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Abstract. The Circulant Embedding Method (CEM) is a well known technique to generate stationary Gaussian
Random Fields (GRF). The main idea is to embed the covariance matrix in a larger nested block circulant matrix,
whose factorization can be rapidly computed thanks to the fast Fourier transform (FFT) algorithm. The CEM
requires the extended matrix to be at least positive semidefinite which is proven to be the case if the enclosing
domain is sufficiently large, as proven by Theorem 2.3 in [9] for cubic domains. In this paper, we generalize this
theorem to the case of rectangular parallelepipeds. Then we propose a new initialization stage of the CEM algorithm
that makes it possible to quickly jump to a domain size close to the one needed for the CEM algorithm to work.
These domain size estimates are based on fitting functions. Examples of fitting functions are given for the Matérn
family of covariances. These functions are inspired by our numerical simulations and by the theoretical work from
[9]. The parameters estimation of the fitting functions is done numerically. Several numerical tests are performed
to show the efficiency of the proposed algorithms, for both isotropic and anisotropic Matérn covariances.

2020 Mathematics Subject Classification. 60G60, 65C10, 65C05, 86A32.

Keywords. stationary Gaussian random fields, circulant embedding method, Matérn covariances, fast Fourier
transform.

1. Introduction

Stationary Gaussian Random Fields (GRF) are classically used to model physical properties in environ-
ment applications. For example, in hydrogeology, stationary GRF are used to model the permeability
of a porous domain [2, 8]. Here we focus on the generation of stationary GRF on regular grids. If the
grid has M points, the general algorithm to generate a realization of the stationary random vector Y of
M normal variables, with zero mean and the M x M covariance matrix R, is based on a factorization
of the covariance matrix R as shown by Algorithm 1.

Using Algorithm 1, Y has R as covariance matrix:

E[YY”] = E[(B8)(BO)"] = BE[#6”"|B” = BB” = R.

Algorithm 1 requires the factorization of the covariance matrix R which can be done according
to different methods, a review of those methods can be found in [11]. The most direct method is
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Algorithm 1 General algorithm

1: Factorize R = BB? with B of size M x M;

2: Generate a vector 0 of size M of realizations of standard normal random variables, with zero mean
and E[097] = Id,

3: One realization with the requested covariance matrix R is obtained by computing Y = B6.

based on the Cholesky factorization of matrix R. However it requires O(M?) operations to factorize
a matrix of size M, which becomes prohibitive for large M. Among the other techniques, let us
cite the Karhunen-Loeve (K.-L.) expansion [13]. The K.-L. expansion is infinite, so in practice the
expansion is truncated to obtain an approximation of a GRF. The number of terms to keep depends
on the correlation length and on the input domain size: typically the smaller the correlation length
with respect to the input domain size, the larger the number of terms to keep and the larger the
computational costs. Another method based on H-matrices has recently been developed in [6]. It also
has the advantage of handling non-stationary covariance functions. It gives approximations of random
fields at given points, also possibly distributed on irregular grids. Another method is the Circulant
Embedding Method (CEM) which produces random vectors with exactly the required correlation
structure on regular grids [3, 4, 5, 9]. The principle of CEM is to embed the matrix R of size M
in a bigger s x s nested block circulant matrix R®**, whose factorization can be rapidly computed
thanks to the FFT algorithm in O(slog(s)) operations. The matrix R is positive semidefinite and
also a nested block symmetric Toeplitz matrix under an appropriate ordering of the indices. However
the extension R®* might not be positive semidefinite unless the extended domain is large enough [9].
In [9], a uniform grid of points on the d-dimensional unit cube [0, 1] (d is the dimension) is considered
together with isotropic covariance functions.

In this work, we are interested in reducing the time needed to generate Gaussian random fields with
the CEM on d-dimensional rectangular parallelepipeds of size L X --- X Ly with isotropic and also
anisotropic covariance functions. We want to decrease the number of tests that have to be carried out
before a semi-positive definite matrix R®" is obtained (see step 3 of Algorithm 2 on page 332). Towards
this aim we propose a new initialization of the CEM algorithm to save computational resources. This
new initialization is based on an offline stage to set up a function that estimates the size of the enlarged
domain, close to the one that ensures that the extended matrix R is at least positive semidefinite.
Once this function is obtained, it is used to compute a guess of the required enlarged domain.

The main contributions of the paper are:

e an extension of Theorem 2.3 from [9] to the cases of d-dimensional rectangular parallelepipeds;

e a design of fitting functions for the specific cases of Matérn and Gaussian covariance functions;

e an extensive set of numerical experiments that validate the proposed procedure for the case of
anisotropic covariance functions.

It is hoped that the resulting functions may be useful for researchers and practitioners who have to
use the CEM method.

328



INITIALIZATION OF THE CIRCULANT EMBEDDING METHOD

For the readers interested in applying the results to the specific case of the Matérn family of
covariance functions (see (2.3)—(2.4)), we give now the fitting functions that are derived in this
paper to efficiently initialize the CEM algorithm.

Let us consider a d-dimensional rectangular parallelepipeds of size Ly x --- x Ly with anisotropic
covariance functions of correlation length A;,¢ = {1,...,d}. The given number of points along
direction 4 is mg; + 1. The fitting functions are defined as follows:

Matérn case (1/2 < v < 00): the fitting function is called M with
M(v, Ni/Liy hoi/Li) = § + & (v) 02 log(max(\;/hoi, 1°2))
2D case: ¢§*' =1.36 and ' = 1.71;
3D case: ¢§*' = 2.80 and ¢§*(v) = 2.53v 7931,
Gaussian case (v = 00): the fitting function is called G with
G(Ni/Li, hoi/Li) = af Ai/ho; + a5™
2D case: o' = 8.691073, a5t = 8.09,
3D case: o' = 1.76 1072, a5t = 8.23.

The number of points m$*™* + 1 to initialize the circulant embedding algorithm (Algorithm 2 on
page 332) can be computed quickly by the following procedure, where F stands either for M when
1/2 <v < oo or for G when v = oc:

(1) Estimate the size of the enlarged domain by evaluating the fitting function
53?’2 = J—“(V, )\Z/LZ, h()ﬂ/LZ)Ll,

start
[

(2) The number of points m is then derived from the estimated length according to

m§™ = max(mo, [€5/ho,]),

where [z] is the ceiling of z.

