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Abstract. We present an efficient solver for the conservative transport equation with variable coefficients in complex
toroidal geometries. The solver is based on a kinetic formulation resembling the Lattice-Boltzmann approach. The
chosen formalism allows obtaining an explicit and conservative scheme that requires no matrix inversion and whose
CFL stability condition is independent from the poloidal dynamics. We present the method and its optimized
parallel implementation on toroidal geometries. Two and three dimensional plasma physics test cases are carried
out.

2020 Mathematics Subject Classification. 35L65, 65M12, 35Q83, 82D10.
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1. Introduction

Physics of tokamak raise a lot of computational challenges. Indeed, a tokamak is an experimental
device designed for creating hot charged particle gas: in such a device, the charged particles are con-
fined thanks to a large magnetic field. Their dynamics involve several multi-scale transport phenom-
ena, which introduces stringent constraints on the discretization parameters and requires high-order
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Figure 1.1. Cartesian coordinates (x1, x2, x3) and cylindrical coordinates (r, z, φ).

schemes. Moreover, tokamak generally has a toroidal shape and presents a cylindrical symmetry around
the vertical axis. The geometry of the poloidal plane, however, can be complicated and unstructured
meshes are required. We thus aim at proposing an efficient numerical scheme for solving conservative
transport equations in such three-dimensional toroidal geometries.

In tokamak, the large toroidal magnetic field results in a scale separation between toroidal and
poloidal dynamics. Indeed, particles exhibit fast transport in the toroidal direction, while the poloidal
dynamics follow incompressible dynamics. Explicit numerical scheme would impose the dependence of
the time step to the mesh through the Courant–Friedrichs–Lévy (CFL) stability condition. Thus, to
avoid too small time steps, the mesh should be perfectly adapted to the very complex three-dimensional
dynamics. This is complicated in practice because the creation of the mesh is often an independent
step of the simulation.

To dissociate the issues of numerical parameters from the mesh construction, CFL-less numerical
methods have been proposed. For transport equations, one of the main such methods is the semi-
Lagrangian one, introduced in [24]. Each iteration consists in computing the foot of the characteristics
issued from the mesh nodes and then interpolating the solution at these points. Several variants have
been proposed, see for instance [3, 21]. This method has been successfully used for full tokamak
simulations in the Gysela code [18]. In these simulations, the computational domain is a torus with
circular sections discretized with a polar mesh. Unfortunately, the standard semi-Lagrangian method
does not easily handle full unstructured meshes, since stability and conservation issues arise. It is
therefore difficult to extend the method to more general geometries.

Indeed, the shapes of the tokamak lead naturally to specific meshes. The domain being axisymmet-
ric, the mesh can be structured in the toroidal direction. However, the poloidal sections of tokamak
can be either circular like in the Tore Supra device [25] but can also have very complex geometry.
The poloidal plane of the tokamak ITER has a so-called D-shape. This geometry is in fact chosen to
optimize the confinement. For instance, the poloidal mesh can be constructed as a multi-patch Bézier
mesh [19].

The numerical methods must naturally be adapted to such meshes both in their structure and
parallelism. After rewriting the conservative transport equation in the cylindrical coordinates (r, z, φ)
(see Figure 1.1), very simple numerical methods can be envisaged in the φ direction (e.g. Fourier
or semi-Lagrangian method). But more sophisticated solvers have to be considered to deal with the
transport in unstructured meshes in (r, z) planes.

In this work, we propose to adapt the CFL-less kinetic solver proposed in [7] to the toroidal geometry.
The method reuses ideas coming from the Lattice-Boltzmann Method (LBM) [6, 16, 23, 26] or from the
kinetic schemes [1, 4]. LBM have been introduced to solve the incompressible Navier–Stokes equation
as well as advection-diffusion equations while kinetic schemes were introduced to solve hyperbolic
systems. Note that generalized LBM have also been proposed for kinetic equations [11, 12]. The main
point is to replace the conservative transport equation, where the velocity field is not constant, by a
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few transport equations at constant velocities, coupled by a stiff local source term. The coupled system
is then solved with a splitting algorithm that separates the free transport steps and the stiff source
terms. The free transport steps are easier to solve, because the transport step is done at constant
velocity.

Here, we consider six constant velocities aligned to the Cartesian axes in the cylindrical coordinates,
whose magnitudes may be different in the poloidal and toroidal directions: this is a so-called D3Q6
model. The magnitudes have to satisfy a so-called sub-characteristic condition to ensure the stability
of the numerical scheme. We would like to emphasize that this condition does not involve the time
and space discretization parameters. Taking different magnitudes enables us to handle a different scale
between transport in poloidal and toroidal directions. Other sets of velocities have been proposed to
better capture multi-scale effects [8, 15] but stability is then more delicate to study. We also refer
to [14] for recent analysis of such schemes.

In order to make the time step independent from the possibly complicated poloidal mesh, the
transport equations at constant velocities in poloidal planes are solved using a CFL-less implicit DG
method [7]. The implicit method has actually an explicit cost because the transport velocities are
constant: the transport scheme is just to invert a block-triangular linear system. For the transport in
the toroidal directions, since the mesh is uniform, an exact transport solve is chosen like in Lattice-
Boltzmann methods. These choices link the time step to the toroidal space discretization but still keep
it independent from the poloidal mesh.

The whole method is conservative. Moreover, it is possible, using an adequate splitting algorithm
with a so-called over-relaxation techniques [10] to achieve second-order accuracy in time. For Lattice
Boltzmann schemes, this has been analyzed in [13]. High order spatial discretization is considered in
the poloidal planes thanks to the DG method, while transport is exact in the toroidal direction. Thus,
we finally obtain a second-order scheme well adapted to manage different dynamics in the poloidal
and toroidal directions.

