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Abstract. We consider an electron in a localized potential submitted to a weak external, time-dependent field. In
the linear response regime, the response function can be computed using Kubo’s formula. In this paper, we consider
the numerical approximation of the response function by means of a truncation to a finite region of space. This is
necessarily a singular approximation because of the discreteness of the spectrum of the truncated Hamiltonian, and in
practice a regularization (smoothing) has to be used. Our results provide error estimates for the response function
past the ionization threshold with respect to both the smoothing parameter and the size of the computational
domain.
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1. Introduction

Consider a molecule in its electronic ground state, to which an external time-dependent electric field is
applied. The resulting change in the electronic density can be computed using linear response theory,
resulting in a quantity K̂(ω) describing the response at frequency ω. To compute it in practice, the
domain of computation has to be truncated to a region of size L, yielding an approximate response
function K̂L(ω). Since the dynamics on the full space and on a finite region of space are qualitatively
different, K̂L is qualitatively different from K̂: in particular, even when K̂ is a regular function,
K̂L is always a singular distribution, reflecting the discreteness of the spectrum of the Hamiltonian.
Numerical computations of spectra in quantum chemistry are often regularized, more or less explicitly,
with convergence to the true K̂ not always clear [18]. This paper aims to answer on a simple model
the following question: in which sense does K̂L converge to K̂, and with what convergence rate?

Practical numerical computations for real molecules use approximations to the intractable non-
relativistic full many-body problem. One of the most popular such approximation is the time-dependent
density functional theory in the adiabatic local density approximation. Considering a d-dimensional
system of N electrons in a potential V created by nuclei and an external forcing potential εf(t)VP ,
this takes the form (using a system of units where all the constant prefactors are set to 1, and ignoring
spin)

i∂tγ = [−∆ + V + VHXC(γ), γ] + εf(t)[VP , γ],
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M.-S. Dupuy & A. Levitt

where ε is a small parameter, f(t) is a continuous causal function (i.e. f(t) = 0 for t < 0), VP is a
perturbing potential, and the initial state γ(0) is a solution of the stationary Kohn–Sham equations

[−∆ + V + VHXC(γ(0)), γ(0)] = 0.

The density matrix γ is an orthogonal projector of rankN on L2(R3). The Hartree-exchange-correlation
potential is given by

VHXC(γ)(x) =
∫
R3

ργ(y)
|x− y|

dy + vLDA(ργ(x))

where ργ(x) = γ(x, x) is the density associated with the density matrix γ, and vLDA(ρ) is an explicit
function (calibrated on the uniform electron gas). Mathematically, this is a complicated nonlinear
integro-differential equation. Although existence, uniqueness and various properties of this and related
equations has been studied mathematically in various regimes [11, 15, 30, 33], the linear response theory
and its numerical approximation has not, to the best of our knowledge.

The above model is complicated, and for the purposes of mathematical analysis we will consider
in this paper the drastic over-simplification VHXC = 0. We will also take N = 1 for notational sim-
plicity, although this is not essential and the results of this paper also apply to the case N > 1 (see
Section 3.4.3). Then the non-perturbed system is described by the Hamiltonian

H = −∆ + V, (1.1)
with V decaying at infinity in a sense to be made precise. The Hamiltonian H is self-adjoint on
L2(Rd), with possible negative eigenvalues and continuous spectrum [0,∞). Assume that there is a
simple lowest eigenvalue E0 < 0, with associated eigenfunction ψ0. The evolution of ψ is given by the
time-dependent Schrödinger equation

i∂tψ = Hψ + εf(t)VPψ, ψ(0) = ψ0 (1.2)
If VO is a potential representing an observable, to first order in ε, we have for all t ∈ R the first order
expansion

⟨ψ(t), VOψ(t)⟩ = ⟨ψ0, VOψ0⟩ + ε(K ∗ f)(t) +O(ε2), (1.3)
proven in our setting in Proposition 3.1. The function

K(τ) = −iθ(τ)
〈
VOψ0, e

−i(H−E0)τVPψ0
〉

+ c.c., (1.4)

is the response function. For instance, when VP = −xβ and VO = xα, then K(t) is the polarizability
impulse response: the dipole response at time t in the direction α of the system to an impulse uniform
field at time 0 in the direction β.

Mathematically, K is a continuous causal function of at most polynomial growth, and has a distri-
butional Fourier transform

K̂(ω) = lim
η→0+

〈
ψ0, VO

(
ω + iη − (H − E0)

)−1
VPψ0

〉
−
〈
ψ0, VP

(
ω + iη + (H − E0)

)−1
VOψ0

〉
, (1.5)

where the limit is taken in the sense of distributions, and η → 0+ means the one-sided limit as η
converges to zero by positive values. Using a spectral resolution of H =

∫
R λ dP (λ), where dP (λ) is a

projection-valued measure, one can formally rewrite it as

K̂(ω) = lim
η→0+

∫
R

⟨VOψ0, dP (λ)VPψ0⟩
ω + iη − (λ− E0) − ⟨VPψ0, dP (λ)VOψ0⟩

ω + iη + (λ− E0) .

The distributional limit (Plemelj–Sokhotski formula)

lim
η→0+

1
x+ iη

= lim
η→0+

x

x2 + η2 − i
η

x2 + η2 = p.v.1
x

− iπδ0, (1.6)
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Finite-size effects in response functions of molecular systems

where p.v. stands for the Cauchy principal value, shows that K̂ is a singular distribution at the
excitation energies ω = ±(En − E0), where En are the eigenvalues of H other than E0. Past λ > 0
however, the spectrum of H is continuous, and therefore for |ω| > −E0, the nature of K̂ depends
on that of ⟨VOψ0, dP (|ω| − E0)VPψ0⟩. Under certain conditions, one can prove that this quantity is
regular: this is one avatar of a limiting absorption principle. Such principles have a long history in
mathematical physics, and are a first step towards scattering theory [1, 31]. Physically, this corresponds
to ionization: the electron, under the action of the forcing field, dissolves into the continuum and
goes away to infinity. The structure of the response at higher orders might be very complex; see for
instance [17] for a case study of ionization in the non-perturbative regime in a simple model.

The formula (1.4) and its generalizations (to several particles as well as various thermodynamical
ensembles) is extensively used in quantum chemistry and solid-state physics, where it is variously
known as the Kubo formula [24], or simply as linear response theory [28]. It can be extended to
mean-field theories such as time-dependent density functional theory, using the Casida or Sternheimer
formalism [13, 36]. In the context of molecules, the response function K̂ contains valuable physical
information and can be used to compute macroscopic properties such as photo-absorption spectra
(and therefore, for instance, the color of chemical compounds), which can be directly compared to ex-
periment. Physically relatively crude approximations like adiabatic time-dependent density functional
theory generally give good results for photo-absorption spectra of small molecules [6]. Such approxima-
tions fail to reproduce more involved properties or more complex molecules or solids, although these
can be corrected in certain cases using more complicated theories such as the Bethe–Salpeter equation.
Computationally, linear response adiabatic time-dependent density functional theory is non-trivial but
tractable for molecules of small to moderate size, and such computations are routinely performed in
quantum chemistry [28]. Practical implementations involve several layers of approximations, with the
problem of convergence of the response past the ionization threshold with respect to the computational
domain known to be particularly difficult [18].

Consider a box [−L,L]d with Dirichlet boundary conditions, giving rise to a (semi-)discretized op-
erator HL. In practice, this box is further discretized onto a grid for instance; however the convergence
as a function of the grid size is a different, more standard problem, which we do not consider in this
paper. From HL we can define a response function KL and its Fourier transform K̂L, similarly to the
definition of K and K̂ in (1.5). Note that HL has compact resolvent and a discrete set of eigenvalues,
tending to infinity. Therefore K̂L is a singular distribution, reflecting the fact that complete ionization
is not possible in a finite system. A smooth function can be obtained by computing K̂L(ω + iη) at
finite nonzero η, which blurs the discrete energy levels into a continuum, and physically corresponds
to adding an artificial dissipation. This however results in a distortion of the true response function. In
physically relevant three-dimensional computations, for instance using time-dependent density func-
tional theory, obtaining converged spectra requires a manual selection of an appropriate η parameter.
Furthermore, only moderate values of L can realistically be taken, and convergence is often slow and
unpredictable [18]. The main contribution of our paper is to clarify in which sense K̂L converges to
K̂, and to quantify sources of error due to finite η and L.

