. Since the cardinal of D?j is equal to
2j(d−1) = 2n, the cardinal of D̃j is at least n.

Second, for any cube Q and any x ∈ Ω, let us introduce the piecewise affine function
hQ(x) = dist(x,Qc) = inf

y∈Qc
‖x− y‖∞

where Qc := Ω \Q. The function hQ is thus supported on Q and it is 1-Lipschitz for the `∞ norm.
Finally, consider the function g̃ defined as follows on Ω:

g̃ = g + 2
∑
Q∈D̃j

hQ.

By construction, the functions g and g̃ coincide on the cubes that do not belong to D̃j . In particular,
g(xi) = g̃(xi) for any 1 ≤ i ≤ n.

Additionally, since
∑
Q∈D̃j

hQ is 1-Lipschitz, the function g̃ is 3-Lipschitz, and therefore Assump-
tion 2 holds with L = 3.

For any Q ∈ D̃j , if cQ is the center of Q one has

g̃(cQ) = g(cQ) + 2hQ(cQ) = −2−j−1 + 2−j = 2−j−1.

Therefore g̃(x) > 0 for any x ∈ Q such that ‖x − cQ‖∞ < 2−j−1

3 . As a consequence, since X has a
uniform distribution on Ω and taking into account that n = 2j(d−1)−1, the failure probability associated
to g̃ satisfies

P(g̃(X) > 0) ≥ n3−d2−dj = cn−
1

d−1 ,

where c = 3−d2−
d

d−1 .
Finally, let us prove the validity of the level set Assumption 3 for the function g̃. Just like g, the

absolute value of g̃ is smaller than 2−j on the cubes Q ∈ D?j and larger elsewhere. Therefore, when
δ ≥ 2−j , it is readily seen that

λ ({x ∈ Ω : |g̃(x)| ≤ δ}) ≤ δ.
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For the values δ ≤ 2−j , we know that {x ∈ Ω : |g̃(x)| ≤ δ} is contained in the union of the cubes
Q ∈ D?j . If Q /∈ D̃j , then

λ ({x ∈ Q : |g̃(x)| ≤ δ}) ≤ δ2−j(d−1).

The cubes Q ∈ D̃j are treated by noticing that on such a cube, the function g̃(x) = −x1 + 2hQ(x) is
a rescaled version of the function g∗(x) = −x1 + 2hΩ(x) defined on Ω. The gradient of this function
is piecewise constant with ‖∇g∗(x)‖1 ≥ 1 and therefore |∇g∗(x)| ≥ 1√

d
almost everywhere on Ω. In

addition g∗ vanishes on a polyhedral shaped set S of (d − 1)-dimensional measure 1 < H < ∞ since
in particular g∗(x) = 0 if x1 = 0. Using the coarea formula (2.2), this yields

λ ({x ∈ Ω : |g∗(x)| ≤ δ}) ≤ 2
√
dHδ,

for δ > 0 small enough, and therefore
λ ({x ∈ Ω : |g∗(x)| ≤ δ}) ≤ Bδ,

for all value of δ > 0 up to possibly taking a constant B larger than 2
√
dH. By rescaling

λ ({x ∈ Q : |g̃(x)| ≤ δ}) ≤ Bδ2−j(d−1).

for all δ ≤ 2−j . Summing on all Q ∈ D?j , since H > 1 and |D?j | = 2n, we find that
λ ({x ∈ Ω : |g̃(x)| ≤ δ}) ≤ Bδ.

