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Abstract. Stiff hyperbolic balance laws exhibit large spectral gaps, especially if the relaxation term significantly
varies in space. Using examples from rarefied gases and the general form of the underlying balance law model, we
perform a detailed spectral analysis of the semi-discrete model that reveals the spectral gaps. Based on that, we show
the inefficiency of standard time integration schemes expressed by a severe restriction of the CFL number. We then
develop the first spatially adaptive projective integration schemes to overcome the prohibitive time step constraints
of standard time integration schemes. The new schemes use different time integration methods in different parts of
the computational domain, determined by the spatially varying value of the relaxation time. We use our analytical
results to derive accurate stability bounds for the involved parameters and show that the severe time step constraint
can be overcome. The new adaptive schemes show good accuracy in a numerical test case and can obtain a large
speedup with respect to standard schemes.
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1. Introduction

Many applications from science and engineering are modeled by partial differential equations in balance
law form, often including stiff relaxation terms with different time scales. Typical examples can be
found in aerodynamics, rarefied gases, and atmospheric flows [1, 16, 35, 38]. The relaxation terms
in the modeled equations can lead to a time scale separation governed by a small parameter, called
the relaxation time [13]. This relaxation time can vary largely throughout the domain, giving rise to
different modes developing on different time scales [21].

For a large time scale separation, indicated by a spectral gap of the eigenvalue spectrum, the
equations become stiff after the spatial discretization. For standard explicit time stepping schemes,
this stiffness leads to prohibitively small time steps that are proportional to the relaxation time. This
is problematic in many applications including models from rarefied gases derived with the help of
kinetic theory [10, 17]. In the limit of vanishing relaxation time, an asymptotic preserving scheme is
necessary for a stable computational simulation and feasible runtime [15].
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https://doi.org/10.5802/smai-jcm.88
© The authors, 2022

295

mailto:j.koellermeier@rug.nl
mailto:giovanni.samaey@kuleuven.be
https://doi.org/10.5802/smai-jcm.88


J. Koellermeier & G. Samaey

It is possible to use an implicit scheme for the discretization of the semi-discrete PDE. However,
fully implicit solutions can be expensive and may not be appropriate for hyperbolic fluid dynamics
problems [26]. Hybrid schemes like the implicit-explicit IMEX schemes [32] still have a remaining
implicit term that might require a special treatment. There exist high-order IMEX schemes applied
to stiff balance laws, which are more complex [4]. However, standard splitting schemes alternating
between the stiff and the non-stiff term are effective only for lower order schemes [34, 36].

Projective integration (PI) is a simple to implement, explicit time integration scheme that mitigates
stiffness problems by performing a number K of small inner time steps of size δt followed by a large
extrapolation step of size ∆t [13]. The small time step size δt is fixed by the fast relaxation time
whereas the extrapolation step ∆t can be chosen according to a macroscopic time step governed by
a standard CFL condition. The number of inner iterations K is then determined by the necessary
stability properties, but often taken as a small fixed number. The scheme has been successfully applied
to different models arising from kinetic equations [27, 28]. It was extended to higher-order in space
and time using a Runge–Kutta scheme as outer integrator in [25, 26] and a telescopic scheme with
different levels of integrators was developed and applied in [29, 30]. Recently, the models have been
applied to hyperbolic moment models in [20, 21].

So far, all existing PI schemes use constant method parameters K, δt,∆t throughout the whole
spatial domain. This approach is optimized for a spatially constant relaxation time. The existing
methods are therefore not able to take advantage of differences in the relaxation times in different
parts of the domain. While the PI scheme is efficient in the stiff region, it might not be needed in
parts of the domain with large relaxation time.

In the literature, local time stepping is widely used. We refer to [8] for an example of local time
stepping for an ADER DG scheme with a flux memory variable that stores the flux contributions
to different time steps to reduce computational overhead. In [12] the Continuous Extension Runge–
Kutta method (CERK) provides a continuous polynomial approximation within the time step that is
combined with a local space-time Galerkin projector. Lastly, spatially adaptive Runge–Kutta schemes
can be employed via Generalized Additive Runge–Kutta (GARK) methods [14].

In this paper, we introduce the first spatially adaptive projective integration schemes (API) using
a domain decomposition approach with buffer cells at the respective boundaries. To the best of our
knowledge, no such scheme was described in the literature so far. In the methods we propose, each
part of the domain uses a different time step size and a potentially different time integration scheme,
based on varying relaxation times throughout parts of the domain and different time scales. This
leads to a significant speedup in non-stiff regions and reduces the stability constraints in each part of
the domain. The buffer cells for reconstruction at the boundary are updated based on interpolation
between two adjacent time levels. Similar approaches have been used before, e.g., coupling Lattice
Boltzmann models or rarefied gas models and other PDEs [7, 11, 24, 37, 40, 41].

The main focus of this paper is the stability analysis of those newly derived API schemes to ensure
a stable integration of the model throughout the whole domain using adaptively chosen parameters for
the different schemes in the different parts of the domain. This requires an in-depth stability analysis of
the semi-discrete model before performing the time discretization. We consider a general balance law
form with standard spatial discretization schemes and derive the spectrum of the model based on some
simple assumptions on the relaxation term and the properties of the transport term. This will then
allow to perform a linear stability analysis for a large class of standard non-adaptive schemes and newly
derived adaptive schemes. As examples, we derive the following new schemes: (1) an adaptive Forward
Euler scheme (AFE); (2) an adaptive Projective Forward Euler scheme combined with a Forward
Euler scheme in the semi-stiff region (APFE); and (3) an adaptive Projective Projective Forward
Euler scheme combined with a projective Forward Euler scheme in the semi-stiff region (APPFE). In
addition, we outline the extension to possible higher-order adaptive Projective Runge Kutta schemes
(APRK) or adaptive Telescopic Projective Integration schemes (ATPI), similar to [26, 29]. After
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analytically deriving stable parameter bounds for all schemes in the presence of one stiff domain part
and one semi-stiff domain part, we numerically show that these parameters indeed lead to a stable
scheme. We derive analytical estimates for the speedup of the new adaptive schemes with respect to
a standard global Forward Euler scheme or global Projective Forward Euler scheme.

The rest of this paper is structured as follows: In Section 2, we first introduce the general type of
stiff hyperbolic balance law and give two examples for models from rarefied gases. Additionally, we
describe the spatial discretization based on standard finite volume schemes. The spatial discretization
of standard models allows for a detailed spectral analysis that reveals a clear spectral gap, which is
also validated numerically. Section 3 considers standard FE and PFE schemes defined in the whole
domain for which a restrictive CFL condition is analytically derived. The adaptive schemes are derived
in Section 4 along with an analysis of the stability properties and a numerical validation of the
theoretical results. A numerical test case is solved before speedup estimates are derived and exemplified
in Section 5. The paper ends with a short conclusion.

2. Stiff hyperbolic balance laws with spectral gaps

Many problems in science and engineering can be modelled as balance laws with a left-hand side
transport term and a right-hand side relaxation term, which can be interpreted as a source term. In
this paper, we consider non-conservative systems of the following form

∂w

∂t
+ A (w) ∂w

∂x
= − 1

ϵ(x)S(w), (2.1)

where w ∈ RN is the unknown variable, A (w) ∈ RN×N is the system matrix of the transport term,
and the term containing S ∈ RN is the possibly stiff right-hand side source term. We are particularly
interested in small and spatially varying values of the relaxation time ϵ(x) ∈ R+.

Note that (2.1) is a generalization of the standard form of a conservation law with right-hand side
source term

∂w

∂t
+ ∂

∂x
F (w) = − 1

ϵ(x)S(w), (2.2)

where F (w) is the flux function depending on the unknown variable. In the notation of (2.1), the
system matrix can then be seen as the Jacobian of the flux function, i.e., A = ∂F

∂w . Even for zero
source term S = 0, (2.1) is not necessarily a conservative system. In comparison to (2.2), the general
form of (2.1) thus also includes so-called non-conservative systems, for which no flux function exists.
Those systems occur in a lot of contexts, e.g. in rarefied gases [23] and free surface flows [19].