The resulting scheme has also nice parallelization possibilities. In a poloidal plane, the block-
triangular linear systems resulting from the DG scheme that are well solved by an optimized task-based
implementation [2, 5]. In the toroidal direction, the transport equations are solved by a simple shift
operator. It is here implemented by simple MPI point-to-point communications.

In the following, we first present the whole mathematical, numerical and programming construction.
We then verify its accuracy and efficiency with some pure transport test cases. Finally, in order
to assess the usefulness of the method in more complex framework, we apply our transport solver
to the numerical simulation of the diocotron instability in two-dimensional and three-dimensional
configurations. This plasma physics test cases require to couple the transport solver with a Poisson
solver and make the whole model non-linear.

2. Transport equation and reformulation

We consider the following conservative transport equation:

∂tσ +∇x · (σv) = 0, (2.1)

where the unknown σ(x, t) depends on a space variable x ∈ R3 and of the time t. The velocity field
v(x, t) is given. As we are interested in solving this equation in a toroidal domain, we first rewrite an
equivalent formulation in cylindrical coordinates. We then present its approximation by a system of
transport equation at constant velocities using the Lattice-Boltzmann Method.
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2.1. In cylindrical coordinates

Let us first consider an arbitrary change of coordinates x = x(r). The Jacobian of this change of
variables is denoted by j(r) = det x′(r). In this new set of coordinates, the transport equation (2.1)
becomes:

∂tρ+∇r · (ρu) = 0. (2.2)
where the new unknown ρ(x, t) and the new velocity field u(x, t) are defined by:

ρ(r, t) = j(r)σ(x(r), t), (2.3)
u(r, t) = x′(r)−1v(x(r), t). (2.4)

For tokamak applications, we are particularly interested in the change from Cartesian to cylindrical
coordinates. We denote by x = (x1, x2, x3)T the Cartesian coordinates and by r = (r, z, φ)T the
cylindrical coordinates. The change of variables is given by

x1 = r cosφ,
x2 = r sinφ,
x3 = z.

We also define the cylindrical frame

er =

 cosφ
sinφ

0

 , ez =

 0
0
1

 , eφ = r

 − sinφ
cosφ

0

 .
which is the columns of x′(r). Note that the vector eφ is not a unit vector: its Euclidean norm is equal
to r. From (2.3), we define the new unknown:

ρ(r, t) = rσ(x, t).

Then we introduce the velocity fields u = (ur, uz, uφ)T as defined by (2.4). It is related to v by the
following relation:

v(x, t) =

 v1(x, t)
v2(x, t)
v3(x, t)

 = ur(r, t) er + uz(r, t) ez + uφ(r, t) eφ.

Up to a change of unknowns, the initial conservative transport equation (2.1) has an equivalent
conservative formulation (2.2) in cylindrical coordinates. Therefore, it is possible to solve the transport
equation in cylindrical coordinates as we were in Cartesian coordinates. In particular equation (2.2)
can be rewritten

∂tρ+ ∇(r,z) ·
(
ρ

(
ur

uz

))
+ ∂φ(ρuφ) = 0, (2.5)

and as proposed in this work, we can use a different discretization for the (r, z) and the φ coordinates.
Indeed, the geometry will be supposed to be invariant in the φ direction, which will allow several
optimizations.

2.2. Kinetic relaxation method

For solving the transport equation (2.2), the kinetic relaxation method consists in introducing nv un-
knowns fk(r, t) associated to nv constant kinetic velocities in cylindrical coordinates λk, k = 0 . . . nv−1.
The nv − 2 first velocities are used for solving the transport problem in the (r, z) plane and the last
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two velocities are used for the φ direction. For instance, we can take nv = 6, with 4 velocities in the
poloidal plane

λ0 =

 λp

0
0

 , λ1 =

 −λp

0
0

 , λ2 =

 0
λp

0

 , λ3 =

 0
−λp

0

 ,
and 2 velocities in the toroidal direction

λ4 =

 0
0
λt

 , λ5 =

 0
0
−λt

 ,
where λp > 0 denotes the norm of the kinetic velocities of the poloidal plane and λt > 0 the norm
of the velocities in the toroidal direction. This choice corresponds to the so-called D3Q6 method. We
could also consider only 3 velocities in the poloidal planes which would lead to a D2Q3 method in
the poloidal plane coupled to a D1Q2 method in the toroidal direction. Then the kinetic relaxation
method consists in considering the following kinetic model

∂tfk + λk ·∇rfk = 1
τ

(feq
k − fk), (2.6)

with τ > 0 is the relaxation parameter and feq
k is the so-called equilibrium kinetic distribution defined

by
feq

k = ρ

nv
+ ρu · λk

2∥λk∥2
, (2.7)

with u is the velocity field defined in (2.4) but here ρ is defined by

ρ =
nv−1∑
k=0

fk. (2.8)

The equilibrium kinetic distribution is chosen such that equation (2.6) is an approximation of equa-
tion (2.2). More precisely, in the limit where τ goes to 0, the density ρ defined by (2.8) tends to the
solution to (2.2). This approximation is stable under a so-called sub-characteristic condition. Roughly
speaking, it states that the ellipsoid, whose main axes are aligned to the kinetic speeds λk, has to
contain the velocity field u. More precisely, the model is stable if all the velocities u = (ur, uz, uφ)T

satisfy the following condition
u2

r

λ2
p

+ u2
z

λ2
p

+
u2

φ

λ2
t

⩽
1
3 .

The computations are given in the appendix A. For more details, we refer to [1, 2, 4, 7, 13].
The main interest to transform (2.5) into (2.6) is that now the transport velocities are constant.

This will dramatically simplify the resolution of the equations and allows designing explicit schemes
that are unconditionally stable.