The outline of this paper is as follows: Section 2 presents the notations used in this paper, the
Matérn family of covariances with smoothness parameter v (1/2 < v < 00) together with the classical
CEM algorithm. Section 3 proves that, under quite general conditions on the covariance functions and
for d-dimensional rectangular parallelepipeds, the CEM algorithm always terminates. Section 4 gives
the new initialization stage we propose to speed up the computations of the classical CEM algorithm
and the procedure to get a function that gives a good estimate of the required size of the enlarged
domain. Section 5 proposes to apply this method to the Matérn family of covariances. Section 6
confirms the quality of the estimates obtained with our new initialization on several isotropic and
anisotropic Matérn covariance test cases.

All the simulations in this paper were carried out with the parallel C4++17 ParaCirce! library
that implements both the classical and the new CEM algorithms presented in this paper. ParaCirce
performs the discrete Fourier transforms with the FFTW3 library [7] and uses Rngstream [10] for the
generation of pseudo-random numbers. ParaCirce handles 64-bit and 80-bit floating point precision
with template arguments. ParaCirce parallelization is based on the MPI standard. The simulations
are done in 80-bit floating point precision in order to avoid, as much as possible, the stagnation of the
minimum eigenvalue as explained in Appendix A.

"https://gitlab.inria.fr/slegrand/paracirce
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2. The CEM method

2.1. Notations

Consider a grid of size L1 X - - - x Ly with given number of points mg ;+1 in each direction ¢, =1,...,d.
The objective is to the generate a stationary random vector Y on this grid with

M:(m071+1)><~--><(m07d+1)

points. The grid spacing along each direction ¢ is constant and denoted by hg ;. It is given by

hoﬂ' = LZ y (21)
mo,;
and the grid points are x1;X2;...;Xum.
We denote by diag the operator that, given a vector argument, creates a matrix with the vector
values along the diagonal and Hy = diag(ho.1,. .., hoq) the diagonal space step matrix.

For the particular case of a cubic domain of size L, we take the same number of points mg + 1 in
each direction. Therefore, the spacing hg is constant and the same in each direction:

L
ho := —. 2.2
0= (2.2)
Let us consider the discrete representation of Y as [Y;]M,. The covariance matrix R. is

R = [p(xi — x;)ij=1 = B[]

with p : R* = R the covariance function.

2.2. The Matérn family of covariances

A common family of covariances is the Matérn family [12] with correlation lengths A = (\;)i=1... 4.
We denote by A = diag(A1,...,Aq) the diagonal correlation length matrix. The standard anisotropic
Matérn family of covariances functions in 2D (d = 2) and in 3D (d = 3) with = (z;);=1,... 4 writes

d .
pa(X, v, A) = K Z (i;)iy =K (HA*1XH2,I/) ; (2.3)

i=1
where
21—1/
k(r,v) = m(\/21/ ) K,(V2vr), (2.4)
v
with ' the gamma function and K, is the modified Bessel function of the second kind, A; is the
correlation length in direction ¢, ¢ = 1,...,d and v > 0 is a given smoothness parameter. The case

v = 1/2 corresponds to the (non separable) exponential covariance with k(r) = exp(—r) and v = oo
to the Gaussian covariance with x(r) = exp(—72/2).
In the isotropic case, \; = A\,Vi =1,...,d and the standard isotropic Matérn family of covariances

becomes
[1x[]2

p(x,v,\) =k (/\, V) . (2.5)

Remark 2.1. If Y is a second order stationary Gaussian field with mean 0 and covariance function
p, it + oY is a second order stationary Gaussian field with mean p and covariance function o2 p.

Examples of 2D fields with isotropic Matérn covariances are shown on Figure 2.1.
Examples of 2D fields with anisotropic Matérn covariances are shown on Figure 2.2.
Examples of 2D fields with isotropic and anisotropic Gaussian covariances are shown on Figure 2.3.
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FIGURE 2.1. 2D case (mg,1 = mo2 = 128, L1 = Ly = 1) - isotropic Matérn covariances:
A =0.125 and v = 0.5 (left); A = 0.5 and v = 4 (right).
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FIGURE 2.2. 2D case (mo,1 = mo2 = 128, L1 = Lo = 1) - anisotropic Matérn covari-
ances, A1 = 0.125, Ao = 0.5: v = 0.5 (left); v = 4 (right).
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FIGURE 2.3. 2D case - Gaussian covariance (mg1 = mg2 = 256, Ly = Ly = 5) -
isotropic: A = 0.5 (left); anisotropic: Ay = 0.125, Ay = 0.5 (right).
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2.3. Classical simulation algorithm

The principle of CEM is to embed the matrix R in a bigger s x s symmetric nested block circulant
matrix R with s = (2my) x -+ x (2my), so that its factorization can be rapidly computed with
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the FFT algorithm. The m;, i = 1,...,d have to be determined so that R®™ is at least positive
semidefinite. In the following, we explain how to estimate them in an efficient way. The circulant
structure is obtained by a mirroring step of R as explained in details for example in [8, 9]. In practice,
with the CEM, we never need to build the full nested block circulant matrix R®™*, we only need its
first column, denoted by r. If one is interested by building the full matrix R, details are given for
example in [3, p. 77] or in [9]. The sizes m; > my;, or equivalently the enlarged domain of size

li:==m; X ho; > L;, i1=1,...,d (the grid spacing hg; is constant as defined in (2.1))

must be chosen so as to guarantee that the matrix R is at least positive semidefinite, otherwise the
algorithm cannot work due to the presence of negative eigenvalues. Here, we call padding the extension
between myg; and m;. We denote by M = diag(my, ..., mq) the diagonal matrix containing m;. As
a padding strategy, we follow the approach from [8, 12] to extend the covariance with the values of
p(x,v,\). Other padding strategies could have been chosen, e.g. as proposed in the original paper [4]
(for instance a filling with zeros), but these are not studied in this paper. Note that the padding may
be different in each direction according to the different values of L;, v, A; and mg,, 1 =1,...,d.

In the case of a cubic domain of size L discretized with mg + 1 points in each direction, the length
of the extended domain to guarantee that the matrix R®® is at least positive semidefinite is called
¢ > L and is such that

¢:=m x hg with m >mg (the grid spacing hg is constant as defined in (2.2))

with m to be determined.
Therefore the CEM method relies on two steps:

Step 1. the computation of the size of the extended domain ¢;, or equivalently m;, i = 1,...,d (or ¢
and m for a cubic domain) to guarantee that R®*" is at least positive semidefinite;

Step 2. the sampling of instances of the random field with the discrete Fourier transform.