The simplest form of the model equation (2.1) is the scalar equation

∂w

∂t
+ a

∂w

∂x
= − 1

ϵ(x)w, (2.3)

which models transport with constant advection velocity a ∈ R and relaxation to zero with relaxation
rate 1

ϵ(x) . Note that the constant transport velocity leads to a time step constraint of the form ∆t ≤
CFL∆x

|a| for given CFL number CFL ≤ 1. For small values of ϵ(x), the right-hand sides becomes
stiff, which leads to the constraint ∆t < 1

ϵ(x) . While this system can exhibit a spectral gap in Fourier
space [27], there is only one scalar variable, so that there will be no spectral gap in the physical space
between fast and slow variables relaxing at different time scales, which characterizes many physical
processes. We therefore consider systems of equations and exemplarily consider two examples from
rarefied gases in the following two sections.
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2.1. Hyperbolic moment models

In rarefied gases, the mass density distribution function f(t, x, c) can be expanded in a truncated Her-
mite sum in the microscopic velocity space c ∈ R with coefficients fi(t, x) for i = 3, . . . ,M in addition
to its macroscopic moments ρ(t, x), u(t, x), θ(t, x), denoting density, bulk velocity, and temperature,
respectively.

f(t, x, c) =
M∑

i=0
fi(t, x)ϕ[u,θ]

α

(
c− u

θ

)
, f0 = ρ, f1 = 0, f2 = 1 (2.4)

The vector of unknown variables is then given by w = (ρ, u, θ, f3, . . . , fN ) ∈ RM+1.
The evolution of the variables is governed by the non-linear hyperbolic moment equations (HME)

[5], which are given by the system matrix AHME ∈ R(M+1)×(M+1) defined by

AHME =



u ρ
θ
ρ u 1

2θ u 6
ρ

4f3
ρθ
2 u 4

− θf3
ρ 5f4

3f3
2 θ u 5

...
...

...
... . . . . . . . . .

− θfM−2
ρ MfM−1

(M−2)fM−2+θfM−4
2 −M(M+1)fM

2θ −3fM−3
ρ θ u M

− θfM−1
ρ (M+1)fM −fM−1+θfM−3

2
3(M+1)fM

ρθ −3fM−2
ρ θ u


, (2.5)

and the source term S(w) ∈ RM+1 on the right-hand side as the collision term that can be modelled
using the simple BGK model [3] as

− 1
ϵ(x)S(w) = − 1

ϵ(x) diag (0, 0, 0, 1, . . . , 1)w, (2.6)

for relaxation time ϵ(x) ∈ R+. Note how the source term leads to a relaxation of the coefficients fi to
zero, which is the state represented by equilibrium, in which the distribution function f(t, x, c) is in
the form of a Maxwellian and characterized by the first three moments ρ, u, θ alone, i.e.,

fMaxwell(t, x, c) = ρ(t, x)√
2πθ(t, x)

exp
(

−|c− u(t, x)|2

2θ(t, x)

)
. (2.7)

For small values ϵ(x) the coefficients fi quickly relax to zero and the model is governed by the slowly
evolving macroscopic variables ρ, u, θ, clearly indicating the different scales.

2.2. Hermite spectral model

The linearized version of the HME model in Section 2.1 is called Hermite Spectral Method (HSM),
see [9, 21]. It can be seen as a discrete velocity scheme using a spectral discretization of the velocity
space corresponding to variables fi. This leads to a unknown variable vector w = (f0, . . . , fM ) ∈ RM+1

and results in the system matrix AHSM ∈ R(M+1)×(M+1) defined by

AHSM =



1
1

√
2

√
2 . . .

. . .
√
M√

M


. (2.8)
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The right-hand side vector S (w) ∈ RM+1 for the 1D BGK model uses the projection onto scaled
Hermite polynomials ψα of degree α and is given by

− 1
ϵ(x)Sα =

∫
R

(f(t, x, c) − fMaxwell(t, x, c))ψα(c) dc, for ψα(c) = Heα(c)√
2αα!

, (2.9)

where an analytical expression is difficult to obtain, see [9, 21].
In [21] it was shown that the HSM model contains the same spectrum as a standard discrete

velocity model, as commonly used in rarefied gases. This means that the unknown variables relax
with relaxation time ϵ(x) to an equilibrium manifold on which they only evolve with respect to the
macroscopic time scale given by the transport of the macroscopic variables. Thus, spectral gaps can
be expected for small and/or varying values of ϵ(x).

2.3. Spatial discretization

In this section, we detail the spatial discretization of models of the form (2.1). We use the notation of
polynomial viscosity matrix (PVM) methods as outlined in appendix A for standard non-conservative
finite volume schemes and non-linear models. For more details on the spatial discretization, we refer
to [6, 31].

While numerical simulations in Section 5 are computed with the full non-linear model, a linearization
is necessary to assess the spectral properties of the model and the linear stability properties of the
schemes later. The PVM method (A.1) can then be written as

wn+1
i − wn

i

∆t = − 1
∆x

(
A ·

wn
i+1 − wn

i−1
2 + Q ·

−wn
i+1 + 2wn

i − wn
i−1

2

)
− 1
ϵ(xi)

Swn
i , (2.10)

where the terms on the right-hand side are the numerical flux, the numerical diffusion, and the poten-
tially stiff source term.

Writing (2.10) as a semi-discrete system for the unknown column vector W = (w1, w1, . . . , wNx) ∈
RNx·N and assuming periodic boundary conditions, the system of equations reads

∂W

∂t
=


− 1

2∆x


A ·



I −I
−I I

−I . . .
. . . I

I −I


+ Q ·



2I −I −I
−I 2I −I

−I . . . . . .
. . . . . . −I

−I −I 2I




− 1
ϵ

S


W,

(2.11)
where the entries are block matrices containing the identity matrix I ∈ RN

The system (2.11) can be simplified further to

∂W

∂t
= AW, (2.12)

with blockwise defined matrix

A =



d0 b c
c d1 b

c
. . . . . .
. . . . . . b

b c dNx


, (2.13)
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that has varying diagonal entries di and constant off diagonals b, c

di = − 1
∆xQ − 1

ϵ(xi)
S, (2.14)

b = 1
2∆x (Q − A) , (2.15)

c = 1
2∆x (Q + A) . (2.16)

From the definition of the matrix A in (2.13) we can see that a large value of the entries in Q
makes the matrix more diagonally dominant and leads to a more stable scheme. The case Q = 0, which
corresponds to the FCTS scheme, discretizing the transport part using simple central finite differences,
would even lead to an instable scheme for moderate relaxation times. Note that the diagonal blocks di

depend on the relaxation time ϵ(xi) evaluated at the respective cell. In the following, we will denote
ϵ(xi) = ϵi.

2.4. Spatially varying collision rates

As an example for spatially varying collision rates, we consider two piecewise constant values and
write

ϵ(x) =
{
ϵL if x < 0,
ϵR if x ≥ 0,

(2.17)

which gives rise to denoting W =
(

WL
WR

)
and the following decomposition of the system into two

regions:
∂

∂t

(
WL

WR

)
=
(

ALL ALR

ARL ARR

)(
WL

WR

)
, (2.18)

where WL and WR correspond to the values in the left part and right part of the domain, respectively.
In terms of (2.13) the respective parts of the system are given as

ALL =


dL b

c
. . . . . .
. . . . . . b

c dL

 , ALR =


c

b

 , (2.19)

ARL =


c

b

 , ARR =


dR b

c
. . . . . .
. . . . . . b

c dR

 , (2.20)

with

dL = − 1
∆xQ − 1

ϵL
S, (2.21)

dR = − 1
∆xQ − 1

ϵR
S. (2.22)

Note that the only difference in the two block matrices on the diagonal is the value of the source term,
which uses either ϵL for ALL or ϵR for ARR, respectively. The sparse off-diagonal blocks contain the
information of the boundary conditions coupling the left and right part of the domain.
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The coupled system can be written as two subsystems

∂

∂t
WL = ALL · WL + ALR · WR, (2.23)

∂

∂t
WR = ARL · WL + ARR · WR. (2.24)

Without loss of generality, we assume ϵL ≪ ϵR and call the left subsystem (2.23) the stiff system,
whereas the right subsystem (2.24) is non-stiff. After choosing a specific spatial discretization, i.e., the
PVM method, a stability analysis can be performed.

Remark 2.1. Note that the distinction between stiff and non-stiff region made by setting the collision
rate in (2.17) can also be much more arbitrary. We can have several, distinct regions with small collision
rates ϵL or large collision rates ϵR. A permutation of the variable vector W can be performed to split
the system to an upper and lower part with small or large collision rate, respectively. This will lead
to more entries in the off-diagonal blocks ARL,ALR and a larger bandwidth in the diagonal blocks
ALL,ARR. But the analysis can be performed in the same way.

2.5. Spectral analysis

In this section, we give a concise statement about the spectral properties of the system matrix A (2.13)
for spatially varying relaxation times. In addition to the assumption of a linearized system, i.e. A =
const, we use the following assumptions throughout this section

(A1) A is symmetric. This is true for the HSM model (2.8). For the HME model (2.5) it requires a
linearization around equilibrium and a proper symmetrization [5].

(A2) the source term − 1
ϵi

S is given by a diagonal matrix − 1
ϵi

Ĩ := − 1
ϵi

diag(0, 0, 0, 1, . . . , 1), modeling
the conservation of mass, momentum and energy and the relaxation of higher order moments.
This is true for the BGK operator of the HME model (2.6). For the HSM model (2.9), it
requires a previous redefinition of the variable space [21].