The mathematical and numerical analysis of ground state properties of molecular systems is by now
relatively well established. At finite volume the convergence of a number of numerical methods for
various mean-field models has been established [7]. Finite-size effects have been studied mathematically
in periodic systems [8, 21, 22]. However, although a number of authors have focused on establishing
the validity of linear response theory [4, 5, 10, 35], and studying its properties [12, 29], work on the
numerical analysis of response quantities remains scarce. In particular, we believe our work to be the
first to address rigorously the important question of ionization in this context.

The Kubo formula, the limiting absorption principle and the locality estimates we use are all
established mathematically; the main contribution of this paper is to use these tools in the numerical
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approximation of response functions on unbounded domains, which has never been addressed rigorously
before. When possible, we present explicit and self-contained proofs in the hope of making this paper
accessible to numerical practitioners. We mostly follow the classical paper of Agmon [1] to show the
required limiting absorption principle.

The outline of this paper is as follows. We introduce our notations and assumptions in Section 2
before stating our main results in Section 3, and illustrating them numerically in Section 4. We then
show the Kubo formula (1.3) in Section 5, study the limiting absorption principle and the properties
of K̂ in Section 6, and its numerical approximation in Section 7. The appendices contain standard
trace and resolvent estimates.

2. Notations and assumptions

We work in d space dimensions. Following conventions usual in quantum mechanics, we use

f̂(ω) =
∫
R
eiωtf(t)dt, (Ff)(q) =

∫
Rd
e−iq·xf(x)dx

for the Fourier transforms in time and space respectively. The unusual sign in the time Fourier trans-
form is done so that the elementary solution e−iEt to the Schrödinger equation has a Fourier transform
localized on {E}.

For k ∈ N, 0 ≤ α ≤ 1, Ck,α denotes the space of k times continuously differentiable functions with a
Hölder α continuous k-th derivative. We denote by L2(Rd) the Lebesgue space, by Hk(Rd) the Sobolev
space, by S(Rd) the space of Schwartz functions and by S ′(Rd) the space of tempered distributions.
When left unspecified, ∥ · ∥ refers to the L2(Rd) norm. For a weight function w : Rd → (0,∞), we
denote by

L2(w) =
{
ψ, ψw ∈ L2(Rd)

}
Hk(w) =

{
ψ, ψw ∈ Hk(Rd)

}
the weighted spaces, with naturally associated Hilbert space structure. We use the Japanese bracket
convention ⟨x⟩ =

√
1 + |x|2 for the regularized norm. Spaces of particular interest are L2(⟨x⟩n), the

space of polynomially decaying functions of exponent n, and L2(eα⟨x⟩) and exponentially decaying
functions with rate α. We will use in proofs only the notation a ≲ b to mean that there exists C > 0
such that a ≤ Cb, where the dependence of C on other quantities is made clear in the statement to
be proved.

We first assume a strong regularity on V .

Assumption 1 (Smoothness of V ). The potential V : Rd → R is smooth (infinitely differentiable)
with bounded derivatives of any order.

This strong assumption is only required to establish the existence of a propagator in Proposi-
tion 3.1, using the results of [19], and of the linear response function K̂ given by the Kubo formula
(Equation (3.3)). It could significantly be relaxed for the other results in this paper, as our focus is
on the properties of K̂, which are related to the behavior at infinity of the potential.

More important are the decay properties of V .

Assumption 2 (Decay of V ). There is ε > 0 such that |x|2+εV (x) is bounded.

This assumption is to establish the differentiability of the resolvent on the boundary; see remarks
after our main result for possible extensions to potentials decaying less quickly.

Under these two assumptions, as is standard, H has domain H2(Rd), and continuous spectrum
[0,∞); in particular, there are no embedded eigenvalues in [0,∞) [32, Theorem XIII.58].
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Assumption 3 (Non-degenerate ground state). There is at least one negative eigenvalue. The lowest
eigenvalue E0 is simple. We denote by ψ0 the unique (up to sign) associated normalized eigenfunction.

We establish our results for the ground state for concreteness, but this is not crucial: the same
results would be valid for any simple eigenvalue.

Assumption 4 (Observable and perturbation). The observable VO : Rd → R and perturbation VP :
Rd → R are infinitely differentiable and sub-linear: for all |α| ≥ 1, ∂αVO and ∂αVP are bounded.

In particular this allows the potentials xi, in which case the response functions are the dynamical
polarizabilities. Again this is to establish the existence of a propagator in Proposition 3.1. Our results
from then on only require potentials growing at most polynomially, and could also be extended to
accomodate more general operators (such as the current operator).

3. Main results

3.1. Kubo’s formula

We first give Kubo’s formula in our context and define the response function K.

Proposition 3.1 (Kubo). For all causal functions f ∈ L∞(R) (i.e. f(t) = 0 for all t ≤ 0), for all
0 < ε < 1, the Schrödinger equation

i∂tψ = Hψ + εf(t)VPψ, ψ(0) = ψ0

has a unique strong solution for all times. Furthermore,

⟨ψ(t), VOψ(t)⟩ = ⟨ψ0, VOψ0⟩ + ε(K ∗ f)(t) +Rε(t) (3.1)

with

|Rε(t)| ≤ Cε2∥f∥2
∞(1 + |t|8)

for some C > 0 independent of t, ε. The response function K is defined by

K(τ) = −iθ(τ)
〈
VOψ0, e

−i(H−E0)τVPψ0
〉

+ c.c., (3.2)

where z + c.c. is a notation for z + z, and θ is the Heaviside function. It is continuous, of at most
polynomial growth, and causal.

The proof of this proposition is given in Section 5. The expression for K results from a Dyson expan-
sion, and the bound on Rε(t) from a control of the growth of moments of ψ(t) using the commutator
method.

Since K is causal and of at most polynomial growth, one can define its Fourier transform in two
different senses: as a tempered distribution K̂(ω) on the real line (defined by duality against Schwartz
functions), and as a holomorphic function K̂(z) on the open upper-half complex plane (defined by
the convergent integral

∫+∞
0 K(τ)eizdτ). Since K(τ)e−ητ converges towards K at η → 0 by positive

values, in the sense of tempered distributions, both these definitions agree in the sense that

K̂(ω) = lim
η→0+

K̂(ω + iη)

in the sense of tempered distributions.
Using for η > 0 ∫ +∞

0
ei(ω+iη−λ)τdτ = i

ω + iη − λ
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and functional calculus, it follows that

K̂(ω) = lim
η→0+

〈
VOψ0,

(
ω + iη − (H − E0)

)−1
VPψ0

〉
−
〈
VPψ0,

(
ω + iη + (H − E0)

)−1
VOψ0

〉
(3.3)

in the sense of tempered distributions.

3.2. The limiting absorption principle

When |ω| /∈ σ(H) − E0, K̂ defines an analytic function in a neighborhood of ω. When |ω| = En − E0
for En an eigenvalue of H, limη→0+ K̂(ω+ iη) diverges, and the distribution K̂ is singular at ω. When
|ω| > −E0, i.e. above the ionization threshold, we have the following result.