These two steps can be performed according to Algorithm 2, with a usual start with mg; + 1
points, ¢ = {1,...,d} and Algorithm 3 (modified from [9] to consider rectangular parallelepipeds).
In Algorithm 2, the number of iterations at Step 5 (that is the number of times m; is incremented)
depends on the initial value of mq;, L;, A;, v and d. Each iteration costs the computation of r, the
first column of R®™', and a d-dimensional FFT. The last stage of Algorithm 3 makes it possible to
recover two independent instances with the required correlation structure and the correct input size
(mo1+1) x---x (mggq+1) from the two fields w;. and w;, of size (2my) X --- x (2m,) respectively.

Algorithm 2 Step 1. Compute the size of the extended domain to guarantee that R®' is at least
positive semidefinite.

Data: d, mg;, L; and covariance function p with correlation length X;, ¢ = 1,...,d and a given
starting number of points m5** + 1,4 = {1,...,d}.
Result: Number of points m;+1 (i = {1,...,d}) to guarantee that R is positive definite and the
vector of eigenvalues v.
1: Set m; = mi®t i ={1,...,d}.
2: Calculate r, the first column of R,
3: Calculate v, the vector of eigenvalues of R®*, by d-dimensional FFT on r.
4: if smallest eigenvalue < 0 then
5 increment m; and go to Step 2.

Remark 2.2. Algorithm 3 yields two independent realizations of the random field [4]. Lemma 5 in [§]
and Algorithm 2 in [9] explain how to sample only one field.
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INITIALIZATION OF THE CIRCULANT EMBEDDING METHOD

Algorithm 3 Step 2. Sample two independent instances z; and zo of the random field.

Data: d, mg;, and m; and v obtained by Algorithm 2.
Result: Two instances z; and z9 of the random field.
1. With s = (2mq) x -+ X (2mg), sample two s-dimensional normal random vector, called y,. and
yim to stand for the real and imaginary part of a complex random vector called y: y = yre + i¥im
2: Update y,e and y;, by elementwise multiplication with \/v.
3: Set w = W, + 1W;, to be the d-dimensional iFFT of y with w,. and w;,, the real and imaginary
part of w respectively.
4: Obtain two independent instances z; and zy by extracting the appropriate M = (mg; +1) X --- X
(mo,q + 1) entries of w,. and w;,, respectively.

3. Termination of Algorithm 2

For the case of a d-dimensional unit cube [0,1]¢, with A = A and Hy = hol, termination of Algo-
rithm 2 is proven in Theorem 2.3 in [9]. For general domain of size Ly x --- x Ly with given number
of mg; + 1 points in each direction 4, i = 1,...,d, we generalize Theorem 2.3 in [9] as follows

Theorem 3.1 (Generalization of Theorem 2.3 in [9]). Suppose that p € L'(R?) is a real-valued,
symmetric positive definite function with the additional reflectional symmetry

p(x) = p(xzy, ..., +xq) = p(|lz1], ..., |zq])  for all x € RY,
and suppose its Fourier transform p is in L'(R?). Suppose also that for the given matriz Hy we have:

> € 7% p(Hpk)| < oo.
k

Then Algorithm 2 will always terminate with finite values of my, ..., mq and the resulting matriz R
will be positive definite.

Let us define, for any integer m; > 1,¢=1,...,d,
28, :=10,...,2m 1} x---x{0,...,2mg—1}, Z?M ={-mq,...,mi—1}x---x{—=mg,...,mg—1}.
To prove Theorem 3.1, we need the following Lemma:

Lemma 3.2 (Generalization of Lemma 2.4 in [9]). Under the assumptions of Theorem 3.1, all the
eigenvalues Af™ of R satisfy the estimate

! S a(HCHD) - Y oK), VkeZgy.  (3.1)

A ext >
ho Ce s d _
H =1 i [ 2 2] rEZd k EZd\Zj/I

Proof. Recall that M = diag(myi, ..., mg) denotes the diagonal matrix containing m;.
The extended matrix R®** has elgenvalues A" and corresponding eigenvectors Vi, given, for k € Zg Mo
by the formulae

kMK
Aext Z 0 (Hok ) exp (—2i7r2> , (3.2)
K €Zy,
1 Y
(Vis = ——=—=rexp <2z'7r2"> . Kk eZdy. (3.3)
1= 1(2m1)
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From (3.2) (as 2.13 in [9]):
kKM~ K : kKM~ 'k’
ext _ ; _ - B —
AR E p (Hok ) exp (—2277 5 ) E P (Hok ) exp ( 2im 5 ) . (3.4)

K'ezd K €zZ4\Z},
The proof of inequality (3.1) now follows that of Lemma 2.4 in [9]. We start from a straightforward

generalization of equation (A.2) in [9], valid for any invertible diagonal matrix H € R%*9 (this is where
the hypothesis that p € L'(R?) is needed) :

kgd P (Hk) exp (—kaHs) H a

and we note that the function on the right-hand 81de is H™! periodic (that is it has a period h; !
on the ith coordinate). We now follow the proof of (A3) in [9] to obtain a lower bound on the first
sum in (3.4). We recall that the hypothesis that p is a positive definite function implies, by Bochner’s
theorem (see [12, Thm. 6.3]), that p is everywhere positive. We can then bound the sum involving
as follows:

Zp(E—FH ), for almost all £ € RY,

Z p (Hk) exp (—QiﬂkTHﬁ') essmf Z p(¢+H ') (3.5)
kezd CelTios =gz a) =1 P ez
> essmf d; max p(¢+H ') (3.6)
CGHZ 1 2}L ’2h } Hl:l hl rez
>max min p (Hfl(c + r)) . (3.7)

reZd ¢e[-1,1)d H
The bound in the first line used the periodicity of the sum, Whlle the second line retains only the
largest term in the sum.

1 /
Finally, taking H = Hg and £ = ng M~k gives the desired lower bound for the first sum in (3.4).

The upper bound on the second sum of (3.4) is obtained in an obvious way. ]

Proof of Theorem 3.1. The proof of Theorem 3.1 is similar to the one given in [9, p. 1879]. We
use Lemma 3.2 and notice that the two terms on the right-hand side of (3.1) are real and positive,
and that the first term is independent of myq, ..., mg while the second term is the tail of a converging
series, so will be smaller than the first term provided myq, ..., mg are chosen large enough. [ |

According to Theorem 3.1, it is proven that, provided the domain is sufficiently enlarged, Algo-
rithm 2 theoretically always terminates. This offers the possibility to choose a starting value of m;
larger than mg; (i =1,...,d), at Step 1.

Remark 3.3. In some of our numerical experiments, we observed stagnation of the smallest eigenvalue
(see Appendix A). This is due to the limited precision caused by floating point arithmetic. Increasing
floating point precision of the code might help in solving this numerical issue.