As common for the stability analysis of numerical schemes, the analysis assumes small deviations
from some linearized state. Linear stability is then a necessary condition for fully non-linear simulations
using the numerical scheme. Note that despite the linearization and the assumptions in this section,
numerical simulations of initial value problems for (2.12) are typically performed using the full non-
linear model. The numerical results in Section 5 show that the linear stability results can readily be
applied to the fully non-linear system as well.

The main result of this section is the following theorem on the general characterization of the eigen-
values, which is later specified for different spatial discretizations (Upwind, Lax–Friedrichs, FORCE).

Theorem 2.2. Under the assumptions (A1), (A2) the spectrum σ (A) for the models described in
Sections 2.1 and 2.2 consists of one slow cluster and remaining fast cluster(s) depending on the values
of the relaxation time ϵ evaluated on the grid as

σ (A) ∈ C (λs, R) ∪
(⋃

i

C (λϵi , R)
)
, (2.25)

with circles C(λ,R) in the complex plane centered around λ with radius R.
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The values λs, λϵi , R depend on the spatial discretization scheme, i.e., the definition of the PVM
matrix Q and the relaxation time as follows

λs = − 1
∆xλ (Q) ,

λϵi = − 1
∆xλ (Q) − 1

ϵi
,

R = 1
2∆x (|λmax (Q − A)| + |λmax (Q + A)|) .

Proof. According to the Gershgorin circle theorem [39], all eigenvalues of a block-wise defined matrix
A of the type in (2.13) are included in the following domains

Gi = σ(di) ∪
(⋃

i

C (λdi
, ∥b∥ + ∥c∥)

)
, (2.26)

where di, bi, ci are the block matrices in the i-th row of the matrix A. The norm ∥ · ∥ is the spectral
norm which evaluates to the absolute value of the maximum eigenvalue, for the symmetric matrices
used here.
For the computation of the respective eigenvalues, we make use of the fact that for any holomorphic
function f , the eigenvalues λ(f(A)) are simply given by f(λ(A)). This will be especially useful for the
PVM methods, for which the viscosity matrix Q is a function of A.
The eigenvalues of di = − 1

∆xQ − 1
ϵi

S cannot be obtained without prior knowledge of either Q or S.
However, they have been computed for several explicit moment models in [27]. Using only assumption
(A2) about the form of the relaxation matrix S, see also (2.6), a subset of three slow eigenvalues is
given as λ1,2,3. Due to the form of S, see also (2.6), those eigenvalues are among the eigenvalues of
λs = − 1

∆xλ(Q) and the remaining eigenvalues are given by λϵi = − 1
∆xλ(Q) − 1

ϵi
.

The maximum eigenvalue of b can be computed using ∥b∥ = 1
2∆x |λmax (Q − A)| and the insertion of

the viscosity matrix Q as a function of A. The computation of ∥c∥ = 1
2∆x |λmax (Q + A)| follows in

the same way.

Theorem 2.2 states that there is one main slow cluster and several fast clusters that are determined
by the relaxation times. This result is similar to the case of discrete velocity models in [26, 27, 29].
However, the simple and explicit form of the model allows for a straightforward characterization of
the spectrum without moving to Fourier space first. This will be clear in the following sections, where
we apply Theorem 2.2 to the Upwind, Lax–Friedrichs, and FORCE scheme.

2.5.1. Upwind scheme

The Upwind scheme uses minimal viscosity Q = |A| (A.5), such that the values λs, λϵi , R in Theo-
rem 2.2 are computed

λs = − 1
∆xλ (Q) = −|λ (A)|

∆x , (2.27)

λi = − 1
∆xλ (Q) − 1

ϵi
= −|λ (A)|

∆x − 1
ϵi
, (2.28)

R = 1
2∆x (|λmax (Q − A)| + |λmax (Q + A)|) = 1

2∆x (|λmax (|A| − A)| + |λmax (|A| + A)|)

= 1
2∆x (2 |λmin (A)| + 2 |λmax (A)|) ≤ 1

2∆x2 |λmax (A)| = λmax (A)
∆x . (2.29)

for positive λmax (A) > 0.
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For the upwind scheme, the slow cluster centered at λs depends on the propagation speed of the
model and the spatial grid, while the fast clusters λi include also the relaxation of faster values with
the respective relaxation time evaluated at the grid. The radius R of the clusters depends on the
maximal eigenvalues and the grid.

2.5.2. Lax–Friedrichs scheme

For the Lax–Friedrichs scheme, the values λs, λϵi , R in Theorem 2.2 are computed using Q = ∆x
∆t I (A.6)

and the time step size is given by a macroscopic CFL condition ∆t = CFL · ∆x
λmax(A) as follows

λs = − 1
∆t = − λmax (A)

CFL · ∆x, (2.30)

λi = − 1
∆t − 1

ϵi
= − λmax (A)

CFL · ∆x − 1
ϵi
, (2.31)

R = 1
2∆x

(∣∣∣∣λmax

(∆x
∆t I − A

)∣∣∣∣+ ∣∣∣∣λmax

(∆x
∆t I + A

)∣∣∣∣) (2.32)

= 1
2∆x

(∣∣∣∣λmax (A)
CFL

− λmax (A)
∣∣∣∣+ ∣∣∣∣λmax (A)

CFL
+ λmax (A)

∣∣∣∣) (2.33)

= 1
2∆x

(( 1
CFL

− 1
)
λmax (A) +

( 1
CFL

+ 1
)
λmax (A)

)
= λmax (A)
CFL · ∆x, (2.34)

for positive λmax (A) > 0.
The Lax–Friedrichs scheme shows similar dependence of λs, λi, R on the model parameters compared

to the upwind scheme. However, the CFL number enters in the denominator, which has an important
effect on the stability of the scheme later.

2.5.3. FORCE scheme

For the FORCE scheme, the values λs, λϵi , R in Theorem 2.2 can be computed using Q = ∆x
2∆tI +

∆t
2∆xA2 (A.7) and the time step size is given by a macroscopic CFL condition ∆t = CFL · ∆x

λmax(A) as
follows

λs = − 1
2∆t − ∆t

2∆xλ (A)2 ≥ −λmax (A)
2∆x

( 1
CFL

+ CFL

)
, (2.35)

λi = − 1
2∆t − ∆t

2∆xλ (A)2 − 1
ϵi

≥ −λmax (A)
2∆x

( 1
CFL

+ CFL

)
− 1
ϵi
, (2.36)

R = 1
2∆x

(∣∣∣∣λmax

( ∆x
2∆tI + ∆t

2∆xA2 − A
)∣∣∣∣+ ∣∣∣∣λmax

( ∆x
2∆tI + ∆t

2∆xA2 + A
)∣∣∣∣)

= 1
2∆x

(( 1
2CFL + CFL

2 − 1
)
λmax (A) +

( 1
2CFL + CFL

2 + 1
)
λmax (A)

)
= λmax (A)

2∆x

( 1
CFL

+ CFL

)
. (2.37)

for positive λmax (A) > 0.
The FORCE scheme results in slightly more complicated formulas to compute λs, λi, R. This is

mainly due to the definition of the polynomial viscosity matrix (A.7). Note that the FORCE scheme
yields the same results as the upwind scheme for CFL = 1.
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2.5.4. Numerical validation of spatial discretizations’ spectral properties

In Figure 2.1 the results of Theorem 2.2 are validated using numerical values of the actual spectrum.
For the numerical computation, we used the HME model (2.5) with M + 1 = 5 equations, linearized
around equilibrium with (ρ, u, θ) = (1, π, 1), such that the maximum eigenvalue evaluates to λmax ≈ 6.
The spatial discretization is performed on the grid [−1, 1] with ∆x = 1/50, i.e. 100 cells. A spatially
varying relaxation time is chosen according to piecewise constant values (2.17)

ϵ(x) =
{
ϵL = 10−4 if x < 0,
ϵR = 10−3 if x ≥ 0.

(2.38)

The CFL number is set to 0.75.
In all three cases, we can see that the regions proposed in Theorem 2.2 correctly include all eigenval-

ues of the scheme. This includes the split into three regions. The slow cluster contains the macroscopic
evolution governed by the flow speeds λmax. The second cluster is a fast cluster governed by the
relaxation time ϵR. The third and fastest cluster is governed by the relaxation time ϵL. On the one
hand, the methods slightly differ in the value of R, the radius of the three clusters, which is influ-
enced by the CFL number. We obtain Rupwind < RF ORCE < RLF (note the different scaling of the
y-axis). On the other hand, also the position of the clusters is slightly different with a similar relation
λupwind > λF ORCE > λLF . Large negative real parts of the eigenvalues result in a decay in time. This
means that the upwind scheme is the least diffusive while the Lax–Friedrichs scheme introduces a lot
of diffusion.

3. Standard time integration schemes

After a detailed investigation of the spectral properties of the semi-discrete model, we now investigate
how the model can be integrated in time in a stable way, which is the main focus of this paper. First we
consider standard time integration schemes, before deriving new and more suitable adaptive schemes.
We consider the general setup with spatially varying but piecewise constant relaxation times according
to (2.38).