Theorem 3.2. The tempered distribution K̂ is a continuously differentiable function for |ω| > −E0.
Furthermore, for all such ω there is C > 0 such that for all 0 < η < 1,

|K̂(ω + iη) − K̂(ω)| ≤ Cη. (3.4)
The proof of Theorem 3.2, in Section 6, involves the study of the boundary values of the resolvent

(z − H)−1 as z approaches the real axis in the upper half complex plane. This resolvent diverges as
an operator on L2(Rd) as z approaches the spectrum of H. When z approaches an eigenvalue of H,
this is a real divergence and the resolvent can not be defined in any meaningful sense. However, when
z approaches the continuous spectrum from the upper half plane, the divergence merely indicates a
loss of locality in the associated Green’s function and, under appropriate decay assumptions on V , the
limit exists as an operator on weighted spaces. This fact is known as a limiting absorption principle,
with a long history in mathematical physics; the proof we use follows that of [1].

3.3. Discretization

We now discretize our problem on a domain [−L,L]d with Dirichlet boundary conditions. The cor-
responding approximations HL, ψ0,L and E0,L give rise to an approximate response function KL (see
exact definitions in Section 7). Our main result is then:
Theorem 3.3. KL converges towards K in the sense of tempered distributions. Furthermore, for all
ω ∈ R there are α > 0, C > 0 such that for all 0 < η < 1, L > 0,

|K̂L(ω + iη) − K̂(ω + iη)| ≤ C
e−αηL

η2 (3.5)

The proof of this theorem is given in Section 7. When |ω| < −E0 is not equal to a difference
of eigenvalues, the function K̂ is analytic, and our scheme of proof combined with the estimates in
Lemma 7.1 imply that there exist C,α > 0 such that |K̂L(ω + iη) − K̂(ω + iη)| ≤ Ce−αL for all η
small enough.

The convergence of KL towards K in the sense of distributions (i.e. when integrated against a
quickly decaying function of time) can be heuristically understood in as follows: since the initial
condition ψ0 is localized close to the origin, for moderate times (compared to some power of L) finite
size effects are not relevant; only for longer times (damped by the test function) will the reflections
against the boundary affect the value of KL. To obtain (3.5), we note that at a fixed η > 0, the
resolvent (λ + iη − H)−1 is a well-defined operator, and its kernel G(x, y) decays exponentially for
large ||x| − |y||, with a decay rate proportional to η. Since ψ0 is exponentially localized, the quantity
K̂(ω+ iη) only involves quantities localized on a region of space of size of order 1/η, and can therefore
be computed accurately when L ≫ 1/η, leading to our result.

It follows from the two results above that one can approximate K̂(ω) for |ω| > −E0 by taking the
limit L → ∞ (at finite η) then η → 0, but not the reverse. At a fixed box size L, the optimal η is the
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one that minimizes the total error e−αηL

η2 + η. This results in a total error of order arbitrarily close to
one: for instance, by taking η = 1

L1−ε for ε > 0, we obtain a total error of order 1
L1−ε .

3.4. Remarks

3.4.1. Decay of the potential and regularity of K̂.

Our assumption that |x|2+εV (x) is bounded guarantees that |K̂(ω + iη) − K̂(ω)| is of order η. We
actually show in our proof the stronger result that, if |x|1+k+α+εV (x) is bounded for some k ∈ N, α ∈
[0, 1], ε > 0, then

K̂ ∈ Ck,α
(
((−∞, E0) ∪ (−E0,+∞)) + i[0,+∞]

)
,

For instance this shows that if |x|1+α+εV (x) is bounded for some α ∈ [0, 1], ε > 0, then Theorem 3.2
holds with the error bound Cηα. However, long-range potentials (decaying like 1/|x|) are not covered by
the results in this paper. This originates from a limitation in Agmon’s argument that we follow closely
(see Section 6). Total potentials originating from semilocal density functional theory in molecules
decay like |x|−2 and are therefore covered by the results in this paper.

Limiting absorption principles can also be obtained using Mourre theory [26] which relies on the local
positivity of the commutator i[H,A] where A = x · p+ p ·x is the generator of the dilations. With this
approach, it is possible to deal with potentials with slower decay (e.g. V ∈ L2(Rd) +L∞

ε (Rd) suffices)
provided that additional conditions on the derivatives of V are known, i.e. x · ∇V ∈ L2(Rd) +L∞

ε (Rd)
would be sufficient and (x · ∇)2V is a bounded operator from H2(Rd) to H−2(Rd). Local regularity
of the boundary value operator can also be proved [23], assuming that higher derivatives of V have a
fast enough decay. For instance, differentiability of the boundary value operator is ensured if (x ·∇)2V
is a bounded operator from H2(Rd) to L2(Rd) and (x · ∇)3V is a bounded operator from H2(Rd) to
H−2(Rd). Compared to Agmon’s approach which is detailed in Section 6, the same result is achieved
by assuming a fast enough decay of the potential itself and not of its derivatives. The interested reader
may refer to the monograph [2] for a thorough exposition of the commutator estimates and Mourre
theory.

The reason we use the “classical” theory rather than Mourre’s method is that the clasical theory is
simpler, allowing fully self-contained proofs and being easier to extend to other contexts. Furthermore,
it defines the boundary value of the resolvent through an explicit Fredholm integral equation, a useful
starting point to design numerical methods.

3.4.2. Higher order approximations.

In the common case where VO = VP , it follows from the Plemelj–Sokhotski formula (1.6) that the
imaginary part of K̂(· + iη) is the convolution of the imaginary part of K̂ with a Lorentzian profile
of width η and height 1/η, an approximation of the Dirac distribution. In general, if ϕ is a Schwartz
function of integral 1, ϕη(x) = ϕ(x/η)/η and if f is of class Cp+1 near ω, then

(f ∗ ϕη)(ω) = f(ω) +O(ηp+1),

where the order p of ϕ is the smallest integer such that
∫
xp

′
ϕ(x)dx = 0 for all 0 < p′ ≤ p (see

for instance [8, Section 5.1]). Since the Lorentzian kernel is even, we would naively expect an error
proportional to η2; however, the Lorentzian kernel has heavy tails (decaying like 1/x2) and therefore
the error is only of order η in general.

When V decays sufficiently rapidly, the above analysis suggests the possibility of using different
kernels, such as a Gaussian kernel, or even a higher-order one. We refer for instance to [16] in the
general context of the computation of spectral measures of generic self-adjoint operators.

279



M.-S. Dupuy & A. Levitt

3.4.3. Several electrons.

We have here considered a one-electron model. Our results can straightforwardly be extended to the
case of several non-interacting electrons. Under the assumption that EN−1 < EN , we can consider the
equation

i∂tγ = [−∆ + V, γ] + εf(t)[VP , γ],

with γ(0) the projector onto the first N eigenstates E0, . . . , EN−1 of −∆ + V . Then it holds that

Tr(VOγ(t)) = Tr(VOγ(0)) + ε(K ∗ f)(t) +O(ε2)
with

K(τ) = −iθ(τ)
N−1∑
n=0

〈
VOψn, e

−i(H−En)τVPψn
〉

+ c.c.,

Then K is simply a sum of terms of the type we consider in our statements, and the results generalize
easily. The case of interacting electrons (for instance using time-dependent density functional theory
with an adiabatic exchange-correlation potential) requires more care, and would be an interesting
topic for further research.

3.4.4. Periodic background Hamiltonians.

We have here considered a Hamiltonian −∆ + V , with the aim to model a molecule. We could also
consider models of the type H = H0 +V with more general H0. For instance, one can think of periodic
operators H0 = −∆ + Vper, or lattice models acting on ℓ2(Zd), both of which can be used to model
crystals, and are analyzed using the Bloch transform. Extending our results needs two ingredients.
The first is the error analysis of the effect of truncation on eigenvectors, which is complicated by the
possibility of spectral pollution (see [9]) but holds for states lying below the continuous spectrum.
The second is a limiting absorption principle for H0. This can be established following the method
of Section 6. The crucial point to establish a limiting absorption principle is to show regularity of
the projected density of states (see the proof of Proposition 6.1), which now involves an integral on
isosurfaces of the dispersion relations (Fermi surfaces). This can be done at frequencies for which
bands do not cross or have a zero gradient, so that the Fermi surface is a smooth manifold. We refer
to [8, 20] for details.