4. New initialization to speed up Algorithm 2

Now we propose a strategy to speed-up Algorithm 2 for any covariance function that satisfies the
hypotheses of Theorem 3.1. A classical initialization Step 1 of Algorithm 2 is to set m; to the given
number of points: m§*™* = myq;, i = {1,...,d} [9]. If no padding is required (the smallest eigenvalue is
positive), Algorlthm 2 terminates instantly, but if the smallest eigenvalue is negative (hence a padding
is required), m;, ¢ = 1,...,d, must be incremented as suggested at Step 5 of Algorithm 2 until the
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INITIALIZATION OF THE CIRCULANT EMBEDDING METHOD

smallest eigenvalue becomes positive. Without any a priori knowledge on how to increment m; at Step
5, by default, a possible choice is to increment each m;,i = 1,...,d by a constant, for instance by 1.
Other choices are possible (that could be more costly), like doubling the number of points m; on each
direction 7. Each time m;, ¢ = 1,...,d is incremented, the computation of a d-dimensional FFT on r
is required, which can be costly if a large padding is needed.

4.1. New initialization stage

start
7

Instead of starting Algorithm 2 from m =mo,, i ={1,...,d} at Step 1, we propose to start from

a first estimate: m§*rt = m?tl, i ={1,...,d} where F stands for the name of the fitting function used
in the estimation.
If the estimates m?tl, i = {1,...,d}, are good enough, there will be no need to iterate, hence

saving a lot of computational time and resources. If the estimates underestimate the padded domain
(meaning the number of iterations is not zero), this is not an issue as Algorithm 2 suggests to further
increase m;, 1 = 1,...,d, until the smallest eigenvalue is positive. Moreover, from Theorem 3.1, we
know that Algorithm 2 terminates provided the hypotheses on the covariance function p are satisfied
and the domain is sufficiently large, hence Algorithm 2 with this new initialization stage will always
terminate as well, while potentially decreasing the number of FF'T computations.

The following subsection 4.2 explains how F can be determined with an offline stage. Subsection 4.3)
describes how to estimate m%tl from F.

4.2. Estimation of F and its parameters via an offline phase

This subsection gives the generic procedure to determine F. It is then applied in Section 5 to the
Matérn family of covariances.

The estimation of F and its parameters is done in this paper as a preliminary, offline, stage. This
offline stage is composed of two steps:

(S1) Define a set of parameters in the isotropic case (\; = A, Vi € {1,...,d}) with a cubic domain
(Li = L, mg; = mo, ho; = ho = L/mg, Vi € {1,...,d}). Using Algorithm 2 with m$** = my ;,
i=1{1,...,d} and an increment of 1 at Step 5 (m; - m; + 1), compute the minimum value of
the domain size denoted by ™™ so that Algorithm 2 terminates.

(S2) From the data from Step (S1) and possibly theoretical work, define a fitting function F and its
parameters.

For the sake of simplicity, we consider a set of simulations on a unit cubic domain, so that we work
with the dimensionless quantities: \/L and ho/L. Once all the simulations have been run (step (S1)),
one obtains a table of the estimated dimensionless length #™" /L versus the set of input parameters
(v, A\/L, ho/L). From this table, we introduce a fitting function F, which fits /% /L in a least-squares
sense (step (S2)).

Remark 4.1. At step (S1), as mentionned before, other choices for the increment at Step 5 of
Algorithm 2 could have been made. Here we have chosen an increment of 1 in order to get the exact
enlarged domain size ™" from which all eigenvalues are above the threshold 7.

Remark 4.2. As R®™' has many very small eigenvalues and some of them might very close to zero
but negative in finite precision arithmetic, we stop Algorithm 2 once all eigenvalues are above a given
threshold 7 (see Appendix A). Those eigenvalues that are less than this given threshold 7 will be set
to 0. In [9], T is set to —10713.
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4.3. Estimation of m‘}sg

To obtain an estimate of /%" and the associated number of points m%, + 1 of the enlarged domain

in the general anisotropic and d-dimensional rectangular parallelepipeds case, we apply the fitting

function F in each direction, that is, for every i € {1,...,d}:
(5 := F(v, Ni/Li, hoi/ Li) L, (4.1)
m% = max(mog, [(F/ho,), (4.2)

where [z] denotes the ceiling of x.

The corresponding estimated length is £ := m$Y x ho; (it might slightly differ from (%' due
to the ceiling taken to get an integer value for m%?tl) and the extended domain in the direction 7 is
max(L;, £55).

For a cubic domain of size L with a constant mesh step ho, the minimum length ¢$* (and the

associated number of points m}“ + 1) can be computed, for each new set of parameters, as:

(5" .= F(v,\/L,ho/L)L, (4.3)
mSE* = max(mo, [{E*/ho]). (4.4)

Now let us present some examples of fitting functions for the Matérn family of covariances with
1/2 < v < oo and for the Gaussian covariances (v = 00).

5. Application to the Matérn family of covariances

This section contains the main practical result of this paper: the determination of suitable fitting
functions and their parameters. These functions are ready to be used by practitioners.

We apply the generic procedure of Section 4 to the specific case of the Matérn family of covariances,
which includes the Gaussian case as a limit case with v = co. We consider separately the Matérn case
with 1/2 < v < oo and the Gaussian case v = oo. For the sake of clarity, the name of the fitting
function F is replaced by M in the Matérn case with 1/2 < v < oo (and m$y; is the estimated

number of points) and by G in the Gaussian case (and mgsg the estimated number of points). Our new

initialization requires to estimate the starting number of points mf\s,‘{z and m%sg, i =1,...,d according

to the steps described at Section 4.

5.1. Matérn case (1/2 < v < 00): estimation of m/e\fttl

To design the fitting function M, we propose to combine the strategy proposed in Section 4 with the
theoretical work from [9] (steps (S1) and (S2) of Subsection 4.2).

Theorem 2.9 in [9] provides a lower bound for the minimum extended domain length for the isotropic
Matérn family of covariances (1/2 < v < oo0) on a unit cube domain (L; = L = 1, mg; = mo,
hoﬂ' = h() = l/mo, V’L)

Theorem 5.1 (From [9, Theorem 2.9]). According to [9], for a domain [0;1]¢, consider the isotropic
Matérn covariance family, with smoothness parameter v satisfying % < v < oo and the correlation
length A < 1. Suppose ho/\ < e~ 1. Then there exists positive constants ¢ and cy > 2v/2 which may
depend on the dimension d but are independent of the other parameters €, ho, \,v such that R is
positive definite if:

0/\ > c1 + cov”P log(max(N/hg, v°%)) (5.1)

The extension of Theorem 5.1 to v € (0;1/2) remains an open question. In practical applications,
v>1/2]9].
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From Theorem 5.1, let us look for a fitting function
M(v,u,v) == H(v,u/v)u (5.2)
with
H(v,w) = ¢ + &) 195 log(max(w, v?)), (5.3)
with ¢ and ¢§**(v) to be determined with numerical simulations.