3. Transport solver

In this section we focus on the numerical schemes used for solving the transport equations involved in
the kinetic model (2.6):

∂tfk + λk ·∇rfk = 0, (3.1)
We want to solve them in domains with a cylindrical geometry. Indeed, we recall that, up to a change
of variable (see section 2.1), it enables us to consider toroidal domains as required for tokamak simula-
tions. The starting point is thus a two-dimensional unstructured mesh of one poloidal plane (φ = Cst).
Here it is chosen made of second order curved quadrilaterals with eight nodes (“Q8” family in the finite
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element terminology). Then this mesh is extruded in the φ direction leading to a uniform structured
mesh of space step ∆φ in that direction.

Two different transport solvers are used. For transport in the toroidal direction, we consider an
exact solver to take advantage of the uniform mesh: this corresponds to the Lattice-Boltzmann method
(LBM). For transport in the poloidal planes, we consider an implicit DG scheme. We first details the
two numerical schemes and then briefly present their parallelization.

3.1. Transport in the toroidal direction: LBM

Only the last two kinetic components, fnv−2 and fnv−1, are transported in the toroidal direction. We
solve these transport equations with a simple shift, because of the structured mesh. This writes:

(fnv−2)n+1
j = (fnv−2)n

j−1, (fnv−1)n+1
j = (fnv−1)n

j+1,

where j refers to the poloidal planes index. This requires to link the time step to the space step in the
φ direction: ∆t = ∆φ/λt. This is the classical algorithm used in the Lattice-Boltzmann method.

3.2. Transport in the poloidal direction: implicit DG

Because the poloidal shape can be arbitrary, we have introduced an unstructured mesh and thus
we consider a Discontinuous Galerkin (DG) approximation for transporting the nv − 2 first kinetic
components f0, . . . , fnv−3 whose associated kinetic velocities are poloidal. In order to avoid stability
constraints due to small mesh elements, we consider an implicit solver.

3.2.1. Implicit DG formulation

The objective is to solve a two-dimensional transport equation, with constant velocity

∂tf + λ ·∇(r,z)f = 0.

where f and λ refer to one of the nv − 2 first kinetic component and its associated kinetic velocity.
In each cell L, we consider polynomial basis functions ψL

i of degree p. For efficiency reason, the basis
functions are Lagrange polynomials based on Gauss–Lobatto quadrature points. The transported
function f is approximated in cell L by a linear expansion on the basis functions

f(r, z, n∆t) ≃ fn
L(r, z) =

∑
j

fn
L,jψ

L
j (r, z), (r, z) ∈ L.

The unknowns are the coefficients fn
L,j of the linear expansion.

In order to avoid constraining CFL conditions, we only envisage implicit solvers. We first consider
the simplest first order implicit DG approximation scheme. It reads: ∀L,∀i,∫

L

fn
L − f

n−1
L

∆t ψL
i −

∫
L

λ ·∇ψL
i f

n
L +

∫
∂L

(
(λ · nLR)+fn

L + (λ · nLR)−fn
R

)
ψL

i = 0. (3.2)

where the basis functions ψL
i play the role of test functions, R denotes the neighbor cells along ∂L,

nLR is the unit normal vector on ∂L oriented from L to R (see Figure 3.1) and (λ ·n)+ = max(λ ·n, 0),
(λ ·n)− = min(λ ·n, 0). We thus use an upwind numerical flux. For more details on the DG method,
we refer for instance to [2, 20]. We can rewrite (3.2) in the matrix form

MLf
n
L = MLf

n−1
L + ∆t

ALf
n
L −

∑
LR ∈ ∂L,
λ·nLR>0

BLRf
n
L −

∑
LR ∈ ∂L,
λ·nLR<0

CLRf
n
R

 , (3.3)
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nLR

∂L ∩ ∂R

L

R

Figure 3.1. Normal vector convention.

where ML denotes the mass matrix, AL the volume advection matrix, BLR and CLR the flux advection
matrices between cell L and downwind or upwind cells R: cell R is said to be upwind with respect to
cell L if λ · nLR < 0 and downwind otherwise. Their coefficients are given by

(ML)i,j =
∫

L
ψL

i ψ
L
j , (AL)i,j =

∫
L

(λ · ∇ψL
i )ψL

j ,

(BLR)i,j =
∫

∂L
(λ · nLR)ψL

i ψ
L
j and (CLR)i,j =

∫
LR

(λ · nLR)ψL
i ψ

R
j .

In the above formalism, we only describe a first order time scheme. In practice, we actually use a
second order implicit Crank–Nicolson time stepping. But it is very similar to the above description.

3.2.2. Downwind algorithm

One time-step of the implicit DG scheme consists in computing the distribution function at time tn,
fn from the distribution function fn−1 of the previous time step. From (3.2) it is clear that one has to
solve a linear system, as in any implicit scheme. However, because the kinetic velocity λ is constant
and because we use the upwind numerical flux, the linear system is triangular. It can thus be solved
cell by cell, simply sweeping the mesh in the direction of the velocity vector.

More precisely, expression (3.3) shows that the solution fn depends only on the values of fn in
cell L and in the upwind cells. For a given velocity v we can build a dependency graph. The vertices
of the graph are associated to cells and the edges to the cells interfaces or boundaries. We consider
two fictitious additional vertices: the “upwind” vertex and the “downwind” vertex. The dependency
graph for a simple unstructured mesh and a given constant velocity is represented in Figure 3.2.
The construction can be generalized to any unstructured mesh with flat faces. This flatness condition
ensures that the kinetic velocity crosses the faces in only one direction. This ensures that the graph
does not contain loops. For more details, we refer to [2].

For solving one transport equation for a given constant velocity λ, the algorithm is then the
following:

(1) First we perform a topological ordering of the dependency graph.

(2) First time-step: Assembly, LU decomposition and storage of the local cell matrices. These
computations can also be redone during each time-step for saving memory (but it is more
CPU demanding).

