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Abstract. In this study, a new P2 − P1 finite element pair is proposed for incompressible fluid. For this pair,
the discrete inf-sup condition and the discrete Korn’s inequality hold for general triangulations. It yields strictly
conservative velocity approximations when applied to models of incompressible flows. The convergence rate of the
scheme can only be proved to be of suboptimal O(h) order, though, based on the property of strict conservation,
the robust capacity of the pair for incompressible flows is verified theoretically and numerically.
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1. Introduction

The property of conservation plays a key role in the modeling of many physical systems. For the Stokes
problem, for example, if a stable finite element pair can inherit mass conservation, the approximation
of the velocity can be independent of the pressure, and the method does not suffer from the locking
effect with respect to large Reynolds numbers (cf. [9]). The importance of conservative schemes is also
significant in, for example, the nonlinear mechanics [2, 3] and the magnetohydrodynamics [22, 24, 25].
In this study, we focus on the conservative scheme for Stokes-type problems for incompressible flows.
As Stokes-type problems are applied widely for not only fluid problems but also elastic models, such as
the earth model with a fluid core [14], they are immediately connected to many other model problems.
Therefore, their conservative schemes can be relevant and helpful for other equations.

Most classical stable Stokes pairs relax the divergence-free constraint by enforcing the condition in
the weak sense, and the conservation can be preserved strictly only for special examples. However, dur-
ing the past decade, conservative schemes have been recognized more clearly as pressure robustness and
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have been widely studied and surveyed in [17, 20, 27, 35]. This conservation is also connected to other
key features, such as “viscosity-independent” features [39] and “gradient-robustness” features [30] for
numerical schemes. There have been various successful examples using different technical approaches.
Efforts have been devoted to the construction of conforming conservative pairs, but extra structural
assumptions are generally needed for the subdivision and finite element functions. Examples include
conforming elements designed for special meshes, such as Pk − Pk−1 triangular elements for k > 4 on
singular-vertex-free meshes [36]; for smaller k values constructed on composite grids [1, 34, 36, 42, 44];
and the pairs given in [15, 20], which work for general triangulations but with an extra smoothness
requirement and more complicated shape function spaces. A natural way to relax the constraints is
to use H(div)-conforming but (H1)2-nonconforming finite element functions for the velocity. For ex-
ample, in [32], a reduced cubic polynomial space that is H(div)-conforming and (H1)2-nonconforming
was used for the velocity and piecewise constant for the pressure, and the pair was both stable and
conservative on general triangulations. The velocity space of [32] can be recognized as modifying an
H(div)-conforming space by adding some normal bubble-like functions to enforce weak continuity of
the tangential component. Several sequel conservative pairs were constructed in [28, 38, 40]. Gener-
ally, to construct a conservative pair that works on general triangulations without special structures,
cubic and higher-degree polynomials are used for the velocity. In addition, for conservative pairs in
three-dimension, we refer to [21, 43, 46], where composite grids were required, as well as [19] and [45],
where high-degree local polynomials were utilized. Besides, we also refer to [11, 26, 47] for rectangular
grids and [33] for cubic grids, where full advantage was taken of the geometric symmetry of the cells.

In this study, we propose a new P2 − P1 finite element pair on triangulations; for the velocity field,
we use piecewise quadratic H(div) functions whose tangential component is continuous in the aver-
age sense, and for the pressure, we use discontinuous piecewise linear functions. The pair is stable
and immediately strictly conservative on general triangulations. Further, a discrete Korn’s inequality
holds for the velocity. The capability of the pair is verified both theoretically and numerically. When
applied to the Stokes and the Darcy–Stokes–Brinkman problems, the approximation of the velocity is
independent of the small parameters and thus locking-free; numerical experiments verify the validity
of the theory. As the tangential component of the velocity function is continuous only in the average
sense, the convergence rate can only be proved to be of suboptimal O(h) order. However, as the pair
is conservatively stable on general triangulations, it may play superior to some O(h2) nonconservative
schemes numerically in robustness with respect to triangulations and small parameters. The perfor-
mance of the pair on the Navier–Stokes equation is also illustrated numerically. More applications in
other model problems for both the source problems and the eigenvalue problems may be studied in
the future.

The method given uses an H(div)-conforming and (H1)2-nonconforming finite element for the ve-
locity. Indeed, the space given here is a reduced subspace of the second-order Brezzi–Douglas–Marini
element [8] space by enhancing smoothness. This way, the proposed pair is different from most existing
H(div) conforming and (H1)2 nonconforming methods, which propose to add bubble-like basis func-
tions on a specific H(div) finite element space. Moreover, as we use quadratic polynomials only for
velocity, to the best of our knowledge, this is the lowest-degree conservative stable pair for the Stokes
problem on general triangulations. On the other hand, for the newly designed space for velocity, all
the degrees of freedom are located on the edges of the triangulation. It is thus impossible to construct
a commutative nodal interpolator with a non-piecewise-constant pressure space. To prove the inf-
sup condition, we adopt Stenberg’s macroelement technique [37], with a nonstandard macroelement
that consists of three sequential triangles. More stable and conservative pairs may be designed by
reducing other H(div)-conforming elements. The possible generalization of the proposed pair to the
three-dimensional case will also be discussed.

Finally, in addition to the finite element methods mentioned above, an alternative is to construct
specially discrete variational forms onto H(div) functions where extra stabilizations may play roles;
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works such as the discontinuous Galerkin method, the weak Galerkin method, and the virtual element
method all fall into this category. There have been many valuable works of these types, but we do not
seek to give a complete survey of them and thus will not discuss them in the present paper. Natural
connections between the proposed pair and DG-type methods may be expected under the framework
of [23]; along the lines of [4], these connections may be helpful for the construction of optimal solvers
for DG schemes.

The rest of the study is organized as follows. In the remainder of this section, some notations are
given. In Section 2, a new P2 − P1 element method is proposed, and its significant properties are
presented. In Section 3, the convergence analysis of the element applied to the Stokes problem and the
Darcy–Stokes–Brinkman problem is provided. In Section 4, numerical experiments are presented to
reflect the efficiency of the strictly conservative method when compared with some classical elements.

1.1. Notations

Throughout this study, Ω is a bounded and connected polygonal domain in R2. We use ∇, ∆, div,
rot, and curl to denote the gradient, Laplace, divergence, rotation, and curl operators, respectively. As
usual, we use Lp(Ω), Hs(Ω), H(div Ω), H(rot,Ω), Hs

0(Ω), and H0(div Ω) for standard Sobolev spaces.
We denote L˜2

0(Ω) :=
{
w ∈ L2(Ω) :

∫
Ωw dΩ = 0

}
. We use “ ˜ ” for vector-valued quantities. Specifically,

we denote L˜p(Ω) := (Lp(Ω))2 and H˜ s(Ω) := (Hs(Ω))2. We denote, by H−s(Ω) and H˜ −s(Ω), the dual
spaces of Hs

0(Ω) and H˜ s0(Ω), respectively. We utilize the subscript “ ·h” to indicate the dependence
on grids. Particularly, an operator with the subscript “ ·h” implies that the operation is done cell by
cell. We denote ( · , · ) and 〈 · , · 〉 as the usual inner product and the dual product, respectively. Finally,
., &, and =∼ denote 6, >, and =, respectively, up to some multiplicative generic constant [41], which
only depends on the domain and the shape regularity of subdivisions.