3.4.5. Boundary conditions.

We here use Dirichlet boundary conditions; this is done for conceptual simplicity, and because Dirichlet
boundary conditions yield a conforming scheme (in the sense that the eigenfunctions obtained at
finite L are valid trial functions for the whole-space problem). Using Neumann or periodic boundary
conditions would presumably yield a similar result, but the mathematical analysis is slightly more
involved.

More interesting is the use of “active”, frequency-dependent boundary conditions, designed to better
reproduce the continuous spectrum. Such boundary conditions are widely used in scattering problems
(absorbing boundary conditions, perfectly matched layers [3]) and in the study of resonances in quan-
tum chemistry (complex scaling [14, 34]). They are however often less flexible than the approach
presented here of an imaginary shift (and the closely related complex absorbing potential [27]), which
is simpler and does not require any specific structure on the problem, generalizing trivially to time-
dependent density functional theory. We have focused in this paper on the simplest method; the use
of active boundary conditions or other techniques to lessen boundary effects in realistic computational
models is an important topic for future research.
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4. Numerical illustration

We illustrate our results with a simple model: a discrete tight-binding model, set on ℓ2(Z), with the
Hamiltonian H given by the matrix elements

Hmn = δm,n+1 + δm,n−1 + V δm,nδn,0. (4.1)
The first two terms (“hopping terms”) are analogous to a kinetic energy and describe the motion of a
particle to neighboring sites. The third term is an impurity potential on site 0. The free Hamiltonian
(corresponding to the first two terms of (4.1)) is unitarily equivalent through the Fourier transform
to a multiplication operator on L2([−π, π]) with multiplier λ(k) = 2 cos k. Since the third term is a
compact perturbation of the free Hamiltonian, H has continuous spectrum [−2, 2]. We choose V = −4,
which leads to a single negative eigenvalue E0 ≈ −4.47. We choose both for the perturbing potential
VP and for the observable VO the operator with coefficients δnmδn0, localized on site 0.

This model is shown for illustrative purposes only and is not strictly covered by our results above. It
was chosen only for numerical simplicity (since, unlike continuous models, it only involves a truncation
in space, not a further discretization), and as the simplest model in which the phenomenon discussed
in this paper occurs. The ionization region, which was |ω| ≥ −E0 in the continuous case (since the
continuous spectrum in that case was [0,+∞)), becomes |ω| ∈ [−2 −E0, 2 −E0] (since the continuous
spectrum is [−2, 2]). The extension of our methods of proof in the discrete setting is possible (see
Section 3.4.4 above), and shows that K̂ is smooth everywhere except at the band edges ±(−2 − E0)
and ±(2 − E0), at which points the Fermi surfaces become degenerate.

To compute KL, we truncate the Hamiltonian to a finite set of 2L + 1 sites {−L, . . . , L}, with
Dirichlet boundary conditions and diagonalize the resulting Hamiltonian HL to obtain the eigenpairs
(ψn,L, En,L) for n = 0, . . . , 2L, with ψn,L orthonormal, ordered by increasing eigenvalue. The expression
for KL and K̂L can be expanded in this basis, turning into “sum-over-states” formulas

KL(τ) = −iθ(τ)
2L∑
n=0

e−i(En,L−E0,L)τ ⟨VOψ0,L, ψn,L⟩⟨ψn,L, VPψ0,L⟩ + c.c.,

and a similar expression for K̂L(ω).
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Figure 4.1. Time response function KL(τ).

We plot in Figure 4.1 the response function KL(τ) for different values of L. The exact response
function K(τ) decays to zero, as the initial disturbance propagates to infinity. However when observed

281



M.-S. Dupuy & A. Levitt

on a finite-sized box for long times, spurious reflections at the boundary introduce non-decaying
oscillations.

1 2 3 4 5 6 7 8

0.6

0.4

0.2

0.0

0.2

K

L=30, =0.02

Re
Im

1 2 3 4 5 6 7 8

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

K

L=1000, =0.02

Re
Im

1 2 3 4 5 6 7 8

0.06

0.04

0.02

0.00

0.02

0.04

K

L=30, =0.5

Re
Im

1 2 3 4 5 6 7 8

0.06

0.04

0.02

0.00

0.02

0.04

K

L=1000, =0.5

Re
Im

Figure 4.2. Frequency response function K̂L(ω + iη).

This same phenomenon can be seen in frequency space in Figure 4.2, where we plot the frequency
response function K̂L(ω + iη) for different values of η and L. We plot the region ω ∈ [0, 9], which
contains the region [−2, 2] − E0 corresponding to ionization; not represented is the other ionization
region E0 − [−2, 2]. When η is small and L ≪ 1/η, the discrete nature of the spectrum is evident,
and the response function is composed of individual peaks. When L ≫ 1/η, these peaks are blurred
into a continuous function. Higher η result in more accurate functions at moderate L, at the price of
over-smoothing.

5. The Kubo formula

We begin by studying the eigenfunction ψ0 associated to the eigenvalue E0.

Lemma 5.1. There is α0 > 0 such that ψ0 ∈ H2(eα0⟨x⟩).

282



Finite-size effects in response functions of molecular systems

Proof. Since V decays at infinity, for all ε > 0, we can write V = Vc+Vε with Vc compactly supported
and ∥Vε∥L∞(Rd) ≤ ε. Then, for ε ≤ −E0/2 we can write

ψ0 = −(−∆ + Vε − E0)−1Vcψ0.

Since Vc is compactly supported, Vcψ0 is in L2(eα⟨x⟩) for all α > 0, and so by Lemma B.2, ψ0 belongs
to H2(eα0⟨x⟩) for some α0 > 0 small enough.

Note that this estimate is not sharp since the actual decay rate of ψ0 is
√

−E0 (which can be
obtained by sharper Combes–Thomas estimates), but this will be sufficient for our purposes.

We now prove Kubo’s formula.

Proof of Proposition 3.1. Let U0(t, s) = e−iH(t−s) be the unitary propagator of the unperturbed
Hamiltonian H = −∆+V , and Uε(t, s) that of the perturbed Hamiltonian Hε(t) = −∆+V +εf(t)VP ,
whose existence is guaranteed by Lemma B.1. By the Duhamel/variation of constant formula,

ψ(t) = e−iE0tψ0︸ ︷︷ ︸
ψ0,0(t)

− iε

∫ t

0
U0(t, t′)f(t′)VPUε(t′, 0)ψ0dt′︸ ︷︷ ︸

εψ1,ε(t)

.

Iterating this formula, we obtain the first-order Dyson expansion

ψ1,ε(t) = −i
∫ t

0
f(t′)U0(t, t′)VPU0(t′, 0)ψ0dt′︸ ︷︷ ︸

ψ1,0(t)

− ε

∫ t

0

∫ t′

0
U0(t, t′)f(t′)VPU0(t′, t′′)f(t′′)VPUε(t′′, 0)ψ0dt′dt′′︸ ︷︷ ︸

εψ2,ε(t)

.

From ψ(t) = ψ0,0(t) + εψ1,0(t) + ε2ψ2,ε(t) it follows that

⟨ψ(t), VOψ(t)⟩ = ⟨ψ0, VOψ0⟩ + ε
(
⟨ψ1,0(t), VOψ

0,0(t)⟩ + ⟨ψ0,0(t), VOψ
1,0(t)⟩

)
+ ε2

(
⟨ψ2,ε(t), VOψ

0,0(t)⟩ + ⟨ψ0,0(t), VOψ
2,ε⟩ + 2⟨ψ1,0(t), VOψ

1,0(t)⟩
)

︸ ︷︷ ︸
Rε(t)

The first-order term can be computed as

⟨ψ0,0(t), VOψ
1,0(t)⟩ + c.c. =

〈
eiE0tVOψ0,−i

∫ t

0
f(t′)e−iH(t−t′)VPe

−iE0t′ψ0dt′
〉

+ c.c.