As standard time integration schemes we consider all schemes that cannot take into account the
spatial variation of the relaxation time. This typically leads to a severe time step constraint, as we
will show throughout this section for the simple forward Euler scheme (FE). The Projective Forward
Euler scheme (PFE) already mitigates time step constraint of the fastest eigenvalue cluster, but does
not benefit from potentially slower eigenvalues in other parts of the domain.

3.1. Forward Euler scheme (FE)

The simple forward Euler scheme performs one explicit time step using a time step size ∆t, as outlined
in Figure 3.1. The update is given by

Wn+1 = Wn + ∆tAWn = (I + ∆tA) Wn (3.1)

where the matrix AF E = I+∆tA is the so-called transition matrix, that describes the transition from
the current values Wn to Wn+1.

The stability domain of the FE scheme, based on the model equation ∂tw = λw, with λ ∈ C− is
shown in Figure 3.2a and given by

λ ∈ C

(
− 1

∆t ,
1

∆t

)
(3.2)

The spectral analysis reveals the respective bounds on the time step size, depending on the spatial
discretization, the CFL number, and the relaxation times ϵL ≪ ϵR from (2.38). Including the whole
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(a) Upwind scheme.
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(b) Lax–Friedrichs scheme.
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-400

400

(c) FORCE scheme.

Figure 2.1. Numerical eigenvalues and analytical spectra according to theorem 2.2
match for the different schemes: Upwind (top), LF (middle) and FORCE (bottom).
Numerical eigenvalues are plotted in blue, Gershgorin circles from Theorem 2.2 are
drawn in black. The model is HME (2.5) with M + 1 = 5 equations, linearized around
equilibrium with (ρ, u, θ) = (1, π, 1), i.e. λmax ≈ 6, ϵL = 10−4, ϵL = 10−3, ∆x = 1/50,
CFL = 0.75.

spectrum for the model analyzed in Theorem 2.2 within the stability domain of the FE scheme, we
obtain the following stability condition

1
∆t ≥ 1

2 (|λϵ| +R) (3.3)

Inserting ∆t = CFL ∆x
λmax

and known values of λϵ and R for the different schemes, yields the
following stability conditions:

(1) the upwind scheme is conditionally stable for CFL ≤ 2ϵLλmax
∆x+2ϵLλmax

.

(2) the Lax–Friedrichs scheme is unconditionally unstable for all CFL values.

(3) the FORCE scheme is conditionally stable for CFL ≤ − ∆x
2ϵLλmax

+
√

∆x
2ϵLλmax

2 + 1.
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Figure 3.1. Forward Euler scheme (FE) with small time step ∆t = O(ϵ) in the whole
domain.

λL,λR,λS

- 1
Δt

- 1
Δt

1
Δt

(a) Stability region of Forward Euler scheme (FE). The whole domain uses
one time step ∆t that determines the stability of all modes.

λL λR,λS

- 1
δt

- 1
Δt

- 1
Δt

1
Δt

(b) Stability region of Projective Forward Euler scheme (PFE). The whole
domain uses one inner time step δt for fast modes and one time step ∆t for
the other modes.

Figure 3.2. Stability regions of FE and PFE time integration schemes. The respective
eigenvalues need to be located within the specified domains for stability of the scheme.

We conclude that both the upwind and the FORCE scheme are only stable under a very small CFL
number that is of the order O(ϵ), while the Lax–Friedrichs scheme is unconditionally unstable and
cannot be stabilized even by a small CFL number. The severe time step constraint for upwind and
FORCE is prohibitive in many applications and more suitable methods needs to be used.

Plotting the eigenvalues of the transition matrix with an upwind discretization in Figure 3.3a shows
that the method is indeed stable and the stability bounds are relatively sharp as larger values of ∆t
or CFL, respectively, would lead to an unstable scheme.
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(a) Forward Euler.
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(b) Projective Forward Euler.

Figure 3.3. Numerical spectrum of the transition matrix A for Forward Euler (left)
and Projective Forward Euler (right). Both schemes are stable if parameters are chosen
according to the derived analytical values, while the estimates are relatively sharp as
eigenvalues are close to stability boundary. Upwind spatial discretization, (ρ, u, θ) =
(1, π, 1), i.e. λmax ≈ 6, ϵL = 10−4, ϵL = 10−3, ∆x = 1/10.

3.2. Projective Forward Euler scheme (PFE)

The Projective Forward Euler scheme (PFE) is an explicit, asymptotic-preserving scheme that com-
bines K + 1 small time steps of size δt with an extrapolation step over the remaining ∆t− (K + 1)δt
to achieve the value at the next time step, as outlined in Figure 3.4

Figure 3.4. Projective Forward Euler scheme (PFE) with K = 2 and small time step
δt = O(ϵ) in the whole domain.

The update is computed as follows

Wn,k+1 = Wn,k + δtA · Wn,k, k = 0, . . . ,K (3.4)

Wn+1 = Wn,K+1 + (∆t− (K + 1)δt) Wn,K+1 − Wn,K

δt
, (3.5)
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The stability domain of the PFE scheme, again based on the model equation ∂tw = λw, with λ ∈ C−

is shown in Figure 3.2b and given by

λ ∈ C

(
− 1

∆t ,
1

∆t

)
∪ C

(
− 1
δt
,

1
δt

(
δt

∆t

) 1
K

)
(3.6)

Using the spectral analysis of the previous section, we can again derive the respective bounds on the
parameters δt,∆t, and K depending on the spatial discretization, the CFL number, and the relaxation
times ϵL,R. In order to include the whole spectrum for the model analyzed in Theorem 2.2 within the
stability domain of the PFE scheme, we consider the constant relaxation time case ϵ = const. We then
determine the parameters based on (3.6) and Theorem 2.2 as

1
∆t = −λs (3.7)
1
δt

= −λϵ (3.8)

1
δt

(
δt

∆t

) 1
K

≥ R (3.9)

Inserting ∆t = CFL ∆x
λmax

and known values of λϵ and R for the different schemes, yields:

(1) the upwind scheme is conditionally stable for δt = 1
λmax

∆x
+ 1

ϵ

= O(ϵ), K = 1, and CFL ≤ 1.

(2) the Lax–Friedrichs scheme is conditionally stable for δt = 1
λmax

CF L∆x
+ 1

ϵ

= O(ϵ), K = 1, and
CFL ≤ 1.

(3) the FORCE scheme is conditionally stable for δt = 1
λmax
2∆x ( 1

CF L
+CF L)+ 1

ϵ

= O(ϵ), K = 1, and
CFL ≤ 1.

Interestingly, the Lax–Friedrichs scheme is stable in comparison to the FE scheme. Note that the
value K = 1 is chosen here for convenience. Other values are possible and extend the stability region
towards the slow cluster, see [29].

The eigenvalues of the transition matrix AP F E with an upwind spatial discretization and parameters
according to the aforementioned stability conditions are plotted in Figure 3.3b. Again, all eigenvalues
are inside the unit circle and we conclude that the method is indeed stable for the parameter settings
predicted by our analysis. The eigenvalues λi are close to the stability boundary ∥λi∥ < 1, which
indicates that both the estimates of the spectrum of the model equation and the stability properties
of the scheme are relatively sharp.

The PFE scheme overcomes the restrictive time step constraint of the FE scheme in case of small
relaxation times. It does not, however, make use of potential spatially varying relaxation times. If the
relaxation time is only small in some parts of the domain, an adaptive method needs to be chosen for
larger speedup, which will be explained in the next section.

4. Spatially adaptive time integration schemes

We now need to construct time-stepping methods with matching stability region. Therefore, we con-
sider a special treatment of the stiff and non-stiff parts of the domain.

More precisely, we consider the transition from time step n to time step n+1 and write the update as(
Wn+1

L

Wn+1
R

)
=
(

Ascheme
LL Ascheme

LR

Ascheme
RL Ascheme

RR

)(
Wn

L
Wn

R

)
, (4.1)
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introducing a scheme specific block-wise transition matrix Ascheme =
(

Ascheme
LL Ascheme

LR

Ascheme
RL Ascheme

RR

)
.

The small relaxation time ϵL in the stiff part of the system leads to a severe time step constraint.
In order to design a tailored numerical integration scheme for the decoupled system, we employ a
different time integration scheme in each domain. In the non-stiff domain, a standard forward Euler
scheme with time step size ∆t is applied. In the stiff domain, a different scheme is necessary. We derive
the following new schemes

AFE: Stiff domain: Forward Euler scheme; Non-stiff domain: Forward Euler scheme

APFE: Stiff domain: Projective Forward Euler scheme; Non-stiff domain: Forward Euler scheme

APPFE: Stiff domain: Projective Forward Euler scheme; Non-stiff domain: Projective Forward Euler
scheme

We denote the methods as Adaptive Forward Euler scheme (AFE), Adaptive Projective Forward
Euler scheme (APFE) and Adaptive Projective Projective Forward Euler scheme (APPFE), respec-
tively.