Let
{
Th
}
be in a family of triangular grids of domain Ω. The boundary ∂Ω = ΓD ∪ ΓN . Let Nh be

the set of all vertices, Nh = N i
h ∪ N b

h, with N i
h and N b

h being the interior vertices and the boundary
vertices, respectively. Similarly, let Eh = E ih ∪ Ebh be the set of all the edges, with E ih and Ebh being the
interior edges and the boundary edges, respectively. For an edge, e, ne is a unit vector normal to e
and te is a unit tangential vector of e such that ne × te > 0. On e, we use J · Ke for the jump across e.
We stipulate that if e = T1 ∩ T2, then JvKe =

(
v|T1 − v|T2

)
|e if the direction of ne goes from T1 to T2,

and if e ⊂ ∂Ω, then J · Ke is the evaluation on e.
Suppose that T represents a triangle in Th. Let hT and ρT be the circumscribed radius and the

inscribed circles radius of T , respectively. Let h := maxT∈Th
hT be the mesh size of Th. Let Pl(T )

denote the space of polynomials on T of a total degree of no more than l. Similarly, we define the
space Pl(e) on e. We assume that {Th} is a family of regular subdivisions; that is,

max
T∈Th

hT
ρT

6 γ0, (1.1)

where γ0 is a generic constant independent of h.

2. A new P2 − P1 finite element pair

2.1. Construction of a new finite element pair

Let T be a triangle with nodes {a1, a2, a3}(counterclockwise), and ei be an edge of T opposite to ai,
i = 1, 2, 3; see Figure 2.1. Denote a unit outer normal vector of ei and a unit tangential vector of ei
as nT,ei and tT,ei , respectively, such that nT,ei × tT,ei = 1. Let λi, i = 1, 2, 3, denote the barycentric
coordinates.
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Figure 2.1. Illustration of a triangle and its nodes and edges.

The new vector P2 element is defined by the triple (T, PT , DT ):

(1) T is a triangle;

(2) PT := (P2(T ))2;

(3) for any v˜ ∈ (H1(T ))2, the degrees of freedom on T , denoted by DT , are

DT :=


dnT,ei,0(v˜) = −

∫
eiv˜ · nT,ei ds, dnT,ei,1(v˜) = −

∫
eiv˜ · nT,ei(λj − λk) ds,

dnT,ei,2(v˜) = −
∫

eiv˜ · nT,ei(−λjλk + 1
6) ds, dtT,ei,0(v˜) = −

∫
eiv˜ · tT,ei ds,

i = 1, 2, 3, {i, j, k} = {1, 2, 3}


. (2.1)

The above triple is PT -unisolvent. Particularly, we denote

ϕ˜nT,ei
,0 = λj(3λj − 2) tT,ek

(nT,ei , tT,ek
) + λk(3λk − 2)

tT,ej

(nT,ei , tT,ej ) + 6λjλknT,ei ;

ϕ˜nT,ei
,1 = 3λj(3λj − 2) tT,ek

(nT,ei , tT,ek
) − 3λk(3λk − 2)

tT,ej

(nT,ei , tT,ej ) ;

ϕ˜nT,ei
,2 = 30λj(3λj − 2) tT,ek

(nT,ei , tT,ek
) + 30λk(3λk − 2)

tT,ej

(nT,ei , tT,ej ) ;

ϕ˜tT,ei
,0 = 6λjλkti.

(2.2)

Then,

dnT,ei,k
(ϕ˜nT,ej ,l

) = δijδkl, dnT,ei,k
(ϕ˜tT,ej ,0) = 0, dtT,ei,0(ϕ˜nT,ej ,k

) = 0,
and dtT,ei,0(ϕ˜tT,ej ,0) = δij , i, j, k, l = 1, 2, 3. (2.3)

Note that if e is shared by two triangles T1 and T2, then{
dnT1,e,0(v˜) = −dnT2,e,0(v˜), dnT1,e,2(v˜) = −dnT2,e,2(v˜), dtT1,e,0(v˜) = −dtT2,e,0(v˜),but dnT1,e,1(v˜) = dnT2,e,1(v˜), (2.4)

for any function v˜ that is integrable on e.
The corresponding finite element space is defined by

V˜ h :=

v˜h ∈ L˜2(Ω) :
v˜h|T ∈ (P2(T ))2, ∀ T ∈ Th; v˜h · ne
and −

∫
ev˜h · te ds are continuous across e ∈ E ih

 .
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Note that V˜ h ⊂ H˜ (div Ω) but V˜ h 6⊂ H˜ 1(Ω).
We define a nodal interpolation operator Πh : H˜ 1(Ω)→ V˜ h such that for any e ∈ Eh,

−
∫

eΠhv˜ · ne w ds = −
∫

ev˜ · ne w ds, ∀ w ∈ P2(e),

−
∫

eΠhv˜ · te ds = −
∫

ev˜ · te ds.

The operator Πh is locally defined, and the local space V˜ h(T ), restricted on T , is invariant under
Piola’s transformation; that is, it maps V˜ h(T ) onto V˜ h(T̂ ), where T̂ represents a reference trian-
gle. Moreover, Πh preserves quadratic functions locally. Therefore, a combination of Lemmas 1.6
and 1.7 in [9], standard scaling arguments, and the Bramble–Hilbert lemma leads to the following
approximation property of Πh.

Proposition 2.1. If 0 6 k 6 1 6 s 6 3, then

|v˜−Πhv˜|k,h . hs−k|v˜|s,Ω, ∀ v˜ ∈ H˜ s(Ω). (2.5)

Moreover, the following low-order estimate is valid:

‖v˜−Πhv˜‖0,Ω . h1/2‖v˜‖0,Ω‖v˜‖1,Ω. (2.6)

Assume ΓD to be a part of the boundary ∂Ω. We define

V˜ hD :=

v˜h ∈ L˜
2(Ω) :

v˜h|T ∈ (P2(T ))2, ∀ T ∈ Th;

v˜h · ne and −
∫

ev˜h · te ds are continuous

for any e ∈ E ih and vanish for any e ⊂ ΓD

 .
Specially, if ΓD = ∂Ω, V˜ hD is written as V˜ h0. We define

Qh := {q ∈ L2(Ω) : q|T ∈ P1(T ),∀ T ∈ Th}, and Qh∗ := Qh ∩ L2
0(Ω).

Evidently, divV˜ h ⊂ Qh. Therefore, V˜ hD×Qh and V˜ h0×Qh∗ each forms a conservative pair. The sta-
bility and discrete Korn’s inequality also hold. We first introduce an assumption on the triangulations.

Assumption A. Every triangle in Th has at least one vertex in the interior of Ω.

The theorems below, which will be proved in the sequel subsections, hold for triangulations that
satisfy Assumption A.

Theorem 2.2 (Inf-sup conditions). Let {Th} be a family of triangulations satisfying Assumption A.
Then,

sup
v˜h∈V˜hD

∫
Ω div v˜h qh dΩ
‖v˜h‖1,h & ‖q‖0,Ω, ∀ q ∈ Qh, if ΓD 6= ∂Ω, (2.7)

sup
v˜h∈V˜h0

∫
Ω div v˜h qh dΩ
‖v˜h‖1,h & ‖q‖0,Ω, ∀ q ∈ Qh∗. (2.8)

Theorem 2.3 (Discrete Korn’s inequality). Let ε(v˜) := 1
2 [∇v + (∇v)T ]. Then∑

T∈Th

∫
T
|ε(v˜)|2 dT & |v˜|21,h, ∀ v˜ ∈ V˜ hD. (2.9)
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2.2. Proof of inf-sup conditions

Note that the commutativity div Πhw˜ = PQh∗ divw˜ does not hold for all w˜ ∈ H˜ 1
0(Ω), where PQh∗

represents the L2 projection onto Qh∗. To prove the inf-sup conditions (2.7) and (2.8), we adopt the
macroelement technique by Stenberg [37]. We postpone the proof of Theorem 2.2 after some technical
preparations.