= −i
∫ t

0
f(t′)⟨VOψ0, e

−i(H−E0)(t−t′)VPψ0⟩dt′ + c.c..

= (K ∗ f)(t).
Since |VO(x)| ≲ 1 + |x| and ψ0 ∈ L2(eα0⟨x⟩),

|Rε(t)| ≲ ∥ψ2,ε(t)∥ + ∥(1 + |x|)ψ1,0(t)∥2.

Using |VP(x)| ≲ 1 + |x| and Lemma B.1, we get
∥ψ2,ε(t)∥ ≲ (1 + |t|2) sup

t′∈[0,t],t′′∈[0,t]
∥U0(t, t′)VPU0(t′, t′′)VPUε(t′′, 0)ψ0∥

≲ (1 + |t|2) sup
t′∈[0,t],t′′∈[0,t]

∥(1 + |x|)U0(t′, t′′)VPUε(t′′, 0)ψ0∥

≲ (1 + |t|4) sup
t′′∈[0,t]

(
∥(1 + |x|)VPUε(t′′, 0)ψ0∥ + ∥∇(VPUε(t′′, 0)ψ0)∥

)
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≲ (1 + |t|4) sup
t′′∈[0,t]

(
∥|x|2Uε(t′′, 0)ψ0∥ + ∥∇Uε(t′′, 0)ψ0∥ + ∥ψ0∥

)
≲ (1 + |t|8)

(
∥|x|2ψ0∥ + ∥∆ψ0∥ + ∥x⊗ ∇ψ0∥ + ∥ψ0∥

)
The bound on Rε(t) then follows by establishing a bound on ∥(1 + |x|)ψ1,0(t)∥ by the same
method.

6. Properties of the response function K

Theorem 3.2 is a consequence of a limiting absorption principle for the Hamiltonian H = −∆ + V
stated in Proposition 6.2. Our proof is a simplification of the one in Agmon [1], with a careful tracking
of the regularity with respect to the spectral parameter.

The general idea in Agmon’s proof of the limiting absorption principle is to use the explicit formula
of the resolvent of the free Laplacian (z + ∆)−1, for z in the open upper half space and show that it
admits a boundary value (λ+ ∆ + i0+)−1 from L2(⟨x⟩s) to H2(⟨x⟩−s) for s > 1

2 . This can be extended
to nonzero potentials V using a resolvent identity. In doing so, we need at first the invertibility of
1−(z+∆)−1V in L2(⟨x⟩−s), which translates into a decay condition on V , i.e. V decays faster than 1

|x| .
We begin the proof of the limiting absorption principle by studying the free Laplacian.

Proposition 6.1 (Limiting absorption principle for the free Laplacian). Let s = 1
2 + k+ α for k ∈ N

and α ∈ [0, 1]. The resolvent (z+∆)−1 defined for Im z > 0 extends to an operator of class Ck,α on the
semi-open set (0,+∞) + i[0,+∞), in the topology of bounded operators from L2 (⟨x⟩s) to H2 (⟨x⟩−s).

Proof. Let λ0 > 0. Let χ be a smooth cutoff function, equal to 1 in [λ0/2, 2λ0] and to zero outside
of [λ0/3, 3λ0]. Let ψ ∈ L2(⟨x⟩s), and ϕ belong to the L2-dual of H2 (⟨x⟩−s).
Let Mχ be the multiplication operator in Fourier space defined by F(Mχψ)(q) = χ(|q|2)F(q). Then
by spectral calculus, (z+ ∆)−1(1 −Mχ) extends to a Ck,α operator on a set [λ0 − ε, λ0 + ε] + i[0,+∞)
for ε small enough, in the topology of operators L2(Rd) to H2(Rd). Therefore, it is enough to consider
the term

⟨ϕ, (z + ∆)−1Mχψ⟩ = 1
(2π)d

∫
Rd

χ
(
|q|2

)
Fϕ(q)∗Fψ(q)
z − |q|2

dq

=
∫
R

Dϕψ(λ)
z − λ

dλ, (6.1)

with the projected density of states

Dϕψ(λ) = 1
(2π)dλ

(d−2)/2χ (λ)
∫
Sd−1

Fϕ(
√
λq̂)∗Fψ(

√
λq̂)dq̂.

Since F(M√
χϕ) and F(M√

χψ) are in Hs(Rd), by Lemma A.1 Dϕψ is in Hs(R).
We can compute by contour integration the inverse Fourier transform of the function 1

z−· for Im z > 0:
1

2π

∫ 1
z − λ

e−iλτdλ = iθ(−τ)e−izτ

Therefore, by the Parseval formula,

⟨ϕ, (z + ∆)−1Mχψ⟩ = 2πi
∫
R+
eizτ qDϕψ(τ)dτ.

Letting gτ (z) = eizτ , it follows from
|g(k)
τ (z1) − g(k)

τ (z2)| ≲ |z1 − z2|α|τ |k+α

and the Cauchy–Schwarz inequality that ⟨ϕ, (z − ∆)−1Mχψ⟩ is Ck,α on (0,+∞) + i[0,+∞).
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For λ > 0, we denote by

(λ+ i0+ + ∆)−1 = lim
η→0+

(λ+ iη + ∆)−1

the boundary value of the free resolvent. Its action can be explicitly computed using the spectral
representation (6.1) and the Plemelj–Sokhotski formula (1.6). Note in particular that it differs from
(λ+ i0− + ∆)−1 by the sign of its anti-hermitian part.

Proposition 6.2 (Limiting absorption principle for H = −∆ + V ). Let s = 1
2 + k + α for k ∈ N and

α ∈ [0, 1]. Let V : Rd → R be a continuous potential such that ⟨x⟩2s+ϵV is bounded, for some ε > 0.
The resolvent (z − H)−1 defined for Im z > 0 extends to an operator of class Ck,α on the semi-open
set (0,+∞) + i[0,+∞), in the topology of bounded operators from L2 (⟨x⟩s) to H2 (⟨x⟩−s).

Proof. We use the following resolvent inequality:
(z −H)−1 = B(z)−1(z + ∆)−1 (6.2)

with
B(z) = 1 − (z + ∆)−1V,

valid for z ∈ C with Im z > 0. Since V is bounded from H2(⟨x⟩−s) to L2(⟨x⟩s), it follows from
Proposition 6.1 that B(z) extends to an operator of class Ck,α on the semi-open set (0,+∞)+i[0,+∞),
in the topology of bounded operators on H2 (⟨x⟩−s).
We will show that for all λ > 0, B(λ+ i0+) is invertible on H2 (⟨x⟩−s). This shows that B(z)−1 is Ck,α
on the semi-open set in the topology of bounded operators on H2 (⟨x⟩−s), which implies our result
by (6.2) and Proposition 6.1.
Let λ > 0. Since ⟨x⟩2s+εV is bounded, the multiplication operator V is compact from H2(⟨x⟩−s) to
L2(⟨x⟩s). It follows that (λ+ i0+ + ∆)−1V is compact on H2 (⟨x⟩−s). By the Fredholm alternative, it
is then enough to show that there are no non-zero solutions of

u = (λ+ i0+ + ∆)−1V u (6.3)
in H2 (⟨x⟩−s). Let u ∈ H2 (⟨x⟩−s) be such a non-zero solution. We will show that u ∈ H2 (⟨x⟩s−1),
which by a bootstrap argument on s will imply that u ∈ H2(Rd).
Testing the equality (6.3) against V u and taking imaginary parts, we obtain from the Plemelj–
Sokhotski formula (1.6) that

0 = Im(⟨V u, u⟩) = Im⟨V u, (λ+ i0+ + ∆)−1V u⟩ = − π

2
√
λ

∫
|q|=

√
λ

|F(V u)(q)|2 dq.