(3) For each cell (in topological order):
(a) Compute volume terms.
(b) Compute upwind fluxes.
(c) Solve the local linear system.
(d) Extract the results to the downwind cells.
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Figure 3.2. Left: Unstructured mesh of the disk, with a constant velocity field λ (in
red). The velocity field is chosen to have a slight angle with respect to the horizontal
axis to better highlight the dependency between cells. Label 12 represent where up-
wind boundary conditions should be provided. Right: Associated dependency graph.
Transport is performed from top to bottom nodes.

For more details on our implementation of the implicit Discontinuous Galerkin method, we refer to [2].

3.3. Parallelization

The whole transport solver is parallelized. We adopt different strategies for the parallelism in the
poloidal directions and for the toroidal direction.

3.3.1. Poloidal parallelism: task graph.

Because of the dependency graph we cannot perform all the computations in parallel. For instance,
for the mesh of Figure 3.2. it is necessary to compute the solution in Cell 9 first. But then Cells 8 and
10 can be computed independently in parallel, etc.

The parallelization is done by a task graph approach. We have tested several implementations. For
more details on the implementation, we refer for instance to [2], where the algorithm is parallelized
with the StarPU runtime, or to [5] where we use a specialized DAG (Direct Acyclic Graph) clustering
algorithm. The DAG algorithm relies on an OpenMP implementation.

3.3.2. Toroidal parallelism: message passing

For the toroidal direction, we associate to each poloidal plane one MPI process. Thus, the shift simply
consists in an MPI send/receive operation with the neighbor poloidal planes. This approach imposes a
constraint on the time step. An alternative would be to replace the shift by a semi-Lagrangian solver.
This would imply exchanges with more neighbors and thus more MPI communications.
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4. Kinetic solver

In this section, we present the whole numerical scheme to solve the kinetic model (2.6) and we validate
it on two and three-dimensional test cases.

4.1. Splitting

The kinetic model (2.6) is solved using a splitting method. Starting from fn
k the kinetic fields at time

step tn = n∆t, we make the following two steps to update them:

(1) We first solve the nv free transport equations

∂tfk + λk ·∇rfk = 0,

using the transport solvers introduced in Section 3. We denote by f∗
k the value of the fields

after the free transport step (3.1).

(2) then the relaxation to the equilibrium distribution, corresponding to the right-hand side
of (2.6), is solved using an over-relaxation process as used in [7, 10, 17]. For obtaining the
new value of the field at time step tn+1, the kinetic fields f∗

k are recombined according to

fn+1
k = ωf∗,eq

k + (1− ω)f∗
k . (4.1)

where ω > 0 is the numerical relaxation parameter. This scheme can be formally derived using
a θ-scheme for the relaxation part of Equation (2.6) and this leads to the following relation:
ω = ∆t/(τ+θ∆t). This relation is actually not taken into account: the actual numerical scheme
considers a given ω, independent from the time step and with no reference to the parameter
τ . We refer to [8] for more details.

For ω = 1, we obtained the classical transport-projection scheme. The over-relaxation formula (4.1)
enables us to obtain second order accuracy in time when the relaxation parameter ω = 2. When
the relaxation parameter satisfies 1 ≤ ω < 2, then the scheme is only first-order accurate and the
time integration introduces a numerical damping. This damping can sometimes be used for numerical
stabilization purpose.

4.2. CFL condition

As we are using an implicit transport solver in the poloidal plane, we want to emphasize that the time
step is not constrained by the poloidal discretization or the poloidal speed λp. The only constraint
comes from the choice of the shift transport solver in the toroidal direction which imposes the relation:
λt∆t = ∆φ. This implies a CFL bound for the toroidal dynamics:

ntor
CFL = λt∆t

∆φ = 1. (4.2)

However, the full CFL number is defined by

nfull
CFL = umax∆t

min(δp,∆φ) (4.3)

where δp > 0 denotes the minimal distance between two interpolation points in the poloidal plane and
umax the maximal advection speed over the simulation. Unlike explicit methods, this CFL number is
not constrained by our scheme and as a consequence, δp can be set without stability considerations,
i.e. independently of the possible advection speed in the toroidal direction.
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4.3. Boundary conditions

In the φ direction, the boundary conditions are naturally periodic. At the poloidal planes boundaries,
we consider Dirichlet boundary conditions. More precisely, in the DG scheme (3.2) if R corresponds
to a boundary, then the unknown value of fR is given by

fR = feq(ρ,u),

where ρ and u are imposed boundary data and feq is given by (2.7).

4.4. Validation in two-dimensional geometry

First we validate the kinetic solver described above in a single poloidal plane. We consider the two-
dimensional rotation of a Gaussian pulse. The pulse is given by

g(r, z, φ, t) = exp(−30 ((r′ − 1)2 + z′2 + φ′2)),

with

r′ = cos(βt)r + sin(βt)z,
z′ = cos(βt)z − sin(βt)r,
φ′ = 0,

and we take β = 1/4. This function satisfies the advection equation

∂tg + u ·∇g = 0,

with

u = β

 −zr
0

 ,
or equivalently the conservative transport equation:

∂tg + ∇ · (gu) = 0,

since the velocity field is divergence free: ∇ · u = 0. We solve this equation in the disk

Ω =
{

(r, z, φ), (r − rt)2 + z2 < 4, φ = 0
}
.

We numerically compute the above solution with two different meshes with refinement levels of 5 and
10 (see Figure 4.2) and with nt = 500 and nt = 1000 time steps. The time step is given by ∆t = 2π/nt.
We take λp = 1, use polynomials of degree 2 in the DG method and ω = 2. The numerical solution is
plotted at time tmax = 2π on Figure 4.1. We observe that the Gaussian shape is well preserved by the
LBM scheme. We also check the order of convergence in the L2 norm. The measured numerical order
is here 2.405, which is consistent with the theoretical order of convergence.