In the isotropic covariances case and for a general domain size L, we will consider the function
M(v,\/L,ho/L) (see (4.3)). In the anisotropic case on more general domain of size L;, i = 1,...,d, we
consider M (v, \j/Lj, hoi/L;) (see (4.1)). According to the numerical simulations in the next subsection,
the constants cﬁSt and cSSt do not depend on \;/L; or hg;/L; but c%St depends on v in the 3D case.

To estimate the values of ¢§** and ¢§**(v) of the function H defined by (5.3), we propose set of

numerical experiments with Algorithm 2, with a start m$*®* = mg,, i € {1,...,d} and an increment
of 1 at Step 5, to obtain the minimum domain size ™" /X versus the quantities
¢ := %% log(max(\/hg, 1°?)). (5.4)

We consider different ratio \/hg € {2,3,4,8,16,32,64} for the 2D case and A\/hy € {2,3,4,8,16}
for the 3D case. We also consider v € {0.5,1,2,4}. For each ratio A/hg and for each value of v, we
compute the value of ¢ defined by (5.4). Then for each value of ¢, the value of /™" is obtained with
Algorithm 2, with a start m§*®"* = mg;, ¢ € {1,...,d} and an increment of 1 at Step 5. For each set
of simulations, the value of the threshold 7 is given.

Remark 5.2. Notice the values of /™" estimated here depend on the value of 7. The larger the
absolute value of 7, the smaller /™. It also depends on the floating point precision of the software.
Here the 80-bit precision software ParaCirce is used.

Figure 5.1 displays the ratio /™ /) versus ¢ for different values of v in the 2D case (left) and in
the 3D case (right).

—4—1=05
v=1

15 || —8—p=2

—h— =4

~ ——136+1.71 ¢
—~
£ 10t
&,
5,
0 ' 0
0 2 4 6 8 10 0 2 4 6 8 10
¢ ¢

FIGURE 5.1. Isotropic Matérn covariances - £ /X versus ¢ = /% log(max(\/hg, 1))
(1 = —10713) : (left) 2D; (right) 3D.

In 2D (left figure), the line that best fits all the data (in a least-squares sense) has the equation
S+ (V)¢ with ¢ = 1.36 and ¢ (v) = 1.71 (blue line). Note that the estimated length in the
case v = 0.5 are slightly overestimated. In 2D, ¢§* is a constant, independent of v.

In 3D (right figure), contrary to the 2D case, here we observe more differences in the slopes of the
curves with respect to v. The slope depends on v. A good fit of the slope is a power fit function:
5t = 2.53v793! (blue curves).
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To sum up, our numerical experiments suggest the following parameters c{** and ¢§**(v) of the fitting
function H defined by (5.3):

e [2D case:] ¢§ = 1.36 and ¢ = 1.71;

e [3D case:] ¢§** = 2.80 and ¢§'(v) = 2.53v 931,

Remark 5.3. These estimates ¢ and ¢§**(v) could be improved by adding more simulations.

Now we have the fitting function M defined by (5.2) and (5.3) and the previous values ¢§* and
¢5*(v), we are be able to compute the estimation m$y; thanks to (4.1) and (4.2).

5.2. Gaussian case (v = o0): estimation of m&%
For the Gaussian case, Theorem 2.11 in [9] provides a lower bound on the required domain size but
the bound is quite loose, hence it will not be used to design the fitting function G.

We found numerically that ™ /X varies linearly in \/hg. Hence we define the following function G
as:

G(u,v) = J(u/v)u, (5.5)
with

J(w) == afw + af™* (5.6)
where a§* and a$* are constants that will be numerically estimated in the following subsections.

We will consider the function G(A/L,ho/L) in the isotropic covariances case (see (4.3)) and
G(Xi/Li, hoi/L;) in the anisotropic case (see (4.1)).

To estimate the values of a$* and o$* in the definition (5.6) of J, we propose a set of numerical
experiments with Algorithm 2 (with an increment of 1 and a starting point m§*™* = mq;, i = {1,...d})
to obtain the minimum domain size /™" /) for different ratio A/hg.

The computed values of /™" /)\ obtained with Algorithm 2 (with an increment of 1 and a start at
mSt = my ;), for different ratio A\/hg are given in Table 5.1. In 2D, 7 is chosen equal to —10713.

TABLE 5.1. Ratio ™"/ versus A\/hg according to Algorithm 2 with an increment of

1 and a start at m§*™* = mg; — 2D case : Gaussian covariance (7 = —10713).

A/ g 2 2.5 3 3.5 4 6 8 10 | 16 | 32 | 64
/X 15,50 | 7.60 | 8.00 | 8.00 | 8.25 | 8.17 | 8.13 | 8.20 | 8.31 | 8.44 | 8.59

The computed values of /™" /)\ obtained with Algorithm 2 (with an increment of 1 and a start at
mSt = my ;) for different ratio A/hg are given in Table 5.2. In 3D, 7 is chosen equal to —5.10713 to

avoid, as much as possible, the stagnation of the minimum eigenvalue as depicted in paragraph A.

TABLE 5.2. Ratio /™1 /X versus \/ho according to Algorithm 2 with an increment of

1 and a start at m5*™ = mq; — 3D case: Gaussian covariance (7 = —5.10713).

A/ ho 2 2.5 3 3.5 4 6 8 10 | 16 | 32
/X1 5.50 | 7.60 | 8.33 | 8.29 | 8.25 | 8.33 | 8.38 | 8.40 | 8.56 | 8.78

Figure 5.2 displays the ratio /™ /) versus A\/hg given in Table 5.1 (2D, left figure) and Table 5.2
(3D, right figure), together with the fitting functions.

Both in 2D and in 3D, we have identified a quadratic behavior of /™ /X for small ratio A\/hg and
a linear behavior for larger ratio A/hg. We propose to consider only a linear fitting (in a least-squares
sense) of the data /™™ /) corresponding to A\/hg > 3 which gives the following constants:
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FIGURE 5.2. Minimum length ™ /)\ (with /™ obtained with Algorithm 2) versus
A ho: (left) 2D case (1 = —10713); (right) 3D case (1 = —5.1071%) — Gaussian covari-
ance.

e [2D case:] ot =8.691073, oSt = 8.09,
e [3D case:] af** = 1.76 1072, a$** = 8.23.