By assumption on V , V u ∈ L2(⟨x⟩s) thus F(V u) ∈ Hs(Rd) and with zero trace on the sphere |q| =
√
λ

by the equation above. By Lemma A.2, this means that F(V u)
λ−|q|2 ∈ Hs−1(Rd). We then have

⟨q⟩2(Fu)(q) = lim
η→0+

⟨q⟩2 F(V u)(q)
λ+ iη − |q|2

= ⟨q⟩2 F(V u)(q)
λ− |q|2

in the sense of distributions. This shows that Fu belongs to Hs−1(⟨q⟩2), and therefore that u ∈
H2(⟨x⟩s−1). More generally, the argument above shows that if u ∈ H2(⟨x⟩s′) with s′ ≥ −s, then
u ∈ H2(⟨x⟩s′+2s−1). By a bootstrap argument, since s > 1

2 , it follows that u ∈ H2(Rd), and therefore
that λ is a positive embedded eigenvalue, which is impossible.

Proof of Theorem 3.2. By Theorem 3.1, the response function is given by

K̂(ω) = lim
η→0+

〈
ψ0, VO

(
ω + iη − (H − E0)

)−1
VPψ0

〉
−
〈
ψ0, VP

(
ω + iη + (H − E0)

)−1
VOψ0

〉
. (6.4)
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By the exponential localization of the ground state wave function ψ0, and the assumptions on the
potentials VO and VP , VOψ0 and VPψ0 belong to every L2(⟨x⟩s) for s ∈ R. Since by Assumption 2 the
function ⟨x⟩2+ϵV is bounded, the result follows by Proposition 6.2 in the case k = 0, α = 1.

7. Truncation in space

Consider the domain ΩL = [−L,L]d with Dirichlet boundary conditions. We define H̃L the operator
−∆ + V with domain D(H̃L) = {ψ̃ ∈ H2(ΩL), ψ̃|∂ΩL

= 0}, self-adjoint on L2(ΩL). This operator is
bounded from below and has compact resolvent.

We now define the operator HL on L2(Rd) in the following way: if ψ ∈ L2(Rd) and ψ|ΩL
∈ D(H̃L),

then

(HLψ)|ΩL
= H̃Lψ|ΩL

,

and (HLψ)|Rd\ΩL
= 0. This defines an operator on L2(Rd), self-adjoint with domain D(HL) = L2(Rd \

ΩL) ⊕D(H̃L), and with spectrum σ(H̃L) ∪ {0}. Let ψ0,L be an L2-normalized eigenvector associated
to the lowest eigenvalue of HL.

Note that by adapting the proof in Lemma B.1, the estimates shown there for e−itH on L2(Rd)
are also valid for e−itH̃L on L2(ΩL), with constants independent of L. Similarly, the estimates of
Lemma B.2 for (z − H)−1 on L2(Rd) and L2(eα⟨x⟩) are also valid for (z − H̃L)−1 on L2(ΩL) and
L2(eα⟨x⟩; ΩL) = {ψ, eα⟨x⟩ψ ∈ L2(ΩL)} with natural norms, still with constants independent of L.

We can now define KL analogously to K:

KL(τ) = −iθ(τ)
〈
VOψ0,L, e

−i(HL−E0,L)τVPψ0,L
〉

+ c.c., (7.1)

and

K̂L(ω) = lim
η→0+

〈
ψ0,L, VO

(
ω + iη − (HL − E0,L)

)−1
VPψ0,L

〉
−
〈
ψ0,L, VP

(
ω + iη + (HL − E0,L)

)−1
VOψ0,L

〉
. (7.2)

The operator H and HL have the same action, but H has domain D(H) = H2(Rd), whereas HL has
domain D(HL) = {ψ ∈ L2(Rd), ψ|ΩL

∈ H2(ΩL), ψ|∂ΩL
= 0}. These different domains do not even

share a common core, making the direct comparison of KL and K difficult. However, we will prove
and use the fact that, when evaluated on localized quantities, their resolvents

R(z) = (z −H)−1, RL(z) = (z −HL)−1 (7.3)

and propagators e−iHt and e−iHLt, both defined on L2(Rd), are close. To that end, we let χ : Rd → R
be a smooth truncation function equal to 1 for |x|∞ ≤ 1/4 and to 0 for |x|∞ ≥ 3/4, and

χL(x) = χ(x/L).

Note that, as a multiplication operator, χL maps D(H) ∪D(HL) to D(H) ∩D(HL).
Furthermore, this truncation is exponentially accurate on exponentially localized functions: by direct

computation, for all k ∈ N there is Ck > 0 such that, for all 0 ≤ α1 ≤ α2 ≤ 1, for all ψ ∈ Hk(eα2⟨x⟩)

∥(1 − χL)ψ∥Hk(eα1⟨x⟩) = ∥e(α1−α2)⟨x⟩(1 − χL)eα2⟨x⟩ψ∥Hk(Rd) ≤ Cke
−(α2−α1)L∥ψ∥Hk(eα2⟨x⟩).
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Lemma 7.1. There are c > 0, C > 0 such that, for all z ∈ C and L > 0 such that d(z, σ(H)) ≥ g and
lim inf d(K,σ(HL)) ≥ g with g > 0, for all 0 ≤ α ≤ α′ ≤ cg,

∥RL(z) −R(z)∥L2(eα′⟨x⟩)→L2(eα⟨x⟩) ≤ C

(
1 + 1

g

)2
(1 + |z|)3e−(α′−α)L.

Proof. Because of the aforementioned domain issues, we cannot directly use the resolvent for-
mula R(z) − RL(z) = RL(z)(H − HL)R(z). However, we can approximate any ψ ∈ L2(Rd) by
R(z)−1χLR(z)ψ, for which

(R(z) −RL(z))R(z)−1χLR(z)ψ = RL(z)(H −HL)χLR(z)ψ = 0,
where we have used that Hϕ = HLϕ for all ϕ ∈ D(HL) ∩ D(H). Therefore, using the estimates of
Lemma B.2 for both H and HL,

∥(R(z) −RL(z))ψ∥L2(eα⟨x⟩) = ∥(R(z) −RL(z))(R(z)−1(1 − χL)R(z)ψ)∥L2(eα⟨x⟩)

≲
(

1 + 1
d(z, σ(H)) + 1

d(z, σ(HL))

)
(1 + |z|)∥R(z)−1(1 − χL)R(z)ψ∥L2(eα⟨x⟩)

≲
(

1 + 1
d(z, σ(H)) + 1

d(z, σ(HL))

)
(1 + |z|)2∥(1 − χL)R(z)ψ∥H2(eα⟨x⟩)

≲
(

1 + 1
d(z, σ(H)) + 1

d(z, σ(HL))

)2
(1 + |z|)3e−(α′−α)L∥ψ∥L2(eα′⟨x⟩).

Using this we can compare the eigenpairs of HL and H.

Lemma 7.2. There are C,α1, α2 > 0 such that, for all L large enough,

|E0,L − E0| ≤ Ce−α0L (7.4)
∥ψ0,L − ψ0∥L2(eα1⟨x⟩) ≤ Ce−α2L (7.5)

where the sign of ψ0,L is chosen such that ⟨ψ0,L, ψ0⟩ ≥ 0, and where α0 is the constant in Lemma 5.1.