The time scheme is only second order accurate and is thus the limiting factor for the convergence.
Anyway we also check the spatial convergence of the scheme for higher order DG approximation. For
this, we use a sufficiently small time-step in such a way that the error due to the time approximation
is negligible. We perform simulations with two meshes with two different refinements of 10 and 20
(see Figure 4.2). We then obtain the numerical orders of Table 4.1, which is still consistent with the
theoretical order of convergence.
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Figure 4.1. (Validation in two dimensions) Numerical solution at times t = 0 (left)
and t = 2π (right) after the Gaussian pulse has done a quarter turn. Parameters of the
kinetic solver: ∆t = 2π/nt with nt = 1000, ω = 2, λp = 1 and DG of order 2.

Table 4.1. (Validation in two dimensions) Numerical order of the DG scheme for
several values of the polynomial order p. In this test, the time step is chosen in such a
way that the time error is negligible. Parameters of the kinetic solver: λp = 1, ω = 2.

p num. order
1 0.997
2 2.68
3 3.772

4.5. Validation in a 3D periodic cylinder

Now we also activate transport in the third direction. We consider a three-dimensional helical shift of
a Gaussian pulse. The pulse is given by

g(r, z, φ, t) = exp(−30((r′ − 1)2 + z′2 + φ′2)),

with

r′ = cos(2πγt)r + sin(2πγt)z,
z′ = cos(2πγt)z − sin(2πγt)r,
φ′ = φ+ βt.

We can also consider a periodic function in the z direction

g(r, z, φ, t) = exp(−30((r′ − 1)2 + z′2)) sin(πφ′).

and we take γ = 0.04, β = 0.25. This function satisfies the transport equation

∂tg + ∇r · (gu) = 0,
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Figure 4.2. Poloidal meshes with refinements nraf = 5, 10, 20 and 40. The disk is
decomposed into 12 patches and each patch is meshed with n2

raf quadrilaterals, where
nraf is the refinement number.

with the divergence free velocity field

u =

 −2πγz
2πγr
−β

 .
The computational domain is the cylinder

Ω =
{

(r, z, φ), (r − rt)2 + z2 < 4, −1 = φmin < φ < 1 = φmax
}
.

We consider a maximal time tmax = 1. In this way, the Gaussian pulse will move a little bit, without
touching the boundaries in the φ direction. As stated above, parallelism is managed by OpenMP and
MPI. OpenMP is used for optimizing the transport solver in the poloidal planes. MPI communications
are used for the parallelism in the toroidal direction. We recall that parallelism in the φ direction is
directly linked to the number of poloidal planes, as one MPI process is associated to each plane. If,
for instance, we choose np = 64 toroidal planes then the space step in the φ direction equals

∆φ = φmax − φmin
np

,

and there are np MPI processes. Moreover, with a kinetic speed λt = 1 and as we are considering LBM
in the φ direction, the time step is given by

∆t = ∆φ
λt

= 0.03125.

We thus have to perform nt time iterations

nt = tmax
∆t = 32.

In order to check the convergence order, we have considered three different meshes of the poloidal
plane with a refinement of 5, 10, 20 and 40, as represented in Figure 4.2. While refining in the
poloidal direction, we also refine in the toroidal direction by taking 32, 64, 128, 256 poloidal planes or
equivalently MPI processes. We consider the second order DG scheme and we take λp = λt = 1. We
compute the error in the L2 norm and obtain the error curve of Figure 4.3. The order of convergence
based on the 64 and 128 refinement levels is 2.226 (2.155 for 128-256 refinements). In this way, we
have numerically validated the expected accuracy of the full kinetic scheme.
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Figure 4.3. (Validation in three dimensions) L2 error as a function of the refinement
level. Parameters: λt = λp = 1, DG order p = 2.

5. Applications to plasma dynamics

In this section, we apply the transport solver to more complex test cases from plasma physics. We
consider the transport of charged particles in a tokamak along the magnetic field lines. These charged
particles create an electric field and the drift theory then implies that, in the mean, their motion is
perturbed by this electric field.

For validation purpose, we neglect curvature effect and thus consider transport models in straight
toroidal domains. Extension to curved domains will be studied in a future work. Moreover, next
simulations consider annular poloidal planes, but there is no restriction on the geometry of the poloidal
planes. This annular geometry is chosen in order to validate the model on classical test cases.

5.1. Drift-kinetic like model

Here we consider the following simplified model.. The charge density ρ(r, t) is transported according
to equation (2.2) at the drift velocity

u = E × eφ + B, (5.1)
where the electric field E is the gradient of the electric potential V ,

E = −∇rV. (5.2)
and B denotes a magnetic field that is externally imposed, B = (br, bz, bφ)T . In other words, the drift
velocity writes:

u =
(
−∂V
∂z

+ br,
∂V

∂r
+ bz, bφ

)T

.

The electric potential, whose derivative in the φ direction is neglected, is a solution to a Poisson
equation

−∆V = ρ, (5.3)
where the Laplacian operator acts only in the poloidal plane:

∆ = ∂2

∂r2 + ∂2

∂z2 .

We assume homogeneous Dirichlet boundary conditions for the potential. This implies that E × eφ is
tangent at the boundary. If B is also tangent to the boundary, then no mass escapes the domain. This
model, made of the transport equation along B and the poloidal drift is a very simplified drift-kinetic
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model with a unique parallel velocity [18]. Thus we focus on the resolution of the transport dynamics
in the spatial domain and do not consider physical kinetic effect.

From (5.1), (5.2) and (5.3) we see that the drift velocity is obtained from a linear operator applied
to the density

u = u(ρ).
The drift-kinetic model can also be written

∂tρ+∇r · (ρu(ρ)) = 0, (5.4)

and therefore is a non-linear model.
In addition to the transport solver described above, we thus have to implement a poloidal Poisson

solver, which will be applied in each poloidal plane independently. We will test the accuracy of the
coupling between the transport and the Poisson solver. In practice, we use a standard conforming
finite element solver for the Poisson equation. The solver uses the same mesh and the same order of
basis functions as the transport solver. Once the Poisson equation is solved, the electric potential is
computed according to (5.2). The numerical electric field is thus generally time and space dependent
and discontinuous at the interfaces between the DG cells.