Other choices could have been made, especially to propose a quadratic fitting for A/hg < 3. But as
the ratio A/hg gives the number of points per correlation length, it is unlikely to be small in practical
applications.

Now we have the fitting function G defined by (5.5) and (5.6) and the previous values o and a$*,
we are be able to compute the estimation m&§ thanks to (4.1) and (4.2).

6. Numerical validation

In the following, we first consider the case of isotropic covariances on cubic domains and then the
more general case of anisotropic covariances on d-dimensional rectangular parallelepipeds.

6.1. Validation criterion

The validation criterion is the number of iterations at Step 5 of Algorithm 2 needed to reach the
required enlarged domain size. Situations of interest for our new initialization stage is when a padding
is required (which means the initial domain is not large enough to guarantee the positivity of all
eigenvalues).

6.2. Isotropic covariances on a cubic domain

In the isotropic case on a cubic domain of size L, a noticable advantage compared to the anisotropic
case to analyze the efficiency of the proposed initialization, is that we can compute the exact minimum
number of points m™" + 1 with m™" := max(mqg, ™ /hg) using Algorithm 2 with an increment of 1
and a start at m$*™* = mg;, i = {1,...,d}. Then we can evaluate the number of iterations #It?gep5

needed at Step 5 with the new initialization technique defined as:

;éélts]ﬁep5 := max(m™™ — m%*, 0)
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with the fitting function F. The fitting function F is denoted by M in the Matérn case with 1/2 <
v < oo and G in the Gaussian case. The value of m$ is computed according to (6.1) and the fitting
function M defined by (5.2). The value of m* is computed according to (6.2) and the fitting function
G defined by (5.5). By comparison, the number of iterations at Step 5 performed with the classical
initialization is:

stepd | min
#Itclassic =m — Myp.

If #Itsmp5 > 0, m™™" is underestimated and the difference gives the number of iterations required
by Algorithm 2 to stop.

If #ItStep5 = 0, m™" is either estimated exactly or overestimated and Algorithm 2 stops with no
iteration. In the case of an overestimation of the domain, Algorithm 2 does some extra-work (as the
extended domain is overestimated) but we expect the percentage of overestimation

to remain relatively small.
Our fittings are considered satisfactory when #It?f-em is zero or close to zero and p, is small.

Remark 6.1. Each iteration at Step 3 of Algorithm 2 costs an FF'T, which is likely to be costly
(more costly than increasing p,) for large domains or if the padding is large. A possibility to further
reduce #ItStep5 and then the number of FFTs, is to multiply m$* by a given percentage to initialize
Algorithm 2 with an overestimate of the domain. This will increase p, but will likely decrease #ItStep5.

est

6.2.1. Matérn case, 1/2 < v < oo: quality of the estimates m§
According to the definition of M (see (5.2)), the expression of mS; (4.4) reduces to:

mS = max(mo, H(v, A/ ho) M ho). (6.1)
The parameters are chosen to cover various ratio A/hg used in Subsection 5.1 and also some ratio
A/ ho that were not used in the fitting (in 2D: A\/hy = 24 and A ho = 128; in 3D: A\/hy = 10 and
A/hg = 24). Table 6.1 displays, for (A) d = 2 and (B) d = 3, m™™, m§;, #ItStep5 and the percentage p,.
The fittings are good in 2D and in 3D as shown by the small number of iterations #ItStep5 In 2D,
the domain size is overestimated for v = 0.5 and for the case v = 4 and A\/hy = 128 (as expected
from our fitting, see the black diamonds and the pink triangles on Figure 5.1 (left)). For the case
A/hg = 128 and v = 4, we also are in a situation described in Appendix A where the threshold must
be changed for Algorithm 2 to terminate and we are also in the situation where Remark 5.2 applies.
The fitting is better in 3D as the parameters take the dependence on v into account.

6.2.2. Gaussian case: quality of the estimates mgt

According to the definition of G (see (5.5)), the expression of m&* (4.4) reduces to:

est

mg' = max(mo, J (A ho) A/ ho). (6.2)

The parameters are chosen to cover the range of ratio A\/hg proposed in Table 5.1 and Table 5.2

and also some ratio A/hg that were not used in the fitting (in 2D: A\/hg = 24 and A/ho = 128; in 3D:

A/ho = 24 and A/hy = 64). Table 6.2 displays, for (A) d = 2 and (B) d = 3, the minimum number

of points m™™ obtained with Algorithm 2 with an increment of 1 and a start at mSrt = my ;, the
number of points mg* computed according to (6.2) and the difference m™™ — mg*.

T he ﬁttmgs are good, both in 2D and in 3D: for each case, the number of points mg is very close

to m™™" whatever the ratio A\/hy and the percentage of overestimation of the domain p, is low.
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TABLE 6.1. Minimum number of points m™" versus mS;, number of iterations at
Step 5 of Algorithm 2 #Itifjp‘r’ and percentage of domain overestimation p, — Matérn
covariance (A) 2D with 7 = —10713 except for *: 7 = —3.10713 (see Appendix A) and

(B) 3D.
(a) 2D (B) 3D
v | Mho | m™™ | mS #Itjfjpg) Do(%) v | Aho | m™™ | mS #Iti\tjpg) Po(%)
16 67 76 0 13.43% 4 24 24 0 0.00%
24 111 125 0 12.61% 10 82 80 2 0.00%
05| 64 368 | 409 0 11.14% 05| 16 147 | 144 3 0.00%
128 833 | 926 0 11.16% 24 243 | 237 6 0.00%
16 99 98 1 0.00% 4 25 26 0 4.00%
24 163 164 0 0.61% 10 84 87 0 3.57%
1 64 533 | 543 0 1.88% 1 16 152 | 158 0 3.95%
128 | 1202 | 1237 0 2.91% 24 251 | 261 0 3.98%
16 134 | 130 4 0.00% 4 27 28 0 3.70%
24 223 | 218 ) 0.00% 10 93 95 0 2.15%
2 64 732 | 731 1 0.00% 2 16 169 | 173 0 2.37%
128 | 1656 | 1676 0 1.21% 24 281 | 288 0 2.49%
16 177 | 174 3 0.00% 4 30 30 0 0.00%
24 297 | 294 3 0.00% 10 108 | 104 4 0.00%
4 64 947 | 998 0 5.39% 4 16 200 | 191 9 0.00%
128 | 1871* | 2299 0 22.9% 24 335 | 319 16 0.00%