2.2.1. Stenberg’s macroelement technique

A macroelement is a connected set of at least two cells in Th. A macroelement partition of Th, de-
noted by Mh, is a set of macroelements such that each triangle in of Th is covered by at least one
macroelement inMh.

Definition 2.4. Two macroelements,M1 andM2, are said to be equivalent if there exists a continuous
one-to-one mapping of G : M1 →M2, such that

(a) G(M1) = M2;

(b) if M1 =
⋃m
i=1 T

1
i , then T 2

i = G(T 1
i ) with i = 1 : m are the cells of M2.

(c) G|T 1
i

= FT 2
i
◦ F−1

T 1
i
, i = 1 : m, where FT 1

i
and FT 2

i
are the mappings from a reference element

T̂ onto T 1
i and T 2

i , respectively.

A class of equivalent macroelements is a set of all the macroelements that are equivalent to each
other. Given a macroelement, M , viewed as a special triangulation, we denote

V˜ h0,M := V˜ h0 on M, Qh,M := Qh on M, and Qh∗,M := Qh∗ on M.

Moreover, we denote

NM :=
{
qh ∈ Qh,M :

∫
M

div v˜h qh dM = 0, ∀ v˜h ∈ V˜ h0,M

}
. (2.10)

Stenberg’s macroelement technique can be summarized as the following proposition.

Proposition 2.5 ([37, Theorem 3.1]). Suppose there exists a macroelement partitioning,Mh, with a
fixed set of equivalence classes Ei of macroelements, i = 1, 2, . . . , n, a positive integer N (n and N
are independent of h), and an operator Π : H˜ 1

0(Ω)→ V˜ h0. Then,

(C1) for each M ∈ Ei, i = 1, 2, . . . , n, the space NM defined in (2.10) is one-dimensional, which
consists of functions that are constant on M ;

(C2) each M ∈Mh belongs to one of the classes Ei, i = 1, 2, . . . , n;

(C3) each e ∈ E ih is an interior edge of at least one and no more than N macroelements;

(C4) for any w˜ ∈ H˜ 1
0(Ω), it holds that∑

T∈Th

h−2
T ‖w˜ −Πw˜‖20,T +

∑
e∈Ei

h

h−1
e ‖w˜ −Πw˜‖20,e . ‖w˜‖21,Ω and ‖Πw˜‖1,h . ‖w˜‖1,Ω.

Then, the stability (2.8) is valid.
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Figure 2.2. Macroelement by three sequential triangles, T1, T2, and T3.

2.2.2. Technical lemmas

In general, the main difficulty to design a stable mixed element stems from (C1). We use the specific
type of macroelements as below.

Definition 2.6. A macroelement, denoted by M , is the union of the three sequential cells connected
by two shared edges. (See Figure 2.2 for a reference.)

Below are concrete definitions of some local defined spaces onM introduced in the previous context.

V˜ h0,M :=

v˜h ∈ L˜2(M) :
v˜h|T ∈ (P2(T ))2,∀ T ⊂M, v˜h · ne and −

∫
ev˜h · te ds are

continuous across interior edges and vanish on ∂M

 ,
Qh,M =

{
qh ∈ L2(M) : qh|T ∈ P1(T ), ∀ T ⊂M

}
,

Qh∗,M =
{
qh ∈ Qh,M :

∫
M
qh dM = 0

}
.

Denote ker(divV˜ h0,M ) :=
{
v˜h ∈ V˜ h0,M : div v˜h = 0

}
and Im

(
divV˜ h0,M

)
= div(V˜ h0,M ). The crucial

lemma below makes this study different from general macroelement argument.

Lemma 2.7. ker(divV˜ h0,M ) = {0}.

Proof. We begin with the detailed structure of the space of divergence-free functions. Let T be
a triangle with nodes {ai, aj , ak} (counterclockwise) and edges {ei, ej , ek} opposite to {ai, aj , ak},
respectively. Denote nT,em as the unit outward normal vector of em and tT,em as a unit tangential
vector of em such that nT,em × tT,em > 0, m ∈ {i, j, k}. Denote the lengths of edges by {li, lj , lk},
and the area of T by S.

Figure 2.3. Degrees of freedom vanish on dotted edges.

Denote
W˜T,ejek

:=
{
v˜ ∈ (P2(T ))2 : div v˜ = 0,

∫
ei

v˜ · tei = 0,
∫
ei

v˜ · neiq = 0, ∀ q ∈ P2(ei)
}
. (2.11)

Namely, W˜T,ejek
consists of vector quadratic polynomials that are divergence-free, and the nodal

parameters associated with ei are equal to zero. Then, dim(W˜T,ejek
) = 5. Indeed, it is easy to see
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curl is a bijection from
{
ψ ∈ P3(T ) : ψ|ei = 0,

∫
ei

∂ψ
∂nei

= 0
}
onto W˜T,ejek

. Further,
{
ψ ∈ P3(T ) :

ψ|ei = 0,
∫
ei

∂ψ
∂nei

= 0
}

=
{
λi · p : p ∈ P2(T ),

∫
ei

∂λi·p
∂nei

= 0
}

=
{
λi · p : p ∈ P2(T ),

∫
ei
p = 0

}
, and

dim(W˜T,ejek
) = dim

(
{p ∈ P2(T ) :

∫
ei
p = 0}

)
= 5.

Now, let ϕ˜ ′s be the basis functions given in (2.2). We can simply calculate the divergence of the
functions and record them into Table 2.1:

Table 2.1. Divergence of basis functions of (2.2)

ϕ˜ ϕ˜T,nj ,0 ϕ˜T,nj ,1 ϕ˜T,nj ,2 ϕ˜T,tj ,0∫
T div(ϕ˜) λi

3l2i−11l2j−3l2k
24lj

3lj
4 −15lj S

2lj∫
T div(ϕ˜) λj −lj

12 0 5lj 0∫
T div(ϕ˜) λk

−3l2i−11l2j +3l2k
24lj

−3lj
4

−5lj
2

−S
2lj

By solving a 8× 3 linear system, generated based on the data of Table 2.1, we can explicitly construct
the five linearly independent basis functions of W˜T,ejek

, which are

w˜T,ej = 2S
3l2j

ϕ˜nT,ej
,1 − ϕ˜tT,ej

,0, w˜T,ek
= − 2S

3l2k
ϕ˜nT,ek

,1 + ϕ˜tT,ek
,0, (2.12)

w˜T,ej ,ek
= − 1

3lj
ϕ˜nT,ej

,1 + 1
10lj

ϕ˜nT,ej
,2 −

2
3lk

ϕ˜nT,ek
,1,

w˜T,ek,ej = − 2
3lj

ϕ˜nT,ej
,1 −

1
3lk

ϕ˜nT,ek
,1 −

1
10lk

ϕ˜nT,ek
,2,

(2.13)

and w˜T,ai = − 1
lj
ϕ˜nT,ej

,0 +
−l2i l2j + 2l2i l2k + l4j + 3l2j l2k − 2l4k

12l3j l2k
ϕ˜nT,ej

,1

+
l2i − l2j + 3l2k

40ljl2k
ϕ˜nT,ej

,2 + 1
lk
ϕ˜nT,ek

,0.

(2.14)

Namely,
W˜T,ejek

= span
{
w˜T,ej , w˜T,ej ,ek

, w˜T,ek,ej , w˜T,ek
, w˜T,ai

}
.

Particularly, w˜T,ej and w˜T,ek
each has vanishing degrees of freedom on two edges.