4.1. Adaptive Forward Euler scheme (AFE)

We first consider a standard forward Euler scheme with a smaller time step δt in the stiff region,
while using a large time step ∆t in the non-stiff region. For simplicity, we only consider the case
∆t = (K + 1)δt with integer K ∈ N. The scheme is outlined in figure 4.1.

Figure 4.1. Adaptive forward Euler scheme (AFE) with small time step δt in stiff
region (left) and large time step ∆t in non-stiff region (right). Values of red cells at the
boundary of the two domains need to be reconstructed.

The updates from the values Wn to Wn+1 are thus performed in the following way
Wn+1

R = Wn
R + ∆t (ARL · Wn

L + ARR · Wn
R) , (4.2)

for the non-stiff part of the domain using a forward Euler step with time step size ∆t, see (3.1), and

Wn,k+1
L = Wn,k

L + δt
(
ALL · Wn,k

L + ALR · Wn,k
R

)
, k = 0, . . . ,K (4.3)

Wn+1
L = Wn,K+1

L , (4.4)
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for the stiff part of the domain using a forward Euler step with time step size δt and initialisations
Wn,0

L = Wn
L, Wn,0

R = Wn
R. The intermediate values Wn,k

R needed from the non-stiff part are computed
via interpolation, i.e.,

Wn,k+1
R = Wn

R + (k + 1) · δt · Wn+1
R − Wn

R

∆t , (4.5)

= (k + 1)δtALRWn
L + (I + δt(k + 1)ARRWn

R, (4.6)

where the sparse form of the off-diagonal parts ALR and ARL allows for an efficient computation of
the interpolation only at the interface.

Theorem 4.1. One time step of the AFE method with time step size ∆t in the non-stiff domain and
time step size δt in the stiff domain, for ∆t = (K + 1)δt is given by the transition matrix AAF E with
block entries

AAF E
LL = (I + δtALL)K+1 + δt2

K∑
k=0

(K − k) (I + δtALL)k ALRARL

AAF E
LR = δt

K∑
k=0

(I + δtALL)k ALR (I + (K − k)δtARR)

AAF E
RL = ∆tARL

AAF E
RR = I + ∆tARR.

Proof. The resulting blocks of the transition matrix (4.1) are obtained by insertion of the non-stiff
entries via (4.2) and the stiff entries (4.3) together with the boundary interpolation via (4.5).

As an example, we consider K = 1, such that ∆t = 2δt. Theorem 4.1 then leads to the following
transition matrix:

AAF E =
(

(I + δtALL)2 + δt2ALRARL 2δtALR + δt2 (ALRARR + ALLALR)
∆tARL I + ∆tARR

)
, (4.7)

which can be written as

AAF E = I + ∆t
(

ALL ALR

ARL ARR

)
+ ∆t2

4

(
A2

LL + ALRARL ALLALR + ALRARL

0 0

)
(4.8)

Comparing (4.8) with a Taylor expansion of the exact solution of (2.18) aroundWn, i.e.,W (t+∆t) =
Wn+∆tAWn+ ∆t2

2 A2Wn+O
(
∆t3

)
, it is clear that the scheme has an error of ∥Wn+1−W (t+∆t)∥ =

O(∆t2), such that it is first order accurate in time.
The stability analysis of the scheme is not based on the scalar model equation ∂tW = λW , with

λ ∈ C−, but on the following two-dimensional model

∂t

(
WL

WR

)
=
(
λL 0
0 λR

)(
WL

WR

)
, (4.9)

for two variables WL,WR following two scales λL, λR ∈ C−, reflecting spatially varying relaxation
times.

This leads to the following transition matrix for the model equation (4.9)

AAF E =
(

(1 + δtλL)K+1 0
0 1 + ∆tλR

)
(4.10)
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The stability domain of the AFE scheme, derived using the transition matrix from (4.10) ∥AAF E∥ ≤
1 is then given by

λL ∈ C

(
− 1
δt
,

1
δt

)
and λR ∈ C

(
− 1

∆t ,
1

∆t

)
, (4.11)

and shown in Figure 4.2a.

λL,λS λR,λS

- 1
δt

- 1
Δt

- 1
Δt

1
Δt

(a) Stability region of Adaptive Forward Euler scheme (AFE). Stiff domain
uses small time step δt for all modes and non-stiff domain uses larger ∆t for
all modes.

λL λR,λS

- 1
δt

- 1
Δt

- 1
Δt

1
Δt

(b) Stability region of Adaptive Projective Forward Euler scheme (APFE).
Stiff domain uses one inner time step δt for fast modes and one time step ∆t
for the other modes. Non-stiff domain uses single time step ∆t for all modes.

λL λR λS

- 1
δtL

- 1
δtR

- 1
Δt

- 1
Δt

1
Δt

(c) Stability region of Adaptive Projective Projective Forward Euler scheme
(APPFE). Both the stiff domain and the non-stiff domain each use one inner
time step δtL,R for fast modes and one time step ∆t for the other modes.

Figure 4.2. Stability regions of adaptive time integration schemes. The respective
eigenvalues need to be located within the specified domains for stability of the scheme.
Orange denotes stability region for the whole domain. Red denotes separate stability
region for the stiff domain. Yellow denotes separate stability region of non-stiff domain.

Using the spectral analysis of the previous section, we can derive the respective bounds on the
parameters δt and ∆t depending on the spatial discretization, the CFL number, and the relaxation
times ϵL,R. In order to include the whole spectrum for the model analyzed in Theorem 2.2 within the
stability domain of the AFE scheme, we now consider a spatially varying relaxation time with discrete
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values ϵL ≪ ϵR. We then determine the parameters based on (4.11) and Theorem 2.2 as
1
δt

≥ 1
2 (−λϵL +R) (4.12)

1
δt

≥ R (4.13)
1

∆t ≥ 1
2 (−λϵR +R) (4.14)

1
∆t ≥ R (4.15)

Inserting ∆t = CFL ∆x
λmax

and the known values of λϵL , λϵR and R for the different schemes yields:

(1) the upwind scheme is conditionally stable for δt = 1
λmax

∆x
+ 1

2ϵL

= O(ϵL), and CFL ≤ 1
∆x

2ϵRλmax
+1 .

(2) the Lax–Friedrichs scheme is unconditionally unstable because the intermediate cluster cannot
be integrated in a stable way.

(3) the FORCE scheme is conditionally stable for δt = 1
λmax
2∆x ( 1

CF L
+CF L)+ 1

2ϵL

= O(ϵL), and CFL ≤

− ∆x
2ϵRλmax

+
√

∆x
2ϵRλmax

2 + 1.

Note that in comparison to the FE scheme 3.1, only the small time step size δt is used to resolve
the stiff domain corresponding to ϵL, whereas the rest of the domain can use a standard time step
∆t given by CFL = O(1) for a larger ϵR. However, the Lax–Friedrichs scheme is still unstable and a
CFL condition remains for the other schemes. In addition, many steps with δt need to be performed
in the stiff region.

The eigenvalues of the transition matrix AAF E with an upwind spatial discretization and parameters
according to the aforementioned stability conditions are plotted in Figure 4.3a. Again, all eigenvalues
are inside the unit circle and we conclude that the method is indeed stable for the parameter settings
predicted by our analysis. The eigenvalues λi are very close to the stability boundary ∥λi∥ < 1, which
indicates that both the estimates of the spectrum of the model equation and the stability properties
of the scheme are relatively sharp.
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(a) Adaptive Forward Euler.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(b) Adaptive Projective Forward Euler.

Figure 4.3. Numerical spectrum of the transition matrix A for Adaptive Forward
Euler (left) and Adaptive Projective Forward Euler (right). Both schemes are stable if
parameters are chosen according to the derived analytical values, while the estimates
are relatively sharp as eigenvalues are close to stability boundary. Upwind spatial dis-
cretization, (ρ, u, θ) = (1, π, 1), i.e. λmax ≈ 6, ϵL = 10−4, ϵL = 10−3, ∆x = 1/10.
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4.2. Adaptive Projective Forward Euler scheme (APFE)

We keep a standard forward Euler scheme with large time step ∆t in the non-stiff region but employ
a Projective Forward Euler scheme with K inner Forward Euler steps of smaller time step δt ≪ ∆t in
the stiff domain. The idea is outlined in Figure 4.4.

Figure 4.4. Adaptive projective forward Euler scheme (APFE) with K inner small
time steps δt in stiff region (left) and large time step ∆t in non-stiff region (right).
Values of red cells at the boundary of the two domains need to be reconstructed.