Given a stationary solution to the drift-kinetic model, a slight perturbation is applied to this par-
ticular solution. In certain configurations one observes instabilities. The objective of the following two
test cases is to compute numerically the instability rate. In simple geometries the instability rate can
be evaluated by analytical or semi-analytical methods. It is then possible to test the accuracy of the
Lattice-Boltzmann approach. We first consider a two-dimensional diocotron instability and then a
fully three-dimensional instability.

5.2. Two-dimensional diocotron test-case

We suppose that B = (0, 0, 0)T . Then the solution does not depend on φ and we recover the so-called
guiding-center model. The problem is thus indeed two-dimensional. We note α ∈ R+ and θ ∈ [0, 2π),
the polar coordinates in the poloidal plane:

r = α cos θ + rt,

z = α sin θ,

with rt > 0 the radius of the torus. Here the computational domain is a circular annulus defined by

Ω = {(r, z, φ), φ = 0 and αmin ⩽ α ⩽ αmax} .

We will test our solver on the Diocotron test case described in [9, 22]. The density is initialized with
a continuous function

ρ(r, z, φ, t) = ρ̃(α, θ, t) = (1 + ε cos(kθ)) e− (α−α0)2

2σ2 , (5.5)

with σ > 0 and α0 ∈ (αmin, αmax) and where ε > 0 and k ∈ N∗ parametrize the perturbation.
The electric potential V satisfies equation (5.3) with homogeneous Dirichlet boundary conditions at
α = αmin and α = αmax.

For ε = 0 this density is a solution to the drift kinetic model (5.4): indeed the density, and thus
also the potential, has a cylindrical symmetry. Then, because of (5.1), the velocity u is parallel to the
vector (−z, r) and the transport equation leaves the initial density invariant.

When ε > 0, an instability may appear to depend on the parameters αmin, αmax and α0. In this
special case, where the initial condition has cylindrical symmetry, we can estimate the instability
growth rate with a simpler one-dimensional numerical method in order to compare it with the results
of our solver. We explain now this simpler method.
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5.2.1. Instability rate

In polar coordinates in the poloidal plane, the guiding-center model writes

∂tρ̃+ 1
α

(
∂αṼ ∂θρ̃− ∂θṼ ∂αρ̃

)
= 0,

− 1
α
∂α

(
α∂αṼ

)
− 1
α2∂θ2 Ṽ = ρ̃. (5.6)

Let (ρ̃0(α), Ṽ0(α)) be a stationary radial solution to this system. We look for a solution which writes
as the sum of the stationary solution and a small perturbation

ρ̃(α, θ, t) = ρ̃0(α) + ε ρ̃k(α) eikθ e−iηt,

Ṽ (α, θ, t) = Ṽ0(α) + ε Ṽk(α) eikθ e−iηt.

Inserting this ansatz into system (5.6), we obtain

−ηρ̃k(α) + k

α

(
Ṽ ′

0(α)ρ̃k(α)− Ṽk(α)ρ̃′
0(α)

)
= 0, (5.7)

−Ṽ ′′
k (α)− 1

α
Ṽ ′

k(α) + k2

α2 Ṽk(α) = ρ̃k(α). (5.8)

Plugging (5.8) into (5.7), this system can be rewritten as the following equation( 1
α
Ṽ ′

0(α)− c
)(
−Ṽ ′′

k (α)− 1
α
Ṽ ′

k(α) + k2

α2 Ṽk(α)
)

= 1
α
Ṽk(α)ρ̃′

0(α), (5.9)

which is a generalized eigenvalue problem with eigenvalue η/k. We keep the eigenvalue with the largest
imaginary part (if there exists) and the instability rate is then given by ℑ(η).

In the case (5.5), the radial solution is

ρ̃0(α) = e− (α−α0)2

2σ2 .

Moreover, since Ṽ ′
0 is solution to the following elliptic equation

−Ṽ ′′
0 (α)− 1

α
Ṽ ′

0(α) = ρ̃0(α),

we obtain the following expression

Ṽ ′
0(α) = 1

α

(
c1 −

√
π

2α0σ erf
(
α− α0√

2σ

)
+ σ2e− (α−α0)2

2σ2

)
,

and then

Ṽ0(α) =
∫ α

αmin
Ṽ ′

0(α)dα+ c2.

The Dirichlet boundary condition Ṽ0(αmin) = 0 implies that c2 = 0, and Ṽ0(αmax) = 0 implies that∫ αmax
αmin

Ṽ ′
0(α)dα = 0. Therefore, we can approximate c1 with a numerical integration.

For finding out the unstable mode, we discretize the one-dimensional equation (5.9) using a finite
difference method over the interval [αmin, αmax]. We approximate the first and second derivatives of
Ṽk(α) by standard central differences. Finally, the solution of the equation (5.9) is numerically solved
as a generalized eigenvalue problem. Of course, the number of discretization points is taken large
enough, in order to achieve high accuracy.
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5.2.2. Validation

We choose αmin = 1, αmax = 10, and the following parameters for the initial condition (5.5): α0 = 4.5,
σ = 0.5, and k = 2. Using the method described in the above section, we obtain that this initial
condition (5.5) leads to an instability of rate 0.15215.

To validate our code, we have done a dynamic numerical simulation with the full kinetic solver using
the same parameters. We consider λp = 7, use polynomials of degree 2 in the DG method, a time step
∆t = 0.0125 and a relaxation parameter ω = 1.999. We consider a mesh of size Nα ×Nθ = 100× 60.
Density plots are given in Figure 5.1. The execution takes approximately 1.5 hours. We define the
poloidal CFL number by

npol
CFL = vmax∆t

δp
,

with vmax the maximal speed and δp the minimal distance between two interpolation points. In this
case, the CFL number equals 2.35. With such a CFL number, the calculation would be unstable with
a DG explicit method. In Figure 5.2, we plot the k-th Fourier mode in θ of the potential whose formula
is given by:

h(t) = 1
(αmax − αmin)

∫ αmax

αmin

∫ 2π

0
e−ikθṼ (α, θ, t)dαdθ (5.10)

and estimate the slope in the linear growth regime. We observe an instability rate of 0.15123. This is
in accordance with the theoretical instability rate.