Now, we turn back to Figure 2.2. Given w˜M ∈ ker(divV˜ h0,M ), by the boundary condition on ∂M ,
w˜M |T1 and w˜M |T3 are both of the (2.12) types. Therefore, by the continuation of degrees of freedom of
w˜M across e2 and e3, v˜M |T2 does not contain a component along ϕ˜nT2,e2,0 , ϕ˜nT2,e2,2 , ϕ˜nT2,e3,0 or ϕ˜nT2,e3,2 .
This implies that v˜M |T2 does not contain a component on w˜T2,a0 (according to ϕ˜nT2,e2,0 and ϕ˜nT2,e3,0),
w˜T2,e2,e3 or w˜T2,e3,e2 (further according to ϕ˜nT2,e2,2 and ϕ˜nT2,e3,2). This implies that v˜M |T2 consists of
functions of the (2.12) type only. However, by the symmetry of nodal parameters across internal edges
(cf. (2.4)), the two functions of (2.12) type on T1 and T2 cannot satisfy the continuity condition on e2
unless they are both zero, and so is on e3. Therefore, w˜M vanishes in the whole macroelement. Thus,
the proof is completed.

Lemma 2.8. For M , a macroelement, the space NM , defined as (2.10), is a one-dimensional space
consisting of constant functions on M .

Proof. First, we show Im
(
divV˜ h0,M

)
= Qh∗,M . As dim(V˜ h0,M ) = dim

(
ker(divV˜ h0,M )

)
+

dim
(
Im(div V˜ h0,M )

)
, we obtain dim

(
Im
(
divV˜ h0,M

))
= dim(V˜ h0,M )−dim

(
ker(divV˜ h0,M )

)
= 8−0 = 8.
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Note that dim
(
Qh∗,M

)
= 3·3−1 = 8 and Im

(
divV˜ h0,M

)
⊂ Qh∗,M , so we derive Im

(
divV˜ h0,M

)
= Qh∗,M .

Then, for any qh ∈ NM , it holds that
∫
M p∗h qh dM = 0, for any p∗h ∈ Qh∗,M . Let qh = qh + q∗h, where

qh = −
∫
Mqh dM and q∗h ∈ Qh∗,M . Then,

∫
M p∗h q

∗
h dM = 0, ∀ p∗h ∈ QM,∗, which yields q∗h = 0, so

qh = qh. Therefore, NM is a one-dimensional space consisting of constant functions on M . The proof
is completed.

Lemma 2.9. Let {Th} be a family of triangulations satisfying Assumption A. Each macroelement in
Mh has one interior vertex. Then, conditions C2, C3, and C4 in Proposition 2.5 are satisfied.

Proof. From Assumption A and the regularity (1.1) of Th, there exists a generic constant, n, indepen-
dent of h, such that condition C2 holds. If e ∈ E ih, then at least one endpoint of e is an interior vertex.
Hence, e is an interior edge of at least one macroelement ofMh. However, e is interior to at most two
macroelements, which occurs if both endpoints of e are interior in Ω. Therefore, the condition C3 also
holds. By Proposition 2.1 and the well-known trace theorem (see, e.g., [6, Theorem 1.6.6]), condition
C4 can be obtained.

2.2.3. Proof of Theorem 2.2

Proof of Theorem 2.2. By Lemma 2.8, Lemma 2.9, and Proposition 2.5, it holds that V˜ h0 ×Qh∗
satisfies the inf-sup condition (2.8). The inf-sup stability of V˜ hD×Qh is proved utilizing the technique
introduced in [29] by the following four steps:
Step 1. Given qh ∈ Qh, let qh = 1

|Ω|
∫

Ω qh dΩ and q∗h = qh − qh. Then, q∗h ∈ L2
0(Ω), and

‖qh‖20,Ω = ‖qh‖20,Ω + ‖q∗h‖20,Ω. (2.15)

Step 2. By (2.8), there exists some v˜∗ ∈ V˜ h0 such that
(div v˜∗h, q∗h) > C1‖q∗h‖20,Ω and |v˜∗h|1,h = ‖q∗h‖0,Ω, (2.16)

where C1 > 0 is a generic constant independent of h.
Step 3. Let ΓN := ∂Ω\ΓD. Notice that qh is constant in Ω. Let v˜h ∈ V˜ hD satisfy that v˜h · ne =
C0qh|e for any e ⊂ ΓN , and other degrees of freedom vanish. The value of C0 is chosen such that
|v˜h|1,h = ‖qh‖0,Ω. Then, it holds with C2 := C0

|ΓN |
|Ω| that

(div v˜h, qh) =
∑
T∈Th

∫
T

div v˜h qh dT =
∑
e∈ΓN

∫
e
v˜h · n qh ds = C2‖qh‖20,Ω. (2.17)

Step 4. Let v˜h = v˜∗h + κv˜h with κ = 2C1C2
(C2)2+2 . By the Schwarz inequality, the elementary inequality,

and (2.15)–(2.17), we obtain
(div v˜h, qh) = (div v˜∗h, q∗h) + κ(div v˜h, qh) + κ(div v˜h, q∗h),

> C1‖q∗h, ‖20,Ω + C2κ‖qh‖20,Ω + κ(div v˜h, q∗h),

> C1‖q∗h‖20,Ω + C2κ‖qh‖20,Ω −
√

2κ
(
C2

2
√

2
|v˜h|21,h +

√
2

2C2
‖q∗h‖20,Ω

)
,

=
(
C1 −

κ

C2

)
‖q∗h‖20,Ω + C2κ

2 ‖qh‖
2
0,Ω = C1(C2)2

(C2)2 + 2‖qh‖
2
0,Ω.

From |v˜∗h|1,h = ‖q∗h‖0,Ω, |v˜h|1,h = ‖qh‖0,Ω, and the Poincaré inequality, we have ‖v˜h‖1,h . ‖qh‖0,Ω. This
completes the proof of (2.7) and the proof of Theorem 2.2.
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2.3. Proof of the discrete Korn’s inequality

For the discrete Korn’s inequality, we follow the lines of [29]. We first introduce an auxiliary element
scheme constructed by adding element bubble functions to the standard Bernardi–Raugel element [5].
We denote

P˜ T :=
(
P1(T )

)2 ⊕ span
{
λ2λ3n1, λ3λ1n2, λ1λ2n3

}
⊕
(
span

{
λ1λ2λ3

})2
.

Define

C˜ h :=

z˜h ∈ H˜ 1(Ω) :
z˜h|T ∈ P˜ T ,∀ T ∈ Th, z˜h(a) is continuous at any a ∈ N i

h,

and −
∫

ez˜h · ne ds is continuos across any e ∈ E ih

 ,
and C˜Nh :=

{
z˜h ∈ C˜ h : z˜h(a) = 0˜, ∀ a ∈ ΓN and −

∫
ez˜h · ne ds = 0, ∀ e ⊂ ΓN

}
, where ΓN = ∂Ω\ΓD.

Here, we are concerned about the case of ΓD 6= ∂Ω, in which the discrete Korn’s inequality plays a
crucial role for outflow conditions.