The update and interpolation of the non-stiff values from (4.2) and (4.5) are the same. The Projec-
tive Forward Euler scheme uses K inner Forward Euler steps and subsequent extrapolation over the
remaining time interval

Wn,k+1
L = Wn,k

L + δt
(
ALL · Wn,k

L + ALR · Wn,k
R

)
, k = 0, . . . ,K (4.16)

Wn+1
L = Wn,K+1

L + (∆t− (K + 1)δt) Wn,K+1
L − Wn,K

L

δt
, (4.17)

Theorem 4.2. One time step of the APFE method with time step size ∆t in the non-stiff domain
and K time steps of size δt with subsequent extrapolation in the stiff domain is given by the transition
matrix AAP F E with block entries

AAP F E
LL = (I + (∆t−Kδt)ALL)

(
δt2

K−1∑
k=0

(K − 1 − k) (I + δtALL)k ALRARL + (I + δtALL)K

)
+ (∆t−Kδt)ALRKδtARL

AAP F E
LR = (I + (∆t−Kδt)ALL) δt

K−1∑
k=0

(I + δtALL)k ALR (I + (K − 1 − k)δtARR)

+ (∆t−Kδt)ALR (I +KδtARR)
AAP F E

RL = ∆tARL

AAP F E
RR = I + ∆tARR.

Proof. The resulting blocks of the transition matrix (4.1) are obtained by insertion of the non-stiff
entries via (4.2) and the stiff entries (4.16) together with the boundary interpolation via (4.5).
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As an example, we consider K = 1, which is often used for PFE schemes. Theorem 4.2 then leads
to the following transition matrix: AAP F E =(

(I + (∆t− δt)ALL) (I + δtALL) + δt(∆t− δt)ALRARL (∆t− δt) (ALR + δtALRARR)
∆tARL I + ∆tARR

)
,

(4.18)
which can be written as AAP F E =

I + ∆t
(

ALL ALR

ARL ARR

)
+
(
δt(∆t− δt)

(
A2

LL + ALRARL

)
−δtALR + δt(∆t− δt)ALRARR

0 0

)
(4.19)

Considering consistency, we can again compare (4.19) with a Taylor expansion of the exact solution
of (2.18) and obtain that the scheme has an error of ∥Wn+1 − W (t + ∆t)∥ = O(∆t2), i.e., it is first
order accurate in time.

The stability analysis is again based on (4.9), which leads to the following transition matrix

AAP F E =
( (

1 +
(

∆t
δt −K

)
δtλL

)
(1 + δtλL)K 0

0 1 + ∆tλR

)
(4.20)

The stability domain of the APFE scheme is derived in the same fashion as for the AFE scheme
using ∥AAP F E∥ ≤ 1 and given by

λL ∈ C

(
− 1

∆t ,
1

∆t

)
∪ C

(
− 1
δt
,

1
δt

(
δt

∆t

)K+1)
and λR ∈ C

(
− 1

∆t ,
1

∆t

)
, (4.21)

as shown in Figure 4.2b.
Using the spectral analysis of the previous section, we can derive the respective bounds on the

parameters δt and ∆t, and K depending on the spatial discretization, the CFL number, and the
relaxation times ϵL,R. In order to include the whole spectrum for the model analyzed in Theorem 2.2
within the stability domain of the APFE scheme, we consider the same spatially varying relaxation
time with discrete values ϵL ≪ ϵR. We then determine the parameters based on (4.21) and 2.2 as

1
δt

= −λϵL (4.22)

1
δt

(
δt

∆t

)K+1
≥ R (4.23)

1
∆t ≥ 1

2 (−λϵR +R) (4.24)
1

∆t ≥ R (4.25)

Inserting ∆t = CFL ∆x
λmax

and the known values of λϵL , λϵR and R for the different schemes yields:

(1) the upwind scheme is conditionally stable for δt = 1
λmax

∆x
+ 1

ϵL

= O(ϵL), K = 1, and

CFL ≤ 1
∆x

2ϵRλmax
+1 .

(2) the Lax–Friedrichs scheme is unconditionally unstable because the intermediate cluster cannot
be integrated in a stable way.

(3) the FORCE scheme is conditionally stable for δt = 1
λmax
2∆x ( 1

CF L
+CF L)+ 1

ϵL

= O(ϵL), K = 1, and

CFL ≤ − ∆x
2ϵRλmax

+
√

∆x
2ϵRλmax

2 + 1.
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Note that the value K = 1 is chosen here for convenience. Other values are possible and extend the
stability region towards the slow cluster, see [29].

The eigenvalues of the transition matrix AAP F E with an upwind spatial discretization and pa-
rameters according to the aforementioned stability conditions are plotted in Figure 4.3b. Again, all
eigenvalues are inside the unit circle and we conclude that the method is indeed stable for the param-
eter settings predicted by our analysis. The eigenvalues λi are very close to the stability boundary
∥λi∥ < 1, which indicates that both the estimates of the spectrum of the model equation and the
stability properties of the scheme are relatively sharp.

In comparison to the AFE scheme above, the APFE scheme uses less small time steps δt in the
stiff region, while performing the same large time step ∆t in the non-stiff region. The speedup is thus
purely due to a more efficient integration of the stiff terms in the stiff region. Due to the relaxation
time in the non-stiff region, the Lax–Friedrichs scheme is still unstable, as in the case of the AFE
method.

4.3. Adaptive Projective Projective Forward Euler (APPFE)

The APFE method is already able to overcome the stability constraints in the stiff region with relax-
ation time ϵL. However, in order to overcome a potential stability constraint in the other part of the
domain with ϵR, a standard FE method in that domain is not enough. We will therefore introduce an
APPFE method, that uses a PFE method in both regions, but adapts the inner time step size δt to
the respective relaxation times. The idea is outlined in Figure 4.5.

Figure 4.5. Adaptive projective projective forward Euler scheme (APPFE) with K+
1 = 3 inner small time steps δtL in stiff region (left) and inner small time steps δtR > δtL
in semi stiff region (right). Values of red cells at both sides of the boundary of the two
domains need to be reconstructed.

For simplicity, we assume that there is a significant gap between the relaxation times ϵL and ϵR,
resulting in δtL ≪ δtR, such that the small time steps and the extrapolation are not intertwined,
as shown in Figure 4.5. The update and interpolation of boundary values are then same as in the
previous schemes. The Projective Forward Euler schemes uses KL and KR inner Forward Euler steps,
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respectively, and perform a subsequent extrapolation over the remaining respective time interval, i.e.,

Wn,k+1
L = Wn,k

L + δtL
(
ALL · Wn,k

L + ALR · Wn,k
RL

)
, k = 0, . . . ,K (4.26)

Wn+1
L = Wn,KL+1

L + (∆t− (KL + 1)δLt)
Wn,KL+1

L − Wn,KL
L

δtL
, (4.27)

Wn,k+1
R = Wn,k

R + δtR
(
ARL · WLR

n,k + ARR · Wn,k
R

)
, k = 0, . . . ,K (4.28)

Wn+1
R = Wn,KR+1

R + (∆t− (KR + 1)δRt)
Wn,KR+1

R − Wn,KR
R

δtR
, (4.29)

where the necessary boundary values Wn,k
RL for the left update and WLR

n,k for the right update are
obtained via interpolation, i.e.,

Wn,k
RL = Wn

R + (k + 1) · δtL · (ARL · Wn
L + ARR · Wn

R) , (4.30)

Wn,k
LR = Wn

L + ((k + 1)δtR −KLδtL) Wn,KL+1
L − Wn,KL

L

δtL
. (4.31)

As the transition matrix is a lengthy expression that has no further use for us expect for the stability
analysis, we omit its rather tedious derivation here and focus on the stability properties, which can
be obtained from the definition of the scheme applied to the model system (4.9). In this case, the
transition matrix reads

AAP P F E =

 (
1 +

(
∆t
δtL

−KL

)
δtLλL

)
(1 + δtLλL)KL 0

0
(
1 +

(
∆t
δtR

−KR

)
δtRλR

)
(1 + δtRλR)KR


(4.32)

The stability domain of the APPFE scheme is then derived using ∥AAP P F E∥ ≤ 1 and is given by

λL ∈ C

(
− 1
δtL

,
1

∆t

)
∪ C

(
− 1
δtL

,
1
δtL

(
δtL
∆t

)KL+1)
(4.33)

and

λR ∈ C

(
− 1
δtR

,
1

∆t

)
∪ C

(
− 1
δtR

,
1
δtR

(
δtR
∆t

)KR+1)
, (4.34)

as shown in Figure 4.2c.
Using the spectral analysis of the previous section, we can derive the respective bounds on the

parameters δtL,KL, δtR,KR, and ∆t depending on the spatial discretization, the CFL number, and
the relaxation times ϵL,R. In order to include the whole spectrum for the model analyzed in Theorem 2.2
within the stability domain of the APFE scheme, we consider the same spatially varying relaxation
time with discrete values ϵL ≪ ϵR. We then determine the parameters based on (4.33) and (4.34) and
Theorem 2.2 as

1
δtL

= −λϵL (4.35)

1
δtR

= −λϵR (4.36)

1
δtL

(
δtL
∆t

)KL+1
≥ R (4.37)

1
δtR

(
δtR
∆t

)KR+1
≥ R (4.38)

Using ∆t = CFLλmax
∆x and the known values of λϵL , λϵR and R for the different schemes yields:
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(1) the upwind scheme is conditionally stable for δtL/R = 1
λmax

∆x
+ 1

ϵL/R

= O(ϵL/R), K = 1, and

CFL ≤ 1.