Proof. Since by Lemma 5.1 ψ0 ∈ H2(eα0⟨x⟩),
∥(1 − χL)ψ0∥H2(Rd) ≲ e−α0L.

and (7.4) follows from the variational principle

E0 ≤ E0,L ≤
⟨χLψ0, HχLψ0⟩L2(Rd)
⟨χLψ0, χLψ0⟩L2(Rd)

≤ E0 + Ce−α0L.

for some C > 0.
Let E1,L and E1 be the second-lowest eigenvalue (or zero if there are no second eigenvalue) of HL and
H respectively. From the min-max principle, E1,L ≥ E1 and therefore for L large enough there is a
gap g > 0 in σ(HL) above E0,L. Let C be the circle with center E0 and radius g/2 in the complex
plane, oriented trigonometrically. Then, by Lemma 7.1 there is α2 > 0 such that

1 − ⟨ψ0, ψ0,L⟩2 =
〈
ψ0,

(
|ψ0⟩⟨ψ0| − |ψ0,L⟩⟨ψ0,L|

)
ψ0
〉

= 1
2πi

∮
C

⟨ψ0, (R(z) −RL(z))ψ0⟩ dz

|1 − ⟨ψ0, ψ0,L⟩2| ≲ e−α2L

Then
1
2∥ψ0 − ψ0,L∥2

L2(Rd) = 1 − ⟨ψ0, ψ0,L⟩ = 1 −
√

⟨ψ0, ψ0,L⟩2 ≲ e−α2L.
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Now, as in Lemma 5.1, let V = Vε + Vc with Vc compactly supported and ∥Vε∥L∞(Rd) ≤ −E0/2. Let
HL,ε = −∆ + Vε on ΩL, extended as before to act on L2(Ω). For L large enough so that the support
of Vc is contained in ΩL, we have

ψ0,L = (E0,L −HL,ε)−1Vcψ0,L.

Arguing as in Lemma 7.1, there are α1, α
′ > 0 such that (E0,L−HL,ε)−1 converges exponentially quickly

to (E0 − H)−1 as an operator from L2(eα′⟨x⟩) to L2(eα1⟨x⟩). Furthermore, because Vc is compactly
supported, we have

∥Vcψ0,L − Vcψ0∥L2(eα′⟨x⟩) ≲ ∥ψ0,L − ψ0∥L2(Rd) ≲ e−α2L

and the result follows.

With this we can now prove the convergence of KL(ω + iη) for positive η.
Theorem 7.3. There are α3 > 0, C > 0 such that for all 0 < η < 1, ω ∈ R,

|K̂L(ω + iη) − K̂(ω + iη)| ≤ C(1 + ω)3

η2 e−α3ηL

Proof. Since ψ0,L converges exponentially towards ψ0 in L2(eα⟨x⟩) for some α > 0, and VO and VP
have at most polynomial growth, VOψ0,L and VPψ0,L converge exponentially quickly in L2(Rd) towards
VOψ0 and VPψ0 respectively. E0,L converges exponentially towards E0 and

(
ω+ iη− (HL−E0,L)

)−1 is
uniformly bounded by 1/η as an operator on L2(Rd). It therefore follows that we can reduce to terms
of the form 〈

ψl,
(
RL(ω − E0 + iη) −R(ω − E0 + iη)

)
ψr
〉

with ψl/r ∈ L2(eα⟨x⟩) for some α > 0 independent on ω, η. We can then conclude using Lemma 7.1.

Finally, we conclude the proof of Theorem 3.3.
Theorem 7.4. KL converges as a tempered distribution towards K.
Proof. We will prove that, for all f ∈ S(R),∫ ∞

0

〈
VOψ0,L, e

−i(HL−E0,L)tVPψ0,L
〉
f(t)dt →

∫ ∞

0

〈
VOψ0, e

−i(H−E0)tVPψ0
〉
f(t)dt.

Since ψ0,L → ψ0 in H2(eα1⟨x⟩),
∥VOψ0,L − χLVOψ0∥ → 0

and similarly for VP . It is therefore sufficient to prove that

∥χL(e−iHt − e−iHLt)χLVPψ0∥ ≤ P (t)
L

for some polynomial P . Let
ϕ(t) = e−iHtχLVPψ0, ϕL(t) = e−iHLtχLVPψ0

To estimate χL(ϕ(t) − ϕL(t)) we compute
i∂tχL(ϕ− ϕL) = HχLϕ−HLχLϕL + [χL, H]ϕ− [χL, HL]ϕL

= HχL(ϕ− ϕL) + [χL, H]ϕ− [χL, HL]ϕL
and therefore by the Duhamel formula

χL(ϕ(t) − ϕL(t)) = −i
∫ t

0
e−iH(t−t′) ([χL, H]ϕ(t′) − [χL, HL]ϕL(t′)

)
dt′

∥χL(ϕ(t) − ϕL(t))∥ ≤ t sup
t′∈[0,t]

∥∥[χL, H]ϕ(t′) − [χL, HL]ϕL(t′)
∥∥ .
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Since [χL, H]ϕ = 2∇χL · ∇ϕ+ ∆χLϕ is zero for |x|∞ < L/4, by Lemma B.1 we have

∥[χL, H]ϕ(t′)∥ ≲
1
L

∥(1 + |x|)[χL, H]ϕ(t′)∥

≲
1
L

(
∥x⊗ ∇ϕ(t′)∥ + ∥∇ϕ(t′)∥ + ∥(1 + |x|)ϕ(t′)∥

)
≲

1 + |t|4

L
and similarly with [χL, HL]ϕL(t′). The result follows.

Appendix A. Trace theory in Sobolev spaces

We will need the following lemma on the regularity of traces on surfaces with respect to variations of
the surface.

Lemma A.1. Let χ : R → R be a smooth function with support [R1, R2], with R1 > 0, and s1, s2, s
nonnegative real numbers such that s1 + s2 = s. Then for all u ∈ Hs(Rd), the function

r 7→ (x̂ 7→ χ(r)u(rx̂))

is in Hs1(R, Hs2(Sd−1)).

Proof. We first treat the case of the restriction to a hyperplane: if u ∈ Hs(Rd), then
vu : x1 7→ (x′ 7→ u(x1, x

′))
is in Hs1(R, Hs2(Rd−1)). Indeed, denoting for clarity by F1 the one-dimensional Fourier transform, we
have by the Parseval formula on L2(Rd−1) that for all q1 ∈ R,

∥F1vu(q1)∥2
Hs2 (Rd−1) = 1

(2π)d−1

∫
Rd−1

⟨q′⟩2s2 |Fu(q1, q
′)|2dq′

and therefore
∥vu∥2

Hs1 (R,Hs2 (Rd−1)) = 1
2π

∫
R

⟨q1⟩2s1∥F1vu(q1)∥2
Hs2 (Rd−1)dq1 ≤ 1

(2π)d
∫
Rd

⟨q⟩2s|Fu(q)|2dq = ∥u∥2
Hs(Rd).

To lift this property to the sphere Sd−1(R) of radius R, we use a classical “flattening” argument.
Using spherical coordinates, we can construct a cover of the annulus of inner radius R1 and outer
radius R2 by open sets {Xi}i=1,...,N not touching zero with the property that, for every i ∈ {1, . . . , N},
there is a smooth diffeomorphism Φi from a an open set Ri × Ti ⊂ R × Rd−1 to Xi such that, for all
(r, θ) ∈ Ri × Ti,

Φi(r, θ) = rΘi(θ)
with Θi having values on the sphere Sd−1. One can then construct a partition of the unity ζi : Rd → R
where, for each i ∈ {1, . . . , N}, ζi is supported inside Xi, and

∑N
i=1 ζi = 1 on the annulus. Then, for

all u ∈ Hs(Rd), |x| ∈ [R1, R2],

χ(|x|)u(x) =
N∑
i=1

χ(|x|) ζi(x)u(x) =
∑

i, x∈Xi

wi(Φ−1
i (x))

where
wi(r, θ) = χ(r) ζi(rΘi(θ))u(rΘi(θ)),
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defined on Ri× Ti, extends on the whole Rd to a Hs(Rd) function. It follows from the hyperplane case
that

χ(r)u(rx̂) =
∑

i, x∈Xi

wi
(
r,Θ−1

i (x̂)
)

is in Hs1(R, Hs2(Sd−1)).

Note that from the fact that H
1
2 +ε(R), ε > 0, functions are continuous, we recover the classical

trace theorem that traces of Hs+ 1
2 +ε(Rd) functions are Hs on surfaces.