2.3.1. Technical lemmas

Lemma 2.10. The element pair C˜Nh ×Qh satisfies the inf-sup condition

sup
z˜h∈C˜N

h

∫
Ω div z˜h qh dΩ
|z˜h|1,h & ‖qh‖0,Ω, ∀ qh ∈ Qh. (2.18)

Proof. Let H˜ 1
N (Ω) :=

{
v˜ ∈ H˜ 1(Ω) : v˜ = 0 on ΓN

}
. Define ΠC : H˜ 1

N (Ω) 7→ C˜Nh by

ΠC v˜ (a) = Rh v˜ (a), ∀ a ∈ Nh,∫
e
(ΠC v˜− v˜) · ne ds = 0, ∀ e ∈ Eh,∫
T
x div(ΠC v˜− v˜) dT = 0,

∫
T
y div(ΠC v˜− v˜) dT = 0, ∀ T ∈ Th,

where Rh represents the local L2-projection given in [18, (A.53)–(A.54)]. It can be verified that
(div ΠC v˜, qh) = (div v˜, qh) for any qh ∈ Qh, |ΠC v˜|1,h . |v˜|1,h, and ΠC is a Fortin operator. Hence, the
stability (2.18) is valid [16, Propositions 4.1–4.2].

Lemma 2.11. For any v˜ ∈ V˜ hD and z˜ ∈ C˜Nh , it holds that∑
T∈Th

∫
T
∇v˜ : curl z˜ dT = 0. (2.19)

Proof. Let subscripts “ ·1” and “ ·2” represent the components of the vector in the x and y directions,
respectively. Integration by parts and direct calculation lead to∑

T∈Th

∫
T
∇v˜ : curl z˜ dT =

∑
T∈Th

∑
e⊂∂T

∫
e
(v1∇z1 · tT,e + v2∇z2 · tT,e) ds

=
∑
T∈Th

∑
e⊂∂T

∫
e
(v˜ · nT,e)(g˜T,e · nT,e) + (v˜ · tT,e)(g˜T,e · tT,e) ds, (2.20)

where g˜T,e := ∇z˜ · tT,e, tT,e is the counterclockwise unit tangent vector of T on e, and nT,e represents
the unit outer normal vector. Note that z˜|e ∈ (P1)2 + span

{
φT,e · nT,e

}
, and φT,e is the quadratic

bubble function associated with e in T , so we derive that g˜T,e · tT,e is constant on each e ⊂ ∂T . We
check the right-hand side of (2.20) case by case.
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Case 1. For e ∈ E ih with T1 ∩ T2 = e. Utilizing the continuity of v˜ ·n, nT1,e = −nT2,e, tT1,e = − tT2,e,
and g˜T1,e = − g˜T2,e by z˜ ∈ H˜ 1(Ω), we obtain∫
e
(v˜ · ne,T1)(g˜T1,e · ne,T1) +

∫
e
(v˜ · nT2,e)(g˜T2,e · nT2,e) ds =

∫
e
v˜ · ne,T1(g˜T1,e · nT1,e − g˜T1,e · nT1,e) ds = 0.

At the same time, utilizing the continuity of
∫
e v˜ · t ds across interior edges, and noticing that g˜T1,e ·

tT1,e = g˜T2,e · tT2,e = c, where c represents a constant on e, we have∫
e
(v˜ ·tT1,e)(g˜T1,e ·tT1,e)+

∫
e
(v˜ ·tT2,e)(g˜T2,e ·tT2,e) ds =

(
g˜T1,e ·tT1,e

)(∫
e
v˜ ·tT1,e ds+

∫
e
v˜ ·tT2,e ds

)
ds = 0.

Case 2. For e ⊂ ΓD, v˜ · ne =
∫
e v˜ · te ds = 0, and g˜T,e · te is constant on e ⊂ T . Therefore,∫

e
(v˜ · nT,e)(g˜T,e · nT,e) + (v˜ · tT,e)(g˜T,e · tT,e) ds = 0, ∀ e ⊂ ΓD.

Case 3. For e ⊂ ΓN , we have z˜|e = 0˜ by definition. Hence, g˜T,e = 0˜ for e ⊂ T , and∫
e
(v˜ · nT,e)(g˜T,e · nT,e) + (v˜ · tT,e)(g˜T,e · tT,e) ds = 0, ∀ e ⊂ ΓN .

Namely, the right-hand-side of (2.20) equals zero. The proof is completed.

2.3.2. Proof of Theorem 2.3

Proof of Theorem 2.3. For any v˜ ∈ V˜ hD, ε(v˜)|T = (∇v˜− 1
2 rot v˜ χ)|T , where χ =

( 0 −1
1 0

)
. From (2.18)

and rot v˜ ∈ Qh, there exists some z˜ ∈ C˜Nh such that∫
Ω

div z˜ q dΩ =
∑
T∈Th

∫
T

rot v˜ q dT, ∀ q ∈ Qh and |z˜|1,h . ‖ rot v˜‖0,Ω . |v˜|1,h.
Therefore, ‖∇v˜− curl z˜‖0,Ω 6 |v˜|1,h + |z˜|1,h . |v|1,h, and∑

T∈Th

∫
T
ε(v˜) : (∇v˜− curl z˜) dT =

∑
T∈Th

∫
T

(∇v˜− 1
2 rot v˜ χ) : (∇v˜− curl z˜) dT

=
∑
T∈Th

∫
T
|∇v˜|2 dT − 1

2
∑
T∈Th

∫
T

rot v˜ (rot v˜− div z˜) dT

=
∑
T∈Th

∫
T
|∇v˜|2 dT = |v˜|21,h.

Finally, we have
(∑

T∈Th

∫
T |ε(v˜)|2 dT

) 1
2 >

∑
T∈Th

∫
T
ε(v˜) : (∇v˜−curl z˜) dT

‖∇v˜−curl z˜‖0,Ω
& |v|1,h, and the proof is com-

pleted.

3. Application to conservative flows

3.1. Application to the Stokes equations

Consider the stationary Stokes system:
−ε2∆u˜ +∇ p = f˜ in Ω,

div u˜ = g in Ω,
u˜ = 0, on ΓD.

(3.1)

For simplicity of presentation, we only consider the case of ∂Ω = ΓD herein. Extensions to other
boundary conditions follow directly.
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The discretization scheme of (3.1) reads: Find (u˜h, ph) ∈ V˜ h0 ×Qh∗ such that{
ε2(∇h u˜h,∇h v˜h)− (div v˜h, ph) = 〈f˜, v˜h〉 ∀ v˜h ∈ V˜ h,

(div u˜h, qh) = 〈g, qh〉 ∀ qh ∈ Qh.
(3.2)

Based on the discussions in Section 2, Brezzi’s conditions can be easily verified, and (3.2) is uniformly
well-posed with respect to ε and h.

Theorem 3.1. Let (u˜, p) and (u˜h, ph) be the solutions of (3.1) and (3.2), respectively. The following
estimates hold with 0 < r 6 2:

|u˜ − u˜h|1,h . hr|u˜|r+1,Ω + h|u˜|2,Ω,
‖p− ph‖0,Ω . hr|p|r,Ω + ε2(hr|u˜|r+1,Ω + h|u˜|2,Ω).

Proof. As the mixed element is inf-sup stable and divergence-free, and v˜h · n is continuous, the
following estimates are standard [7, 9, 13]:

|u˜ − u˜h|1,h . inf
w˜h∈V˜h

|u˜ − w˜h|1,h + sup
v˜h∈Z˜h(0)

∣∣∑
e∈Eh

ε2 ∫
e(∇u˜ · ne) · Jv˜hK ds

∣∣
ε2|v˜h|1,h ,

‖p− ph‖0,Ω . ε2|u˜ − u˜h|1,h + inf
qh∈Qh

‖p− qh‖0,Ω + sup
v˜h∈V˜h

∣∣∑
e∈Eh

ε2 ∫
e(∇u˜ · ne) · Jv˜hK ds

∣∣
|v˜h|1,h .