(2) the Lax–Friedrichs scheme is conditionally stable for δtL/R = 1
λmax

CF L∆x
+ 1

ϵL/R

= O(ϵL/R), K = 1,

and CFL ≤ 1.

(3) the FORCE scheme is conditionally stable for δtL/R = 1
λmax
2∆x ( 1

CF L
+CF L)+ 1

ϵL/R

= O(ϵL/R),

K = 1, and CFL ≤ 1.
Again, K = 1 is chosen here for convenience. Other values are possible and extend the stability

region towards the slow cluster, see [29].
All the AFE and APFE scheme, the CFL condition is much less restricted and a full convective

time step ∆t = ∆x
λmax

with CFL = 1 is possible. This reduces the runtime significantly in case of stiff
relaxation times.
Remark 4.3. While focussing the analysis on first-order outer time integrators like the Forward
Euler scheme (FE) in this paper, the same analysis and implementation can be performed for higher-
order Runge–Kutta (RK) schemes, that replace the outer integrator [25, 26]. This leads to Adaptive
Projective Runge–Kutta schemes (APRK). Another extension is possible for connected spectra via
Telescopic Projective Integration schemes (TPI), developed in [29, 30]. The results on the time step
restrictions can be extended to higher order integrators as follows: Higher order RK schemes do have
a larger stability domain, which allows for a larger time step. However, the stability domain of higher
order RK methods is still bounded and the time step constraint follows the same asymptotical behavior
for vanishing ϵ. Linear multistep methods like explicit Adams–Bashforth (AM) schemes or implicit
Adams–Moulton (AM) schemes do also not have a particularly large stability domain. A-stable BDF
methods can be obtained up to order 2, but they are implicit and require a potentially non-linear
solve. In this paper, we focus on first order spatially adaptive methods but the strategies developed
in this work readily be applied to other schemes. The extension to higher order is left for future work.

5. Numerical results

In this section, we briefly validate the numerical accuracy of the newly derived adaptive projective
methods with the help of a two-beam test case and give theoretical results for the potential speedup
of our new methods. As the focus of this paper is the derivation and analysis of the new schemes,
we do not perform exhaustive tests and simulations of all possible combinations of schemes, spatial
discretizations and parameter settings, but leave this for future work. For implementation details we
refer to the implementation [22].

5.1. Two-beam test

The two beam test case is a standard test case for rarefied gases and was used in [17], [33] for different
moment models for constant relaxation time ϵ. A spatially varying relaxation time was first tested
in [21]. For more detailed information on the test setup, we refer to the literature.

The initial Riemann data for the left-hand side and the right-hand side of the domain, respectively,
is given by

wL = (1, 0.5, 1, 0, . . . , 0)T , wR = (1,−0.5, 1, 0, . . . , 0)T , (5.1)
modeling two colliding Maxwellian distributed particle beams. This test case is especially challenging
as it is difficult to represent the analytical solution using a polynomial expansion. In the free streaming
case ϵ = ∞ the analytical solution is a sum of two Maxwellians according to [33].
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The numerical tests are performed on the computational domain [−10, 10], discretized using 500
points and the end time is tEND = 0.1 using a constant macroscopic time step ∆t according to a CFL
number of 0.5 for all tests. This results in the macroscopic time step size ∆t = 3.85 · 10−4 for the
HME model (2.1) with M + 1 = 10 equations, which is used here as one example. Note that extensive
tests of the QBME moment model have been performed in [17, 33] for the rarefied regime and in [21]
in the case of small relaxation time ϵ ≪ 1. In the latter case, we can assume that the model error of
the moment model can be neglected and do not show a comparison with reference models. For more
details on the accuracy of moment models for the two-beam model, we refer to [17].

The spatially varying relaxation time is chosen as

ϵ(x) =
{
ϵL = 10−4 if x < 0,
ϵR = 10−2 if x ≥ 0, (5.2)

As the spatial discretization method, we use the first order FORCE scheme and compare four
methods for the time integration:

(1) A first order IMEX scheme based on a FE method for the explicit fluid part and a Backward
Euler (BE) method for the stiff source term with CFL = 0.5.

(2) A FE scheme using small time steps ∆t = 10−4 for stability.

(3) A PFE scheme using δt = ϵL, K = 2, and ∆t according to a macroscopic CFL = 0.5.

(4) An APFE scheme using δt = ϵL, K = 2 in the stiff left part of the domain and ∆t according
to a macroscopic CFL = 0.5 in the right half of the domain.

Note that an APPFE method is not necessary here as there is no additional constraint on the time step
size in the non-stiff domain due to the relatively fine spatial discretization. When using higher-order
spatial discretization and larger time step sizes ∆t, a coarser grid would lead to possible gains for an
APPFE (or a higher-order APPRK) method. This is left for future work.

The numerical results shown in Figure 5.1 clearly show that the adaptive scheme is able to achieve
high accuracy in this numerical test. Figure 5.1a shows that the error with respect to the first order
FE and PFE scheme is negligible for the pressure p, while 5.1b shows even less diffusivity for the
heat flux Q. This is due to the fact that the APFE method performs less time steps in the non-stiff
domain, thus decreasing the added numerical diffusion. Comparing the standard PFE scheme with the
APPFE scheme, we clearly see that the adaptivity does not induce any oscillations for this test case.
For future work, higher-order spatial discretizations and adaptive higher-order time stepping methods
like APPRK need to be investigated. We note that the IMEX scheme introduces a lot of diffusivity
which results from the implicit BE step for the collision term that is known to damp the solution a
lot. However, the solution is still accurate in the equilibrium part of the domain for x < 0.

5.2. Shock tube test

As a second test, we consider a modified version of the standard shock tube test, see [2, 17]. We start
from a gas in equilibrium within the domain [−2, 2] and use the following initial data

(ρ, u, θ) =
{

(7, 0, 1) , if − 1 < x < 0,
(1, 0, 1) , if x ≤ −1 or x ≥ 1,

(5.3)

Strong non-equilibrium will be generated by two shock waves moving left and right, respectively.
However, we use spatially varying relaxation times

ϵ(x) =
{
ϵL if x < 0,
ϵR if x ≥ 0,

(5.4)
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(a) Pressure p.
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(b) Heat flux Q.

Figure 5.1. Two-beam test comparison of IMEX, FE, PFE and APFE. Spatial dis-
cretization uses first order FORCE scheme. Spatially varying relaxation time ϵL = 10−4,
ϵR = 10−2.

with ϵR = 100 · ϵL, such that the left moving wave is closer to equilibrium than the right moving wave.
The numerical simulations run until tEND = 0.3. An appropriate macroscopic time step is given by

∆t = 3.85 · 10−4 approximately corresponding to a CFL number of 0.5 when the grid is discretized
using 1000 cells. The simulations are carried out with a third order FORCE scheme and with a moment
model using M = 4.
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(a) Scheme comparison for ϵL = 10−4.
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(b) Model comparison for APFE.

Figure 5.2. Shock tube test comparison of FE, PFE and APFE (left) and different
relaxation times ϵL = 10−4, 10−5, 10−6 (right). Spatial discretization uses third order
FORCE scheme. Spatially varying relaxation time ϵR = 100 · ϵL.

Figure 5.2a shows the comparison for different numerical schemes with the same spatially varying
relaxation time ϵL = 10−4 corresponding to ϵR = 10−2. We compare a Forward Euler scheme (FE)
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using a stable ∆t = 1·10−4, a Projective Forward Euler scheme (PFE) using outer ∆t = 3.85·10−4 and
inner δt = 1 · 10−4 with K = 2, and an adaptive Projective Forward Euler scheme (APFE) using PFE
in the left domain with δtL = 1 · 10−4 and K = 2 and FE in the right domain with δtR = 3.85 · 10−4.
All three schemes result in the same solution.

The comparison for different relaxation times is shown in Figure 5.2b. The APFE scheme with
stable settings is used for different ϵL = 10−4, 10−5, 10−6, corresponding to ϵR = 10−2, 10−3, 10−4,
respectively. The solution has already converged in the left half of the domain. However, due to the
larger relaxation time ϵR = 100 · ϵL in the right part of the domain the flow is still in stronger non-
equilibrium there and only the case ϵR = 10−4 can be considered converged to equilibrium there. We
note that the APFE scheme is able to compute accurate and stable solutions of this test case despite
the underlying stiff PDE model. It does so with a significant speedup, which is investigated further in
the next section.