The proof of the limiting absorption principle for the nonzero potential case requires the following
Hardy-type inequality.
Lemma A.2. Let s > 0, and u ∈ Hs(Rd) such that u is zero on the sphere of radius a (in the sense
of traces). Then the function v(x) = u(x)

|x|2−a2 is Hs−1(Rd).

Proof. Using as before a smooth cutoff function and a partition of unity of a neighborhood of the
sphere of radius a, it is enough to show that for u ∈ Hs(Rd) with u(0, x′) = 0 for all x′ ∈ Rd−1, then
v(x) = u(x)

x1
is Hs−1(Rd−1).

Proceeding by density, we can assume that Fu ∈ C∞
c (Rd).

Using the fact that
∫

Fu(q1, q
′)dq1 = 0 for all q′ ∈ Rd−1, we have that Fv ∈ C∞

c (Rd), and Fu(q) =
−i∂Fv

∂q1
(q). By integration by parts and the Cauchy–Schwarz inequality, we have the following Hardy

inequality, for q = (q1, q
′) and α ∈ R:∫

R
|Fv(q)|2⟨q1⟩2(α−1) dq1 ≲

∫
R

|Fv(q)||Fu(q)|⟨q1⟩(α−1)+α dq1 ≲
∫
R

|Fu(q)|2⟨q1⟩2α dq1.

In the case s ≥ 1, we have ⟨q⟩2(s−1) ≲ ⟨q1⟩2(s−1) + ⟨q′⟩2(s−1) and so

∥v∥2
Hs−1 ≲

∫
Rd−1

∫
R

|Fv(q)|2
(
⟨q1⟩2(s−1) + ⟨q′⟩2(s−1)

)
dq1dq′.

By using the Hardy inequality with α = s for the first term and α = 1 for the second, we get

∥v∥2
Hs−1 ≲

∫
Rd

|Fu(q)|2⟨q1⟩2s dq +
∫
Rd

|Fu(q)|2⟨q1⟩2⟨q′⟩2(s−1) dq

≲
∫
Rd

|Fu(q)|2⟨q⟩2s dq ≲ ∥u∥2
Hs .

In the case 0 < s < 1, we have ⟨q⟩2(s−1) ≤ ⟨q1⟩2(s−1) and we can repeat the above argument.

Appendix B. Appendix: locality estimates on resolvents and propagators

We prove in this appendix results on the locality of the resolvents and propagators of Schrödinger
operators. This appendix is independent from the rest of the paper.
Lemma B.1 (Properties of the propagator). Let W : R×Rd → R be a measurable real-valued potential
such that, for all t ∈ R, W (t, · ) is C∞ and, for all multi-indices α with |α| ≥ 2, the function

Mα(t) = sup
x∈Rd

|W (α)(t, x)| + sup
|x|≤1

|W (t, x)|

is bounded on compact intervals.
Then there exists a unitary propagator U(t, s) such that if ψs ∈ S(Rd), U(t, s)ψs ∈ S(Rd) satisfies

the Schrödinger equation
i∂tU(t, s)ψs = (−∆ +W (t))U(t, s)ψs.
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Furthermore, there is C0 > 0 not depending on W such that, for all t, s ∈ R, ψs ∈ L2(Rd),
∥xU(t, s)ψs∥ + ∥∇U(t, s)ψs∥ ≤ C1(t, s) (∥xψs∥ + ∥∇ψs∥ + ∥ψs∥) (B.1)

∥|x|2U(t, s)ψs∥ + ∥∆U(t, s)ψs∥ ≤ C2(t, s)
(
∥|x|2ψs∥ + ∥∆ψs∥ + ∥x⊗ ∇ψs∥ + ∥ψs∥

)
(B.2)

where

C1(t, s) = C0(1 + |t− s|)2
(

1 + sup
t′∈[t,s]

|∇W (t′)|
)

C2(t, s) = C0(1 + |t− s|)4
(

1 + sup
t′∈[t,s]

|∇W (t′)|2 + sup
t′∈[t,s]

|∇2W (t′)|
)

Note that these estimates are natural in the case W = 0. In this case, (Fψ)(t, q) =
(Fψ)(s, q)e−i(t−s)|q|2 , and so ∂q(Fψ)(t, q) = ∂q(Fψ)(s, q)e−i|q|2(t−s) − 2iq(t − s)(Fψ)(s, q)e−i|q|2(t−s),
which is in L2(Rd) if ψs ∈ L2(⟨x⟩) ∩H1(Rd).
Proof. The existence of the propagator is obtained using the results of [19], and our hypotheses are
the same as in that paper.
We will obtain these inequalities by the following standard commutator method. Let A be an operator,
and ψs ∈ L2(Rd). Then, if ψ(t) = U(t, s)ψs, we have

i∂t(Aψ)(t′) = AH(t′)ψ(t′) = H(t′)Aψ(t′) + [A,H(t′)]ψ(t′)
and therefore by Duhamel’s formula,

Aψ(t) = U(t, s)Aψ(s) − i

∫ t

s
U(t, t′)[A,H(t′)]U(t′, s)dt′.

We compute the following commutators
[∇, H(t)] = ∇W (t)
[x,H(t)] = 2∇

Since ∇W is a bounded operator, we obtain
∥∇U(t, s)ψs∥ ≤ ∥∇ψs∥ + |t− s| sup

t′∈[s,t]
|∇W (t′)|∥ψs∥

∥xU(t, s)ψs∥ ≤ ∥xψs∥ + 2|t− s| sup
t′∈[s,t]

∥∇U(t′, s)ψs∥

≤ ∥xψs∥ + 2|t− s|
(

∥∇ψs∥ + |t− s| sup
t′∈[s,t]

|∇W (t′)|∥ψs∥
)

and (B.1) follows. Similarly, from the commutators
[∇2, H(t)] = ∇2W + 2(∇W (t)) ⊗ ∇

[x⊗ ∇, H(t)] = −2∇2 + x⊗ ∇W (t)
[x⊗ x,H(t)] = 2x⊗ ∇ + 2I

we obtain (B.2).

Lemma B.2 (Properties of the resolvent). Let W : Rd → R be a bounded function, and R(z) =
(z − (−∆ +W ))−1. Then there are c > 0, C > 0 such that, for all z /∈ σ(H),

∥R(z)∥L2(Rd)→H2(Rd) ≤ C(1 + |z|)
(

1 + 1
d(z, σ(H))

)
∥R(z)∥L2(eα⟨x⟩)→H2(eα⟨x⟩) ≤ C(1 + |z|)

(
1 + 1

d(z, σ(H))

)
∀α ≤ αz := cd(z, σ(H))
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Proof. The first inequality is classical (see for instance [25] Lemma 3.6).
The second is a (non-sharp) Combes–Thomas estimate, which we prove for completeness here. Denote
by

Hα := eα⟨x⟩(−∆ +W )e−α⟨x⟩ = (−∆ +W ) + −2α∇⟨x⟩ · ∇ + α2∆(⟨x⟩)︸ ︷︷ ︸
αBα

. (B.3)

Let R(z) = (z − (−∆ +W ))−1. We have that
BαR(z) = (−2∇⟨x⟩ · ∇ + α∆(⟨x⟩))(1 − ∆)−1(1 − ∆)R(z)

is bounded as an operator on L2(Rd) by C/d(z, σ(H)), for all α ≤ 1, for some C > 0. It follows that,
for α ≤ d(z, σ(H))/(2C)

(z −Hα)−1 = R(z)(1 + αBαR(z))−1

is bounded from L2(Rd) to H2(Rd) with norm smaller than C′

d(z,σ(H)) for some C ′ > 0. Then, for all
ψ ∈ L2(eα⟨x⟩),

∥R(z)ψ∥H2(eα⟨x⟩) = ∥(z −Hα)−1eα⟨x⟩ψ∥H2(Rd) ≤ C ′

d(z, σ(H))∥ψ∥L2(eα⟨x⟩)
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