The term infw˜h∈V˜h
|u˜ − w˜h|1,h is bounded by the interpolation error. As

∫
e v˜h ds is continuous across

interior edges and vanishes on ∂Ω, a standard estimate similar to that of the Crouzeix and Raviart
element [12, Lemma 3] leads to∣∣∣∣∣∑

e∈Eh

ε2
∫
e
(∇u˜ · ne) · Jv˜hK ds

∣∣∣∣∣ . ε2h|u˜|2,Ω|v˜h|1,h. (3.3)

Hence, we derive
|u˜ − u˜h|1,h . hr|u˜|r+1,Ω + h|u˜|2,Ω with 0 < r 6 2.

The above estimates together with infqh∈Qh
‖p− qh‖0,Ω . hr|p|r,Ω lead to

‖p− ph‖0,Ω . hr|p|r,Ω + ε2(hr|u˜|r+1,Ω + h|u˜|2,Ω) with 0 < r 6 2.
The proof is completed.

3.2. Application to the Darcy–Stokes–Brinkman equations

Consider the Darcy–Stokes–Brinkman equations:
−ε2∆u˜ + u˜ +∇p = f˜ in Ω,

div u˜ = g in Ω,
u˜ · n = 0, ε u˜ · t = 0 on ∂Ω,

(3.4)

where ε ∈ (0, 1] is a parameter. When ε is not too small, and g = 0, it is a Stokes problem with an
additional lower-order term. When ε = 0, the first equation becomes Darcy’s law for porous medium
flow. Most classic mixed elements fail to converge uniformly with respect to ε when applied to (3.4) [32].

The discretization scheme of (3.4) reads: Find (u˜h, ph) ∈ V˜ h0 ×Qh∗ such that{
ε2(∇h u˜h,∇h v˜h)+ (u˜h, v˜h)− (div v˜h, ph) = 〈f˜, v˜h〉 ∀ v˜h ∈ V˜ h,

(div u˜h, qh) = 〈g, qh〉 ∀ qh ∈ Qh.
(3.5)

As the finite element pair is stable and conservative, Brezzi’s conditions can be easily verified
for (3.5), and it is uniformly well-posed with respect to ε and h, provided

∫
Ω g dΩ = 0. Robust
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convergence can be obtained both for smooth continuous solutions and for the case when the effect of
the ε-dependent boundary layers is taken into account later.

Theorem 3.2. If u˜ ∈ H˜ r+1(Ω) ∩H˜ 1
0(Ω) and p ∈ Hr(Ω) ∩ L2

0(Ω) with 0 < r 6 2, then

‖div u˜ − div u˜h‖0,Ω . hr|u˜|r+1,Ω, (3.6)
‖u˜ − u˜h‖0,Ω + ε|u˜ − u˜h|1,h . hr(ε+ h)|u˜|r+1,Ω + εh|u˜|2,Ω, (3.7)

‖p− ph‖0,Ω . hr|p|r,Ω + hr(ε+ h)|u˜|r+1,Ω + εh|u˜|2,Ω. (3.8)

Proof. Evidently, div u˜h = PQh∗(div u˜), where PQh∗ represents the L2-projection into Qh∗. Therefore,
the first inequality, (3.6), follows from the estimation of the L2-projection. For this conservative pair,
the following estimates are standard (see, e.g., [9] and [32]),
‖u˜ − u˜h‖0,Ω + ε|u˜ − u˜h|1,h

. inf
w˜h∈V˜ h(‖u˜ − w˜h‖0,Ω + ε|u˜ − w˜h|1,h) + sup

v˜h∈Z˜h(0)

∣∣∑
e∈Eh

ε2 ∫
e(∇u˜ · ne) · Jv˜hK ds

∣∣
ε|v˜h|1,h , (3.9)

‖p− ph‖0,Ω . ‖u˜ − u˜h‖0,Ω + ε|u˜ − u˜h|1,h
+ inf
qh∈Qh

‖p− qh‖0,Ω + sup
v˜h∈V˜ h

∣∣∑
e∈Eh

ε2 ∫
e(∇u˜ · ne) · Jv˜hK ds

∣∣
ε|v˜h|1,h . (3.10)

Hence, (3.7) and (3.8) are derived in a similar way as those in Theorem 3.1.

As is mentioned in [32], it may happen that |u˜|2,Ω and |u˜|3,Ω blow up as ε tends to 0. In this case,
the convergence estimates given in Theorem 3.2 will deteriorate, especially when the solution of (3.4)
has boundary layers. To derive a uniform convergence analysis of the discrete solutions, we assume
that Ω is a convex polygon. Let

{
aj := (xj , yj)

}
denote the set of corner nodes of Ω. Define

H1
+(Ω) :=

{
g ∈ H1(Ω) ∩ L2

0(Ω) :
∫

Ω

|g(x, y)|
(x− xj)2 + (y − yj)2 dΩ <∞, j = 1, 2, . . . , l

}
,

with associated norm

‖g‖21,+ := ‖g‖21,Ω +
l∑

j=1

∫
Ω

|g(x, y)|
(x− xj)2 + (y − yj)2 dΩ.

Let (u˜0, p0) solve (3.4) in the case of ε = 0. Then, it is proved in [32] that

ε2‖u˜‖2,Ω + ε‖u˜‖1,Ω + ‖u˜−u˜0‖0,Ω + ‖p− p0‖1,Ω + ε
1
2 ‖u˜0‖1,Ω + ε

1
2 ‖p0‖1,Ω . ε

1
2
(
‖f˜‖rot + ‖g‖1,+

)
, (3.11)

where ‖ · ‖rot := ‖ · ‖0,Ω +‖ rot( · )‖0,Ω is the norm defined in H˜ (rot,Ω). Following the technique in [32],
we can obtain the following uniform convergence estimate.

Theorem 3.3. Let (u˜, p) be the exact solution of (3.4) and (u˜h, ph) be its approximation in V˜ h0×Qh∗.
If f˜ ∈ H˜ (rot,Ω) and g ∈ H1

+(Ω), then

‖ div u˜ − div u˜h‖ . h‖g‖1,Ω, (3.12)

‖u˜ − u˜h‖0,Ω + ε|u˜ − u˜h|1,h . h
1
2 (‖f˜‖rot + ‖g‖1,+), (3.13)

‖p− ph‖0,Ω . h
1
2 (‖f˜‖rot + ‖g‖1,+). (3.14)
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Proof. The first estimate is direct , asdiv u˜ = g. To obtain the second inequality, we first analyze
the interpolation error. By (2.5), (2.6), and (3.11), we have

‖u˜ −Πhu˜‖0,Ω 6 ‖(I−Πh)(u˜ − u˜0‖0,Ω + ‖u˜0 −Πhu˜0‖0,Ω,

. h
1
2
(
‖u˜ − u˜0‖

1
2
0,Ω‖u˜ − u˜0‖

1
2
1,Ω + h

1
2 ‖u˜0‖1,Ω

)
. h

1
2 (‖f˜‖rot + ‖g‖1,+).

(3.15)

At the same time,

ε|u˜ −Πhu˜|1,h . ε|u˜| 121,Ω|u˜ −Πhu˜| 121,h . εh
1
2 |u˜| 121,Ω|u˜| 122,Ω . h

1
2 (‖f˜‖rot + ‖g‖1,+), (3.16)

where we utilize ε|u˜| 121,Ω|u˜| 122,Ω . ε
1
2 |u˜|1,Ω + ε

3
2 |u˜|2,Ω . ‖f˜‖rot + ‖g‖1,+.