5.3. Computational speedup of adaptive schemes

In this section, we give some results for the potential speedup of our new methods for a standard
test case. As the focus of this paper is the derivation and analysis of the new schemes, we do not
perform exhaustive numerical tests and simulations of all possible combinations of schemes, spatial
discretizations and parameter settings, but leave this for future work.

The adaptive schemes in this paper are used to speed up the simulation of models with spectral
gaps due to model differences throughout the computational domain, such that one (or more) stiff
and one non-stiff domains are present. Similar to [21, 29], we compare the computational speedup
by investigating the number of function evaluations because a direct runtime comparison of different
methods using non-optimized code might distort the results. For the estimation of the speedup in
comparison to a standard Forward Euler method (FE), we neglect the extrapolation steps of the PI
methods and the boundary treatment. The speedup S of a certain scheme with respect to a standard
FE method is given by the ratio of the number of time steps n over a unit time interval and can be
computed according to [29] as

S = nF E

nscheme
(5.5)

For the different schemes, the number of time steps over a unit time interval is computed using
the stability analysis from Sections 3 and 4. As an example, we consider the Upwind scheme and the
largest possible time steps, to use explicit formulas for the speedup. We furthermore assume that a
fraction of θ ∈ [0, 1] of the computational domain uses the stiff relaxation time ϵL, while the remaining
1 − θ are governed by the (also potentially) stiff relaxation time ϵR.

FE: nF E = 1
∆t , with time step size ∆t = CFL ∆x

λmax
and CFL = 1

∆x
2ϵLλmax

+1 .

PFE: nP F E = K+1
∆t , with time step size ∆t = CFL ∆x

λmax
and CFL = 1

∆x
2ϵRλmax

+1 .

AFE: nAF E = θ
δt + 1−θ

∆t , with small time step size δt = 1
λmax

∆x
+ 1

2ϵL

and ∆t = CFL ∆x
λmax

with

CFL = 1
∆x

2ϵRλmax
+1 .

APFE: nAP F E = θ(K+1)
∆t + 1−θ

∆t , with time step size ∆t = CFL ∆x
λmax

and CFL = 1
∆x

2ϵRλmax
+1 .

APPFE: nAP P F E = θ(KL+1)
∆t + (1−θ)(KR+1)

∆t , with time step size ∆t = CFL ∆x
λmax

and CFL = 1.
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Note that the main gain for the speedup results from a less severe constraint on the CFL number.
As a numerical example we consider the base settings λmax = 6, ∆x = 1

50 and the projective schemes
PFE, APFE, APPFE will use K = KL = KR = 1. For the remaining parameters, we consider the
following three scenarios:

(A) medium large spectral gaps on equally large domains ϵL = 10−4, ϵR = 10−3, θ = 1
2 .

(B) large spectral gaps on equally large domains ϵL = 10−6, ϵR = 10−4, θ = 1
2 .

(C) large spectral gaps and the stiffness only in a small domain ϵL = 10−6, ϵR = 10−4, θ = 1
10 .

Table 5.1. Speedup of time integration schemes in comparison to standard FE
scheme.

case (A) (B) (C)
FE 1.0 1.0 1.0

PFE 3.3 47.2 47.2
AFE 1.7 1.9 9.1

APFE 4.4 62.9 85.8
APPFE 8.8 833.8 833.8

The speedup depending on the scenario and the time integration scheme is given in Table 5.1. While
the standard PFE scheme already achieves a considerable speedup for cases with a large spectral gap,
only the APFE and APPFE methods can make us of the full potential by treating both domains
differently. The AFE method gives a speedup in comparison to the FE method, but does not overcome
the stiff time step constraint in the stiff part of the domain. It is clear from Table 5.1 that only the
projective schemes PFE, APFE, and APPFE can achieve a significant speedup and adaptivity again
drastically improves the performance of the projective schemes.

Remark 5.1. In this section, we only compare the speedup of the methods, while not addressing
the respective accuracy of the schemes. The Forward Euler scheme, which can serve as reference
solution, and the (A)PFE scheme, for example, have the same spatial discretization error, but the
time discretization error is different. The time discretization error of the (A)PFE scheme will indeed
be larger than the time discretization error of the FE method, which uses a much smaller time step
size. However, we look at cases where the time discretization is already fine and the time discretization
error is negligible so that a speedup with larger time steps is feasible. Therefore, accuracy is not the
limiting factor here. All schemes are first order in time. The limiting factor is stability, as indicated
in previous works [20, 21]. For the error between PI schemes and a FE reference scheme, we refer to
Figure 5.1.

6. Conclusion

In this paper, we developed and analyzed the first spatially adaptive projective integration schemes
for stiff hyperbolic balance laws with spectral gaps to speed up standard time integrations schemes.

After introduction of the model PDEs exemplified by two models from rarefied gases, a detailed
spectral analysis revealed the spectral gap for different spatial discretization schemes. The analytical
derivation was validated by a numerical example that showed the accuracy of the derived eigenvalue
bounds. After that, standard time integration schemes like the Forward Euler scheme or the Projective
Forward Euler scheme, were analyzed and a prohibitive condition for the CFL number was derived
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in case of large spectral gaps. The newly derived spatially adaptive time integration schemes were
able to successively overcome these constraints on the time step size by using one scheme in the
stiff region in combination with another scheme in the other region. The explicit formulation of the
projective integration schemes allowed for an accurate analysis of the stability properties such that
parameter bounds could also derived and validated for the adaptive schemes. Additionally, we outlined
an extension towards higher-order time integration schemes or telescopic schemes with connected
stability domains.

The results showed that the adaptive projective integration schemes achieved a high accuracy and
a significant speedup that grows with the variations in the relaxation time.

The analysis in this paper allows for a promising extension towards higher-order methods via adap-
tive Projective Runge–Kutta schemes [26] or adaptive Telescopic Projective Integration schemes [29] in
the future. Additionally, more numerical tests for applications need to be performed, e.g., for moment
models and free-surface flows [19].

Appendix A. Non-conservative Spatial Discretization

The general system (2.1) can be discretized in space-time using cell-averages wn
i at cell i for i =

1, . . . , Nx and time step n using the finite volume method in non-conservative form as follows

wn+1
i = wn

i − ∆t
∆x

(
D+

i−1/2 +D−
i+1/2

)
− 1
ϵ(xi)

S (wn
i ) , (A.1)

with fluctuations
D±

i+1/2 = A±
Φ(wi, wi+1) (A.2)

given by a polynomial viscosity method (PVM)

A±
Φ(wL, wR) = 1

2 (AΦ · (wR − wL) ± QΦ · (wR − wL)) , (A.3)

with generalized Roe linearization AΦ = AΦ(wL, wR) given by

AΦ(wL, wR) · (wR − wL) =
∫ 1

0
A(Φ(s;wL, wR))∂Φ

∂s
(s;wL, wR) ds. (A.4)

Note that Φ(s;wL, wR) denotes a path connecting the left and right states at the cell interface, such
that Φ(0;wL, wR) = wL and Φ(1;wL, wR) = wR. The choice of paths has been studied in the literature
and especially for moment systems of the forms (2.5) and (2.8), a linear path Φ(s;wL, wR) = wR =
wL + s (wR − wL) was found to be sufficiently accurate [17, 23].

The PVM method is using a viscosity matrix QΦ = QΦ(wL, wR) depending on the left and right
states. It has the form QΦ(wi, wi+1) = P i+1/2 (AΦ (wi, wi+1)), where P i+1/2 (AΦ(wL, wR)) is a function
of the generalized Roe matrix.

Many standard schemes can be written in the PVM form:
• the Upwind or Roe scheme uses

QΦ(wL, wR) = |AΦ(wL, wR)| , (A.5)
which is not a polynomial in AΦ(wL, wR) and can only be constructed given the full eigen-
structure of the model.

• the Lax–Friedrichs scheme uses

QΦ(wL, wR) = ∆x
∆t I. (A.6)

with λN and λ1 the largest and smallest eigenvalues, respectively, of the linearized Roe matrix
at the cell interface.

322



Spatially Adaptive Projective Integration

• the FORCE scheme uses

QΦ(wL, wR) = ∆x
2∆tI + ∆t

2∆xAΦ(wL, wR). (A.7)

In general, the function should be as close as possible to the absolute value function while
P i+1/2 (x) ≥ |x| is required for stability.

When considering a system with constant system matrix or a linearization of the system such that
A(w) = const, e.g. (2.8), the non-conservative scheme shown here simplifies to AΦ(wL, wR) = A and
QΦ(wi, wi+1) = Q. Additionally, we assume a linear or linearized source term, e.g. (2.6), such that
S (wn

i ) = Swn
i , for constant matrix S ∈ RN×N .

Note that a higher-order extension of the non-conservative scheme is possible as described in [18].
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