TABLE 6.2. m™™ versus mg", number of iterations at Step 5 of Algorithm 2 #Itsgtep5

and the percentage of domain overestimation p, - Gaussian covariance (A) 2D (7 =
—10713) and (B) 3D (7 = —5.10~ 13 except for *: 7 = —4.107'2 and for **: 7 = —8.10713,
see Appendix A)

(A) 2D (B) 3D

Mho | m™ [ m&* [ #1635 | po(%) Mho | m™® [ m&* [ #165°° | po(%)
3 | 24 | 25 0 | 417% 31 25 | 25 0 |0.00%
4 | 33 | 33 0 | 0.00% 4 | 33 | 34 0 |3.03%
6 | 49 | 49 0 | 0.00% 6 | 50 | 51 0 |200%
8 | 65 | 66 0 1.54% 8 | 67 | 67 0 |0.00%
10 | 82 | 82 0 |0.00% 10 | 84 | 85 0 1.19%
16 | 133 | 132 I [0.00% 16 | 137 | 137 0 |0.00%
24 | 201 | 200 1 0.00% 24 | 204% | 208 0 1.96%
32 | 270 | 268 2 | 0.00% 32 | 281 | 282 0 |0.36%
64 | 550 | b4 0 |0.73% 64 | 574 | 600 0 |453%
128 | 1121 [ 1178 | 0 | 5.08%

6.2.3. Gain with the new initialization by comparison with the classical one

The difference in number of iterations between a classical start at mg + 1 and an new start at m?t +1
is given by the quantity:
stepd | stepb stepb
#It =1t — Itz

saved * classic
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stepb

If #It°°°P5 is zero, no iteration is saved (for cases with no padding for example). If #It;, 0]

saved

than zero, it gives the number of forward FFT saved with our new initialization.
Let us take some examples. Table 6.3, 6.4 and 6.5 display the number of saved iterations #It:;ir;g
for different values of ho/L and A/L for the Matérn 2D, for the Matérn 3D and for the Gaussian

covariances respectively.

is greater

TABLE 6.3. Number of iterations saved #It*°®> for different values of hg /L and \/L

saved

- 2D Matérn covariance (7 = —10713).
(A) v=20.5 (B) v=1
AL AL
ho/ L 0.1250.25 |05 | 1 ho/IL 012502505 | 1
1/4 0 | 0 0|7 1/4 0 | 0 | 1|11
1/8 0 0 3 |19 1/8 0 0 32
1/16 0 0 11 | 51 1/16 0 0 24 | 82
1/32 0 0 | 35 | 127 1/32 0 8 66 | 200
1/64 0 9 |95 |304 1/64 0 34 | 168 | 469
(c)v=2 (D) v=4
AL AL
ho/ L 0.125 (025 0.5 | 1 ho/ L 0.125 (025 05| 1
1/4 0 [ 0|3 ]15 1/4 0 | 0 | 4 ]2l
1/8 0 0 | 11 | 44 1/8 0 0 | 17 | 60
1/16 0 3 36 | 114 1/16 0 9 52 | 158
1/32 0 20 | 98 | 280 1/32 0 36 | 142 | 391
1/64 0 66 | 248 | 667 1/64 4 110 | 359 | 883

TABLE 6.4. Number of iterations saved #It*®> for different values of ho/L and \/L

saved
- 3D Matérn covariance (7 = —107'3, except for *: 7 = —1.7107!2, see Appendix A)

/L /L
ho/ L 0.125 [ 0.25| 0.5 | 1 ho/ I 0.125 [ 0.25| 05 | 1
1/4 0 0 ) 20 1/4 0 0 ) 22
1/8 0 1 16 | 52 1/8 0 1 18 | 55
1/16 0 8 44 | 128 1/16 0 10 | 47 | 136
1/32 0 28 | 112 | 304 1/32 0 31 120|324
(¢)v=2 (D) v=4
NI NI
ho/IL 0.12510.25| 0.5 | 1 ho/IL 0.125 | 0.25 | 0.5 1
1/4 0 0 ) 23 1/4 0 0 6 26
1/8 0 1 19 | 61 1/8 0 2 22 70
1/16 0 11 | 53 | 153 1/16 0 14 | 62 | 175
1/32 0 37 | 137 | 368 1/32 0 46 | 159 | 423*
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TABLE 6.5. Number of iterations saved #It*°P> for different values of ho/L and A/L

saved

— Gaussian covariance (A) 2D (7 = —107!3) and (B) 3D (7 = —5.107!3 except for
* 7= —8.10"13 see Appendix A)

(A) 2D (B) 3D
/L /L

ho/L 0.1250.25 | 0.5 | 1 ho/L 0.125|0.25 | 0.5 | 1
1/4 0 | 3 |10 ] 29 1/4 0 | 3 |10 ] 29
1/8 0 | 7 | 2557 1/8 0 | 7 | 25| 59
1/16 0 | 17 | 49 | 116 1/16 0 | 17 | 51 | 121
1/32 1 | 33 [100 | 236 1/32 1 | 35 | 105 249
1/64 1 | 68 |204 486 1/64 3| 73 | 2175107

We observe that our new initialization helps in saving more iterations as the ratio A/L increases.
The same can be observed when the ratio hg/L increases. For large ratio A\/L and ho/L, the saving is
the most important. The number of saved iterations also increases with v for the Matérn covariances
and is greater in 3D than in 2D for the same parameters.

6.3. Anisotropic covariance function on a general domain

Let us now consider the more general case of anisotropic covariance function on d-dimensional rect-
angular parallelepipeds. We do not have access to a required length m™™ anymore, as Algorithm 2
suggests to increase the domain equally in each direction, while it is possible to have some padding in
only some directions.

As we do not have access to m™", we cannot estimate the percentage of overestimation of the
domain p, but we can compare the number of iterations #It;f-ep5 and #Iti};zggi . needed at Step 5 of
Algorithm 2 to reach the required enlarged domain size, for the new and classical initialization steps

respectively. Zero iteration means the domain size is large enough.

n

6.3.1. Parameters

In the previous section, we tested the same padding in all directions. Now we will compare the two
initializations for test cases with a requested padding in one direction only. Table 6.6 gives the 2D
parameters. Table 6.7 gives the 3D parameters. For example, let us choose direction 1 as the direction
where a padding is required, with two values for the ratio A;/L, a moderate one (A;/L = 0.5) and a
large one (A\1/L = 1), and two discretization steps: ho1/L = 1/8 (mp1 = 8) and ho1/L = 1/32. The
other directions will have a small value (0.125) of the correlation length with respect to the domain
size and a small discretization step (1/8). The name are formatted like Ay, r.p, /L Where A;/L and
ho,1/L are replaced by their respective values.