By the continuity of v˜h · ne and −
∫
ev˜h · te ds, a standard estimate (see, e.g., [32, Lemma 5.1]) yields∑

e∈Eh
ε2 ∫

e(∇u˜ · ne) · Jv˜hK ds . ε2h
1
2 |u˜| 121,Ω|u˜| 122,Ω|v˜h|1,h. Then, we derive∣∣∑

e∈Eh
ε2 ∫

e(∇u˜ · ne) · Jv˜hK ds
∣∣

ε|v˜h|1,h . εh
1
2 |u˜| 121,Ω|u˜| 122,Ω . h

1
2 (‖f˜‖rot + ‖g‖1,+). (3.17)

A combination of(3.9), (3.15), (3.16), and (3.17) leads to
‖u˜ − u˜h‖0,Ω + ε|u˜ − u˜h|1,h . h

1
2 (‖f˜‖rot + ‖g‖1,+). (3.18)

Again from (3.11), note that ε < 1, so we have
‖p−ΠQh∗p‖0,Ω . h|p|1,Ω . h|p− p0|1,Ω + h|p0|1,Ω . h(‖f˜‖rot + ‖g‖1,+). (3.19)

Hence, by (3.10), (3.18), and (3.19), the last estimate of (3.14) is derived.

4. Numerical Experiments

In this section, we carry out numerical experiments to validate the theory and illustrate the capacity
of the newly proposed element pair. Examples are given as illustrations from different perspectives.

• Examples 4.1 and 4.2 test the method with the Stokes problem, especially its robustness with
respect to the Reynolds number and the triangulations;

• Examples 4.3 and 4.4 test the method with the Darcy–Stokes–Brinkman equation, especially
the robustness with respect to the small parameter, for smooth solutions as well as solutions
with sharp layers;

• Examples 4.5 and 4.6 test the method with the incompressible Navier–Stokes equation, re-
garding evolutionary and steady states.

Three kinds of P2 − P1 pairs are involved in the experiments, namely,

TH: the Taylor–Hood element pair with continuous vector P2 functions for the velocity space and
continuous P1 functions for the pressure space;

SV: the Scott–Vogelius element pair with continuous vector P2 functions for the velocity space and
discontinuous P1 functions for the pressure space;

NPP: the newly proposed P2 − P1 element pair.

All simulations are performed on uniformly refined grids. For the SV pair, an additional barycentric
refinement is applied on each grid to guarantee the stability.
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Example 4.1. This example was suggested in [27] to illustrate the non-pressure-robustness of classical
elements. Let Ω = (0, 1)2. Consider the Stokes equations in (3.1), with ε2 = 1, g = 0, and f˜ =
(0, Ra(1−y+ 3y2))T , where Ra > 0 represents a parameter. No-slip boundary conditions are imposed
on ∂Ω. The exact solution pair is u˜ = 0˜ and p = Ra(y3 − y2

2 + y − 7
12).
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Figure 4.1. Example 4.1: Velocity errors in the no-flow Stokes equations by the TH,
SV, and NPP pairs.

For the continuous problem, different values of Ra result in different exact pressures and the same
exact velocity vector. As is shown in Figure 4.1, for both the SV and NPP pairs, the numerical
velocities are close to zero for different values of Ra. However, for the TH pair, the discrete velocity
is far from zero, even when Ra = 1. It demonstrates the advantage of pressure-robust pairs especially
for problems with large pressures.

Example 4.2. This example was also introduced in [27]. Let Ω = (0, 4)× (0, 2)\[2, 4]× [0, 1]. Consider
a flow with Coriolis forces with the following form{

−ε2∆u˜ +∇p+ 2w˜ × u˜ = f˜ in Ω,
div u˜ = 0 in Ω,

where w˜ = (0, 0, w)T is a constant angular velocity vector. Changing the magnitude, w, will change
only the exact pressure, and not the true velocity solution. Dirichlet boundary conditions are imposed
on ∂Ω; see Figure 4.2 (left). The computed domain and initial unstructured grid are depicted in
Figure 4.2. Simulations are performed with ε2 = 0.01, while w = 100 or w = 1000.

Figure 4.2. Example 4.2: Forward-facing step domain, unstructured mesh (level 1),
and unstructured barycentric mesh for the SV pair (level 1).

Computed velocities (speed) with w = 100 and w = 1000 are depicted in Figures 4.3 and 4.4,
respectively. The solutions computed with the SV and NPP pairs are considerably more accurate
compared with the TH pair. Even on the third-level grid, the advantages of divergence-free elements
are more obvious when w = 1000.

To compare the mesh dependence of these three pairs, we apply them on a structured mesh without
additional barycentric refinement (Figure 4.5). This type of mesh is generally considered of good
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Figure 4.3. Example 4.2 (w = 100 and ε2 = 0.01): Speed obtained by the TH pair
(left column), the SV pair (middle column), and the NPP pair (right column); rows 1 –
3 are results on meshes 1– 3.

Figure 4.4. Example 4.2 (w = 1000 and ε2 = 0.01): Speed obtained by the TH pair
(left column), the SV (middle column), and the NPP pair (right column); rows 1 – 3
are results on meshes 1 – 3.

quality and commonly used. As is shown in Figure 4.6, the simulation by the SV pair turns out to be
unreliable on the grid, while the NPP pair works fine.
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Figure 4.5. Forward-facing step domain and structured non-barycentric mesh.

Figure 4.6. Example 4.2 (w = 100 and ε2 = 0.01): Simulation by the SV pair (middle)
is not as good as the TH pair (left) nor the NPP pair (right) on non-barycentric mesh.

Example 4.3. Let Ω = (0, 1)2. We consider the Darcy–Stokes–Brinkman problem with

u˜ = curl
(
sin2(πx) sin2(πy)

)
= π

(
sin2(πx) sin(2πy)
− sin2(πy) sin(2πx)

)
; p = 2

π
− sin(πx).

The force, f˜, is computed by f˜ = −ε2∆u˜ + u˜ +∇p, and g = div u˜ = 0. The solution is smooth and
independent of ε. The initial triangulation is unstructured, and it is successively refined to maintain
the quality of grids.

In Figure 4.7, we draw convergence curves of the NPP pair with different values of ε, where curves
represent actual error declines, while triangles illustrate corresponding theoretical convergence rates.
As is shown, when 0 < ε < 1, errors in L2-norm are of the O(h2) order and errors in H1-norm are of
the O(h) order. In the limiting case of ε = 0, the L2-norm error reaches the O(h3) order and H1-norm
error reaches the O(h2) order, which is because V˜ h0 is a conforming subspace of H˜ (div Ω).

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

2

1

3

1

10
1

10
2

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

1

1

2

1

Figure 4.7. Example 4.3: Velocity errors in the L2-norm (left) and in the H1-norm
(right) by the NPP method.

In Figure 4.8, we present the errors in the norm ||| · |||ε,h by the TH pair and the NPP pair when
ε = 2−8. Here, |||v˜|||ε,h := ε2|v˜|21,h + ‖v˜‖0,Ω + ‖ div v˜‖20,Ω is the commonly used norm, which combines
the Stokes and Darcy problems. Although the convergence rate of the NPP pair is one order lower
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Figure 4.8. Example 4.3: Errors of velocity in the energy norm by the NPP pair and
the TH pair when ε = 2−8.

than that of the TH pair, the error of the former is smaller (several magnitudes) than that of the
latter in the figure where millions of DOFs have been used on the finest grid. For the NPP pair, the
associated energy error of velocity is close to 10−3, while for the TH pair, it does not reach an error of
10−3 even on the eighth-level mesh. However, as shown in the figure, the degree of freedom of the TH
pair (on the eighth-level mesh) is over 500 times more than the NPP pair (on the third-level mesh).
Example 4.4. Let Ω = (0, 1)2. Consider the Darcy–Stokes–Brinkman problem with

u˜ = ε curl
(
e−

xy
ε
)

=
(
−xe−

xy
ε

ye−
xy
ε

)
; p = −εe−

x
ε .