Figure 5.1. (Two-dimensional diocotron test case) Density at t = 0 and t = 100.
Parameters: λp = 7, DG order p = 2, ∆t = 0.0125, ω = 1.999.

5.3. Diocotron test-case in a periodic cylinder

We consider now the three dimensional drift kinetic model (2.2)-(5.1)-(5.2)-(5.3) We choose a magnetic
field B oriented in the θ and φ directions

B = (−bθ sin(θ), bθ cos(θ), bφ)T ,

with bθ > 0 and bφ > 0. The computational domain is the cylinder

Ω =
{

(r, z, φ)
∣∣∣∣ αmin ⩽

√
(r − rt)2 + z2 ⩽ αmax, 0 ⩽ φ ⩽ L

}
.

264



Parallel kinetic scheme in complex toroidal geometry

Figure 5.2. (Two-dimensional diocotron test case) k-th Fourier mode of the potential
over time and the instability rate given by the slope of the Fourier mode between t = 20
and t = 60, compared to the theoretical instability rate. Parameters: λp = 7, DG order
p = 2, ∆t = 0.0125, ω = 1.999.

We consider periodic boundary conditions in φ and homogeneous Dirichlet boundary conditions for
the potential Ṽ . We consider the following initial density

ρ(r, z, φ, 0) = ρ̃(α, θ, φ, 0) =
(

1 + ε cos
(
kθ + ℓφ

2π
L

))
e− (α−α0)2

2σ2 .

with σ > 0 and α0 ∈ (αmin, αmax) and where ε > 0 and k, ℓ ∈ N∗ parametrize the perturbation. Like
in the two-dimensional case, we first derive the eigenvalue problem for calculating the instability rate.
We show that this rate does not depend on the perturbation along φ.

5.3.1. Instability rate

With cylindrical coordinates, the system (2.1)-(5.2)-(5.3) becomes

∂tρ̃−
1
α
∂θṼ ∂αρ̃+

( 1
α
∂αṼ + bθ

)
∂θρ̃+ bφ∂φρ̃ = 0, (5.11)

− 1
α
∂α(α∂αṼ )− 1

α2∂θ2 Ṽ = ρ̃. (5.12)

Let (ρ̃0(α), Ṽ0(α)) be a stationary radial solution of this system, which only depends on α and is
constant along the θ and z directions. We look for the equation satisfied by a small perturbation
around this stationary solution

ρ̃(α, θ, φ, t) = ρ̃0(α) + ε ρ̃k,l(α) eikθeiℓφe−iηt,

Ṽ (α, θ, φ, t) = Ṽ0(α) + ε Ṽk,l(α) eikθeiℓφe−iηt,

with ε > 0. We plug this expression into Equations (5.11)-(5.12) and keep only the O(ϵ) terms. We
obtain

−ηρ̃k,ℓ(α)− k

α
ρ̃′

0(α)Ṽk,ℓ(α) + kρ̃k,ℓ(α)
( 1
α
Ṽ ′

0(α) + bθ

)
+ ℓρ̃k,ℓ(α)bφ = 0, (5.13)

− 1
α
∂α(αṼ ′

k,ℓ(α)) + k2

α2 Ṽk,ℓ(α) = ρ̃k,ℓ(α). (5.14)
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Plugging (5.14) into (5.13), we finally get( 1
α
Ṽ ′

0(α) + bθ + ℓ

k
bφ −

η

k

)(
−Ṽ ′′

k,ℓ(α)− 1
r
Ṽ ′

k,ℓ(α) + k2

α2 Ṽk,ℓ(α)
)

= 1
α
ρ̃′

0(α)Ṽk,ℓ(α). (5.15)

which is the same equation obtained in (5.9) for the two-dimensional case, except for the presence of
the term bθ + ℓ

k bφ. Consequently, compared to the 2D case, the eigenvalues are only shifted by this
real value and the instability rate does not change as it is equal to the largest imaginary part of the
eigenvalues.

5.3.2. Validation

The poloidal planes have the same dimension as in the two-dimensional test case (αmin = 1, αmax = 10)
while the cylinder length is taken equal to L = 200. The magnetic field is supposed to have a large
toroidal component compared with its poloidal ones: bθ = 0.1 and bφ = 200. The distribution is
initially concentrated around α0 = 4.5 with a Gaussian distribution of standard deviation σ = 0.5.
Finally, the perturbation is taken of size ε = 10−6 and involves modes k = 2 in the θ direction and
ℓ = 1 in the φ direction.

The numerical parameters of the simulations are as follows. Each poloidal mesh is composed of
4 ×Nα ×Nθ = 4 × 80 × 50 elements. In the toroidal direction, we use np = 128 poloidal planes and
so 128 MPI processes. Consistently with the involved advection velocities, we choose kinetic speeds of
norm λp = 7 in the poloidal plane and λt = 600 in the toroidal direction. The time step is thus equal
to ∆t = L/(npλt) = 0.002604 and the relaxation parameter is chosen equal to ω = 1.99.

Figure 5.3 shows the time evolution of the density and Figure 5.4 the density at final time tmax = 100
for different poloidal planes. As expected, we can observe that the density in the poloidal planes are
identical up to a rotation. As time goes on, two vortices develop and lead to fine structures in the
poloidal planes as in the two-dimensional case. The computation takes 26 hours.