TABLE 6.6. Anisotropic test cases - 2D parameters.

name )\1/L h()’l/L )\Q/L hoyg/L

ARy s | 05 | 1/8 ]0.125| 1/8
AR sy | 05 | 1/32 0125 1/8

A3 g 1 1/8 [0.125| 1/8
AL |1 | 1/32 10125 ] 1/8
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TABLE 6.7. Anisotropic test cases - 3D parameters.

name | A\;/L | ho1/L | A2/L | hoa/L | A3/L | ho3/L
AR s | 05 | 1/8 0125| 1/8 [0.125] 1/8
AR o, 05 | 1732 [0125] 1/8 |0.125] 1/8
A0 1 1/8 [0.125| 1/8 |0.125| 1/8
A, |1 | B2 Joas | 178 |0a25] 1/8

6.3.2. Numerical results

Table 6.8 and Table 6.9 give the number of iterations at Step 5 of Algorithm 2 for the Matérn family

of covariances (for v = 1 and v = 4) and for the Gaussian covariances respectively, for the two possible

initializations: m*"* = mg,; and m§*™t = mﬁ\s,?z (respectively mStrt = mgsg), i={1,...,d},d=2or

d = 3. We indicate, in parenthesis, the minimim (m™®); obtained with the classical initialization as
est est

well as (m$y,;); and (mg}); obtained with the fitting functions M and G respectively.
TABLE 6.8. Number of iterations at Step 5 of Algorithm 2 for the classical initialization
#Iti;gggic and for the new initialization #Itj\tjp5, enlarged domain size (m™™); and
estimated domain size (m$;); in parenthesis — Matérn covariance (7 = —10713) (A)
and (B) 2D case, (C) and (D) 3D case for v =1 (left tables) and v = 4 (right tables).

(A) 2D, v=1 (B) 2D, v =4
name | #T65e0s, (m™™); | #1600 (mh,)i | | name | #IGERS, (m™n); | #IEE (mi )
AR 5 (13,13) 0 (15,8) AR 17 (25,25) 0 (25,8)
A3Z.1 /30 35 (67,43) 0 (98,8) AR 5o | 133 (165,141) 0 (174,8)
Ailf/s 21 (29,29) 0 (40,8) Ailf/g 59 (67,67) 0 (68,8)
A3 gy | 119 (151,127) 0 (234,8) A3 gy | 359 (391,367) 0 (423,8)
(c)3D,v=1 (p) 3D, v=4
name #Iti;cefs)iic (m™™); #Iti\t/?pf) (mi\sx%z)z name #Itiﬁfﬁ?ic (m™™); #Iti\t/?m (mi\sjz)z
AR s | 11(19,19,19) 0 (26,8,8) AR s | 20 (28,28,28) 0 (30,8,8)
A3 J3a | D6 (88,64,64) 0 (158,8,8) A3 J3 | 144 (176,152,152) 0 (191,8,8)
AR g 32 (40,40,40) 0 (65,8,8) AR g 64 (72,72,72) 0 (78,8,8)
AR 5y | 163 (195,171,171) 0 (371,8,8) AR ., | 381 (413,389,389) 0 (455,8,8)

No extra-iteration is needed for both Matérn and Gaussian covariances with our new initializa-
tion, hence saving important computational resources, compared with the classical initialization stage.
Moreover the extended domain is much smaller with our new initialization.

7. Conclusion

We have proposed a new initialization step that computes fairly good guesses of the required extended
domain size for the CEM algorithm to work. Theorem 3.1 guarantees that Algorithm 2 always ter-
minates. Several test cases have been conducted to check the efficiency of these new algorithms in
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TABLE 6.9. Number of iterations at Step 5 of Algorithm 2 for the classical initialization

me

stepb
classic

and for the new initialization #It

est

stepd
g

and enlarged domain size (m

min) .

7

and estimated domain size (mg?;); in parenthesis — Gaussian covariance (A) 2D (7 =
—10713) and (B) 3D (7 = —5.10713).

(A) 2D (B) 3D
neme | #ltGi, (m™); | #1GT(mE), | | name | I, (mm) | #16G (mE).
AZR.1 s 24 (32,32) 0 (33,9) AR s | 23 (31,31,31) 0 (34,9,9)
AZ2 sz | 95 (127,103) 0 (132,9) AR J30 | 94 (126,102,102) | 0 (137,9,9)
AR 18 55 (63,63) 0 (66,9) A /8 55 (63,63,63) 0 (67,9,9)
A5y | 225 (257,233) 0 (268,9) A5y | 222 (254,230,230) | 0 (282,9,9)

terms of estimation of the enlarged domain size and number of iterations and the results are very
good, hence saving a lot of computational resources by comparison with a classical initialization. This
new initialization step is implemented in the ParaCirce library. Our current work is to study the
performance of ParaCirce, especially its parallel efficiency, in order to provide all the necessary tools
for large simulations of GRF with the CEM (typically in case of large ratio \;/L; and small ratio
ho,i/Li). In a recent paper [1], a better estimate for ¢y, is proven thanks to a smooth periodization
of the Matérn family of covariance functions (0 < v < c0): the estimate does not blow up with A/hg
and depends only on v (see [1, equation (1.11)]). A nice future work would be to apply our fitting
procedure to that case. Finally, another interesting work would be to propose a rule to automatically
set the value of the threshold 7 according to the input parameters and the floating point precision (in
view of the stagnation of the minimum eigenvalue for some test cases as described in Appendix A).

Appendix A. Influence of the floating point precision on the computations

We have observed that finite precision effects may prevent the termination of Algorithm 2. Therefore,
the numerical simulations of this paper have been performed using a 80-bit precision code. What
happens is that, depending on the input parameters and the chosen numerical precision, the minimum
eigenvalue might reach a plateau and potentially never reaches the given threshold 7. Using an extended
numerical precision code shifts the plateau, that is why we prefer to use the 80-bit version of ParaCirce
to avoid, as much as possible, this situation.

In the 2D example shown on Figure A.1, the 80-bit precision is enough and Algorithm 2 stops for
T=-10"1.

For some other cases, for a given 80-bit version of ParaCirce, the threshold 7 must be changed to a
lower value for Algorithm 2 to stop. We have encountered this situation a few times in our numerical
experiments, according to the threshold we have chosen. The simulations are the ones with the stars
in the tables. For example, the case of the isotropic 3D Matérn covariance with v = 4, \/L = 1 and
ho/L = 1/32 (Table 6.4) is shown on Figure A.2. The case of the 3D isotropic Gaussian covariance
with A/L =1 and hg/L = 1/64 (Table 6.5) is shown on Figure A.3.
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