The boundary layers of the exact velocity, u˜, are shown in Figure 4.9.
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Figure 4.9. Example 4.4: x-component (left) and y-component (right) of the exact
velocity with boundary layers when ε = 2−4.

From Table 4.1, the convergence rate of velocity is approximately one if ε is sufficiently large, and it
decreases to half an order as ε approaches zero, which is consistent with the analysis in Theorem 3.3.
From Table 4.2, the discrete pressure converges at O(h) order, which is higher than the theoretical
estimation O(h1/2) order.
Example 4.5. Let Ω = (0, 1)2. Consider the incompressible Navier–Stokes equations{

∂t u˜ − ε2∆u˜ + (u˜ · ∇)u˜ +∇p = f˜ in Ω,
div u˜ = 0 in Ω,

(4.1)

with the prescribed solution

u˜(x, y, t) =
(

sin(1− x) sin(y + t)
− cos(1− x) cos(y + t)

)
; p = − cos(1− x) sin(y + t).
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Table 4.1. Example 4.4 (with boundary layers): Errors of velocity in the energy norm
by the NPP element.

ε \ h 2.599E-1 1.300E-01 6.498E-02 3.249E-02 1.625E-02 Rate
2−4 2.998E-02 1.147E-02 4.958E-03 2.430E-03 1.228E-03 1.15
2−6 6.589E-02 3.000E-02 1.159E-02 4.228E-03 1.753E-03 1.33
2−8 1.061E-01 6.246E-02 3.238E-02 1.438E-02 5.504E-03 1.07
2−10 1.171E-01 7.906E-02 5.147E-02 3.061E-02 1.601E-02 0.71
2−12 1.234E-01 8.455E-02 5.688E-02 3.848E-02 2.529E-02 0.57

Table 4.2. Example 4.4 (with boundary layers): Errors of pressure in the L2-norm by
the NPP element.

ε \ h 2.599E-1 1.300E-01 6.498E-02 3.249E-02 1.625E-02 Rate
2−4 2.260E-03 8.080E-04 2.884E-04 1.211E-04 5.702E-05 1.34
2−6 2.779E-03 7.880E-04 2.696E-04 9.042E-05 2.938E-05 1.63
2−8 6.283E-03 2.044E-03 5.366E-04 1.273E-04 3.448E-05 1.90
2−10 6.730E-03 3.056E-03 1.339E-03 4.607E-04 1.235E-04 1.43
2−12 6.710E-03 3.044E-03 1.440E-03 7.024E-04 3.216E-04 1.09

In this example, the Crank–Nicolson scheme is used for time discretization, and the Newton lin-
earization is adopted to handle the nonlinear term. To isolate the spatial error, let the time-step
dt = 10−3 and the final time be 10−2. The unstructured subdivisions illustrated in Example 4.2 are
utilized.

As depicted in Table 4.3 with ε2 = 10−6, solutions by the TH pair converge with the O(h3/2) order
in the L2-norm, and by the SV pair, they converge with O(h2) order. It was analyzed in [31] that
the TH pair loses order mainly because it is not pressure-robust, while the suboptimal result of the
SV pair is due to additional error sources arising from the nonlinear term. The NPP pair exhibits a
convergence rate of O(h2) order, which is consistent with its theoretical analysis, and it gives here an
more accurate approximation than the SV pair.

Table 4.3. Example 4.5 (ε2 = 10−6): Errors of velocity in the L2-norm.

TH SV NPP
h ‖(u˜ − u˜h)(T )‖0,Ω Rate ‖(u˜ − u˜h)(T )‖0,Ω Rate ‖(u˜ − u˜h)(T )‖0,Ω Rate
2.599E-01 1.746E-04 – 1.031E-04 – 7.128E-05 –
1.300E-01 6.006E-05 1.54 1.362E-05 2.92 9.407E-06 2.92
6.498E-02 2.158E-05 1.48 1.989E-06 2.78 1.377E-06 2.77
3.249E-02 7.583E-06 1.51 3.561E-07 2.48 2.488E-07 2.47
1.625E-02 2.524E-06 1.59 7.790E-08 2.19 5.455E-08 2.19

Example 4.6. Let Ω = (0, 1)2 be a square domain. Consider the Navier–Stokes equations in (4.1),
with boundary conditions u˜ = (−1, 0)T on the side y = 1 and u˜ = (0, 0)T on the other three sides.
Take ε2 = 10−3.

The backward-Euler time-stepping scheme and the Picard iteration are adopted for this example.
Set the time step to be dt = 0.1. Consider a long time simulation with the final time of 90 to derive
a steady solution. Indeed, as the solution is steady, the choice of time scheme has little influence on
the accuracy of the final solution. Referenced data in a benchmark work [10] are involved to make
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a reliable comparison, where the solutions are derived on a rather fine mesh, that is, a 1024 × 1024
rectangular subdivision of domain Ω. We want to see whether major features of the steady-state flow
can be captured on a coarse mesh with 43× 43× 2 cells.

Isolines of the streamfunction, vorticity, and pressure fields are displayed in Figures 4.10, 4.11,
and 4.12, respectively. Compared with the TH pair, the shapes of contour maps derived by the NPP
pair are closer to the reference solution. In particular, the colormap of pressure obtained by the NPP
pair and the TH pair are quite different; note the difference between the sidebars. By the values given
in [10, Table 1], the NPP pair method gives a more accurate approximation of pressure then the TH
pair does.
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Figure 4.10. Example 4.6 (streamfunction): Isolines given by the NPP pair (middle)
is closer to the reference solution in [10] (right) than the TH pair (left).
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Figure 4.11. Example 4.6 (vorticity): Isolines derived by the NPP pair (middle) is
closer to the reference solution in [10] (right) than the TH pair (left).

Figure 4.13 shows the velocity along the centerlines of the cavity. We can see that the results
computed by the NPP pair are in better agreement with the reference results in [10] than the TH pair.

Moreover, the extremes of the streamfunction and the vorticity are depicted in Tables 4.4 and 4.5,
respectively. Both of them indicate that the NPP pair gives closer results to the benchmark reference
results.
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Figure 4.12. Example 4.6 (pressure): The extreme values of the pressure by the TH
pair (left) is notably different from those by the NPP pair (middle), and the latter is
closer to the reference values given in [10](right).
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Figure 4.13. Example 4.6 (velocity profile): x-velocity through the vertical centerline
x = 0.5 (left), and y-velocity through the horizontal centerline y = 0.5 (right).

Table 4.4. Example 4.6 (streamfunction): Values on the primary and the lower-left
secondary vortices.

Scheme Mesh Primary x y Secondary x y

TH 43× 43 1.0862E-01 0.4688 0.5703 -1.3882E-03 0.1328 0.1094
NPP 43× 43 1.1733E-01 0.4688 0.5703 -1.6221E-03 0.1406 0.1094
Ref. 1024× 1024 1.1892E-01 0.4688 0.5654 -1.7292E-03 0.1367 0.1123

Table 4.5. Example 4.6 (vorticity): Values on the primary and the lower-left sec-
ondary vortices.

Scheme Mesh Primary x y Secondary x y

TH 43× 43 1.8976E+00 0.4688 0.5703 -9.1294E-01 0.1328 0.1094
NPP 43× 43 2.0615E+00 0.4688 0.5703 -9.8718E-01 0.1406 0.1094
Ref. 1024× 1024 2.0674E+00 0.4688 0.5654 -1.1120E+00 0.1367 0.1123
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