We would like to emphasize that the full CFL number, defined in (4.3), takes the value 33.17. This
is due to the very fast speed in the toroidal direction which is not resolved by the poloidal plane mesh.
Indeed, the minimal distance between interpolation points in the poloidal planes equals δp = 0.01570
and the time step is not small enough to capture speed of order 200 for this fine resolution. An explicit
scheme would require either decreasing the time step and thus increasing the toroidal discretization, or
a coarser poloidal mesh at the cost of a loss of accuracy. Consequently, explicit schemes would not be
able to cope with both the large velocity in the toroidal direction and a very fine grid in the poloidal
plane.

In Figure 5.5, we plot the time evolution of quantity (5.10) integrated along φ. We compare the the-
oretical instability rate computed before (see Sec. (5.3.1)) to the one obtained by the three-dimensional
kinetic solver. We expect an instability rate of 0.15215, and we obtain 0.15061, which again validates
the kinetic solver.

When we decrease the number of MPI processes np, the number of planes in the poloidal direction
decrease and the poloidal discretization step ∆φ is then smaller. Figure 5.6 shows the densities obtained
at time tmax = 100 for the poloidal plane φ = 0 for np = 32, np = 64 and np = 128. As the number
of MPI processes decreases, we observe that the solution is less and less precise and dispersion effect
are more and more present. This is mainly due to the increase of the time step imposed by the
Lattice-Boltzmann method. Other toroidal solver will be studied in future works.

5.4. Parallel efficiency: weak scaling

Now, we want to compare the time of execution for different numbers of MPI processes np. We keep
the parameters used in the section 5.3, we only reduce the final time to tmax = 1, in order to get
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Figure 5.3. (Three-dimensional diocotron test case) Four successive instants of the
3D solution showing cross sections of density colormaps and density isosurface colored
by the potential. Parameters: λp = 7, λt = 600, DG order p = 2, ω = 1.99, np = 65.

Figure 5.4. (Three-dimensional diocotron test case) Density at tmax = 100 for the
poloidal planes φ = 0, φ = L

4 , φ = L
2 and φ = 3L

4 . Parameters: λp = 7, λt = 600, DG
order p = 2, ω = 1.99, np = 128.

shorter computations. As we have ∆t = L
npλt

, if the MPI communication time is neglected, we expect
the time to double when the number of MPI processes is multiplied by 2. We perform numerical
computations with np = 6, 12, 24, 48 and 96 MPI processes. We obtain the CPU time evolution of
Figure 5.7. We observe a correct scaling of the parallel method when the number of MPI processes
increases. We emphasize that for this test we have deactivated the OpenMP acceleration on each MPI
node. For harnessing the OpenMP acceleration, we should run the code on a larger parallel computer.

267



M. Boileau, B. Bramas, et al.

Figure 5.5. (Three-dimensional diocotron test case) Instability rate observed com-
pared to the theoretical one. Parameters: λp = 7, λt = 600, DG order p = 2, ω = 1.99,
np = 128.

Figure 5.6. (Three-dimensional diocotron test case) Density at tmax = 100 in the
poloidal plane φ = 0 obtained with np = 32, np = 64 and np = 128. Parameters: L = 1,
λp = 7, λt = 3, DG order p = 2, ω = 1.99.
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Figure 5.7. (Parallel weak scaling) Time of execution according to the number of
MPI processes.
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6. Conclusion

In this work, we have proposed a new optimized numerical method for solving non-homogeneous
conservative transport equations in toroidal geometries. The method is conservative, high-order in
space and time and has the complexity of a time-explicit scheme. It is also able to handle unstructured
meshes of the poloidal plane, which is very useful for numerical simulations in tokamaks, like ITER.
Finally, it presents many features that allow an efficient parallelization.

The method has been first validated on academic transport test cases. The method has then been
applied to more physical configurations. The transport has been coupled with a toroidal Poisson solver
for computing the electric potential generated by the charge density motion. In this framework, we
have been able to validate the method on the estimation of diocotron instability rates.

We are currently working on the extension of the method to other physical models: with more
realistic toroidal geometries, more complex transport models, several populations of particles, and
richer gyrokinetic models. We also plan to run the solver on larger supercomputers.

Appendix A. Subcharacteristic stability condition

We consider the kinetic model (2.6). The sub-characteristic stability condition is a stability condition
associated to the equivalent equation of (2.6) in the limit τ → 0. Indeed, in that asymptotic, the
equivalent equation writes:

∂tρ+∇r · (ρu) = τ ∇r · (D∇rρ) +O(τ2),

where the O(τ) term involves a diffusion matrix given by:

D =


λ2

p

3 − u
2
r −uruz −uruφ

−uruz
λ2

p

3 − u
2
z −uzuφ

−uruφ −uzuφ
λ2

t
3 − u

2
φ

 .
We refer to [4] for the derivation of this equivalent equation. For this equation to be L2 stable,
this diffusion matrix has to be positive definite: this is the sub-characteristic condition. Here, the
eigenvalues of D are

d1 =
λ2

p

3 , d2 = 1
2

(
−α+

λ2
p + λ2

t

3 − ∥u∥2
)
, d3 = 1

2

(
α+

λ2
p + λ2

t

3 − ∥u∥2
)
,

with

α =

√√√√(λ2
p + λ2

t

3 − ∥u∥2
)2

+ 4
λ2

p

3

(
u2

φ −
λ2

t

3

)
+ 4λ

2
t

3 (u2
r + u2

z).

As d1 is always positive and d2 ⩽ d3, the model is stable if and only if d2 ⩾ 0 or equivalently

λ2
p + λ2

t

3 − ∥u∥2 ⩾ α

After some easy computations, we find that this is also equivalent

u2
r

λ2
p

+ u2
z

λ2
p

+
u2

φ

λ2
t

⩽
1
3 ,

which states that all the velocity field u have to belongs to the ellipsoid with parameters
(

λp√
3 ,

λp√
3 ,

λt√
3

)
.
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