This shows that Assumption 3 holds with M = B independent of n.
This proves the optimality of the approximation error rate of our algorithm. Indeed, consider any

other deterministic algorithm that, to evaluate P(g(X) > T ), queries (adaptively or not) the function
g at points x1, . . . , xn, and denote pn the approximation of P(g(X) > T ) provided by this algorithm.
Once this is done, denote g̃ as above, i.e., the function associated to the points x1, . . . , xn, and p̃n the
approximation of P(g̃(X) > T ). Since g(xi) = g̃(xi) for 1 ≤ i ≤ n, the (adaptive or not) deterministic
algorithm necessarily queries the function g̃ at the same points x1, . . . , xn, hence pn = p̃n. Now, denote
En the maximal error of this algorithm on the class of functions we consider. Then, by the triangle
inequality, and since pn = p̃n, we may write

|P(g̃(X) > T )− P(g(X) > T )| ≤ |P(g̃(X) > T )− p̃n|+ |P(g(X) > T )− pn|,

so that, since P(g(X) > T ) = 0 and P(g̃(X) > T ) ≥ cn−
1

d−1 ,

cn−
1

d−1 ≤ |P(g̃(X) > T )− P(g(X) > T )| ≤ 2En.

6.2. The case d = 1

The idea is the same as for the case d ≥ 2. More precisely, we consider the following setting:

• The random variable X is uniformly distributed on Ω = [0, 1];

• The function g is defined by g(x) = −x;

• The threshold T is equal to 0.

As in the previous subsection, the failure probability p := P(g(X) > 0) is thus equal to 0, and the
function g satisfies Assumption 2 with L = 1 and Assumption 3 with M = 1.

Let us fix an integer n ∈ N? and n points x1, . . . , xn in Ω. As before, the idea is to construct a
function g̃ on Ω such that

• g(xi) = g̃(xi) for 1 ≤ i ≤ n;
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• p̃ := P(g̃(X) > 0) ≥ c2−n.

• g̃ satisfies Assumptions 2 and 3 with L and M independent of n.

First, we define In+1 := [0, 2−n] and, for 1 ≤ j ≤ n, Ij := [2−j , 2−(j−1)]. To mimic the previous
notation, this set of (n+ 1) intervals is denoted D?n and, accordingly,

D̃n = {I ∈ D?n : ∀i = 1, . . . , n, xi /∈ I}

stands for the set of intervals that do not contain any point xi. Since the cardinal of D?n is equal to
(n+ 1), the cardinal of D̃n is at least equal to 1.

Second, for any interval I and any x ∈ Ω, we consider the 1-Lipschitz function

hI(x) = dist(x, Ic) = inf
y∈Ic
|x− y|.

Finally, we pick one interval J ∈ D̃n and define the function g̃ defined as follows

g̃ = g + 4hJ .

As before, the functions g and g̃ coincide on Ω \ J . In particular, g(xi) = g̃(xi) for any 1 ≤ i ≤ n.

Additionally, the function g̃ is 5-Lipschitz, and therefore Assumption 2 holds with L = 5. Since g̃
vanishes at x = 0 and (at most) at two other points inside J where its gradient is larger than 3, it is
also easily seen that Assumption 3 holds with M = 7/3.

If xJ denotes the center of J , then one has

g̃(xJ) = g(xJ) + 4hJ(xJ) = −3
42−(j−1) + 4× 2−(j+1) = 2−(j+1) > 0,

in the case J = Ij = [2−j , 2−(j−1)], 1 ≤ j ≤ n, and

g̃(xJ) = g(xJ) + 4hJ(xJ) = −1
22−n + 4× 2−(n+1) = 3× 2−(n+1) > 0,

in the case J = In+1 = [0, 2−n]. Since g̃ has Lipschitz constant 5, it follows that {x ∈ Q : g̃(x) > 0}
always contains an interval of length larger than 1

52−n. As a consequence, since X has a uniform
distribution on Ω, the failure probability associated to g̃ is such that

P(g̃(X) > 0) ≥ c2−n,

with c = 1
5 .

This proves the optimality of the approximation error rate of our algorithm.

7. Proof of Theorem 4.4

Consistency and unbiasedness are clear by Remark 4.2. The asymptotic normality is a consequence of
the delta method. Remember that for N ≥ 1 and u, v ∈ T , we denote

CvN :=
N∑
i=1

1X v̄
i ∈Q(v), qN (v) := CvN

N
and pN (u) :=

∏
v∈a(u)

qN (v).

First of all, let us recall the (classical) multidimensional CLT.
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Lemma 7.1 (Multidimensional CLT). For all w ∈ Λ,

qN (w) = CwN
N

a.s.−−−−→
N→∞

q(w).

Let us denote by CN the random vector (CwN )w∈Λ and q the vector (q(w))w∈Λ. We have
√
N

[CN

N
− q

]
D−−−−→

N→∞
N (0,Γ),

where the covariance matrix Γ is given by

Γ(v, w) =


q(v)(1− q(v)) if v = w,

−q(v)q(w) if v 6= w and v̄ = w̄,

0 otherwise.

The expressions of Γ(v, v) and Γ(v, w) when v 6= w and v̄ = w̄ are a consequence of the correspond-
ing result for the multinomial distribution, while the fact that Γ(v, w) = 0 otherwise is due to the
independence of CvN and CwN when v and w do not have the same parent.

From the latter, we immediately deduce that

pN (S) =
∑
u∈S

pN (u) =
∑
u∈S

∏
v≤u

qN (v) a.s.−−−−→
N→∞

p(S).

Next, we may rewrite p(S) as a function of q = (q(v))v∈Λ as follows:

p(S) = F (q) :=
∑
u∈S

∏
v≤u

q(v).

The partial derivative of F with respect to q(v), denoted ∂vF , is given by

∂vF (q) =
∑
u∈S
v≤u

∏
w∈a(u)
w 6=v

q(w) =
∑
u∈S
v≤u

p(u)
q(v) .

If ∇F = (∂vF )v∈Λ is seen as a row vector, the delta method ensures that
√
N(F (qN )− F (q)) D−−−−→

N→∞
N (0, σ2),

where

σ2 = (∇F )Γ(∇F )T =
∑
v,w∈Λ

(∂vF )Γ(v, w)(∂wF )

=
∑
v∈Λ

Γ(v, v)(∂vF )2 +
∑

v 6=w∈Λ
v̄=w̄

Γ(v, w)(∂vF )(∂wF )

=
∑
v∈Λ

q(v)(1− q(v))

∑
u∈S
v≤u

p(u)
q(v)


2

−
∑

v 6=w∈Λ
v̄=w̄

q(v)q(w)

∑
u∈S
v≤u

p(u)
q(v)


∑
u′∈S
w≤u′

p(u′)
q(w)



=
∑
v∈Λ

1− q(v)
q(v)

∑
u∈S
v≤u

p(u)


2

−
∑

v 6=w∈Λ
v̄=w̄

∑
u∈S
v≤u

p(u)


∑
u′∈S
w≤u′

p(u′)

 .
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Let us define

A :=
∑
v∈Λ

1− q(v)
q(v)

∑
u∈S
v≤u

p(u)


2

and B :=
∑

v 6=w∈Λ
v̄=w̄

∑
u∈S
v≤u

p(u)


∑
u′∈S
w≤u′

p(u′)

 .
We have, since (v ≤ u)⇔ v ∈ a(u),

A =
∑
v∈Λ

∑
u∈S
v≤u

p(u)2 1− q(v)
q(v) +

∑
v∈Λ

∑
u6=u′∈S
v≤u
v≤u′

p(u)p(u′)1− q(v)
q(v)

=
∑
u∈S

∑
v∈a(u)

p(u)2 1− q(v)
q(v) +

∑
u6=u′∈S

∑
v∈a(u)∩a(u′)

p(u)p(u′)1− q(v)
q(v) .

Similarly, we get
B =

∑
v 6=w∈Λ
v̄=w̄

∑
u,u′∈S
v≤u
w≤u′

p(u)p(u′) =
∑

u6=u′∈S
p(u)p(u′).

Since a(u) ∩ a(u′) = a(u ∧ u′), this finally yields the claimed expression for σ2.
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