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Abstract. In this paper we present a pressure correction scheme for the compressible Navier-Stokes equa-
tions. The space discretization is staggered, using either the Marker-And-Cell (MAC) scheme for structured
grids, or a nonconforming low-order finite element approximation for general quandrangular, hexahedral or
simplicial meshes. For the energy balance equation, the scheme uses a discrete form of the conservation of the
internal energy, which ensures that this latter variable remains positive; this relation includes a numerical cor-
rective term, to allow the scheme to compute correct shock solutions in the Euler limit. The scheme is shown
to have at least one solution, and to preserve the stability properties of the continuous problem, irrespectively
of the space and time steps. In addition, it naturally boils down to a usual projection scheme in the limit of
vanishing Mach numbers. Numerical tests confirm its potentialities, both in the viscous incompressible and
Euler limits.
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1. Introduction

We build in this paper a numerical scheme for the solution of the compressible Navier-Stokes equations:

∂tρ+ div(ρu) = 0, (1.1a)

∂t(ρu) + div(ρu⊗ u) + ∇p− div(τ (u)) = 0, (1.1b)

∂t(ρE) + div(ρE u) + div(pu) + div(q) = div(τ (u) · u), (1.1c)

E = 1
2 |u|

2 + e, (1.1d)

p = ℘(ρ, e). (1.1e)

where t stands for the time, ρ, u, p, E and e are the density, velocity, pressure, total energy and
internal energy in the flow, τ (u) stands for the shear stress tensor, q stands for the heat diffusion
flux, and the function ℘ is the equation of state (EOS). The problem is supposed to be posed over
Ω × (0, T ), where Ω is an open bounded connected subset of Rd, d ≤ 3 and (0, T ) is a finite time
interval. This system must be supplemented by suitable boundary conditions, initial conditions and
closure relations for the diffusion terms.

For the sake of simplicity, we assume in this paper that the velocity is prescribed to zero on the
whole boundary ∂Ω, and that the system is adiabatic:

u = 0, q · n = 0 on ∂Ω. (1.2)

However, the modifications of the scheme and of the theoretical arguments to deal with more general
boundary conditions are given in remarks, when useful. Suitable initial conditions must be provided
for ρ, e and u:

ρ(x, 0) = ρ0(x), e(x, 0) = e0(x), u(x, 0) = u0(x), with ρ0 > 0, e0 > 0. (1.3)

Finally, the closure relations for τ (u) and q are given by:

τ (u) = µ(∇u+ ∇tu)− 2µ
3 divuI, q = −λ∇e, (1.4)

where I denotes the identity matrix and λ, µ ∈ L∞(Ω) are such that there exists λ > 0 and µ > 0
such that λ ≥ λ a.e. and µ ≥ µ a.e.. Consequently, the shear stress tensor satisfies:

τ (u) : ∇u ≥ 0, ∀u ∈ Rd, (1.5)
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Replacing the total energy E by its expression (1.1d) in (1.1c) and developing some terms, we
obtain:

∂t(ρe) + div(ρeu) + p divu+ div(q)

+ 1
2∂t(ρ |u|

2) + 1
2div(ρ |u|2 u) + u ·∇p− div(τ (u)) · u = τ (u) : ∇u. (1.6)

Thanks to the mass balance equation (1.1a), we get formally, for any function z:

∂t(ρz) + div(ρzu) = ρ ∂tz + ρu ·∇z.

Using this identity twice and then the momentum balance equation (1.1b), we have for 1 ≤ i ≤ 3:

1
2∂t(ρu

2
i ) + 1

2div(ρu2
iu) = ρui∂tui + ρuiu ·∇ui =

ui
[
ρ∂tui + ρu ·∇ui

]
= ui

[
∂t(ρui) + div(ρuiu)

]
= −ui ∂ip+ ui div(τ (u))i,

so, summing for i = 1 to d:
1
2∂t(ρ |u|

2) + 1
2div(ρ |u|2 u) = u ·

[
∂t(ρu) + div(ρu⊗ u)

]
= −u ·∇p+ div(τ (u)) · u.

Using this last relation in the total energy equation (1.6) yields the internal energy balance:

∂t(ρe) + div(ρeu)− div(q) + p div(u) = τ (u) : ∇u. (1.7)

Since we assume that the initial condition for ρ is positive, the mass balance (1.1a) implies that the
density ρ remains non-negative. Let us now suppose that the equation of state (1.1e) is such that
℘(·, 0) = 0 and ℘(0, ·) = 0, which allows to extend ℘ by continuity to R2 (without change of notation):

p = ℘(ρ, e), with ℘(ρ, e) = 0 whenever ρ ≤ 0 or e ≤ 0. (1.8)

Equation (1.7) then implies (thanks to (1.5)) that the internal energy e remains non-negative (at least
formally).

Integrating now (1.1c) over Ω yields:
d

dt

∫
Ω

(1
2ρ |u|

2 + ρe
)

dx = 0, (1.9)

and, since ρ ≥ 0 and e ≥ 0, this inequality provides a stability estimate for the system.

In this paper, we propose and study a pressure correction scheme based on staggered-in-space
discretizations (low order non-conforming finite elements or MAC scheme), solving the internal energy
balance (1.7) instead of the total energy conservation equation (1.1d). As a consequence of these
choices, this algorithm naturally boils down to a standard projection method in the vanishing Mach
number (i.e. incompressible) asymptotic limit. We are able to prove, for this scheme, the same stability
properties as in the continuous case: the approximate density and internal energy are non-negative
(in fact, for discrete solutions, positive) and a discrete analogue to Relation (1.9) is derived. As a
consequence of these properties, we are also able to prove the existence of a solution of the scheme.

This algorithm was already introduced in [20], for the Euler equations only, and its consistency
(in the Lax-Wendroff sense) was proven in [20] in one space dimension. We complement this work
here in several directions: we extend the scheme to the Navier-Stokes equations, prove the positivity
of the internal energy and the existence of a solution to the scheme (while these properties are only
claimed in [20]), provide some implementation details and some qualitative properties of the scheme
(in particular, clarify its behaviour at contact discontinuities) and present two and three-dimensional
numerical experiments, including a test to assess the behaviour in the low Mach number limit.
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The fractional step strategy that we consider here involves an elliptic pressure correction step; this
strategy has been used for compressible flows to obtain algorithms which are not limited by stringent
stability conditions (such as CFL conditions based on the celerity of the fastest waves) since the late
sixties, when first attempts were done to build "all flow velocity" schemes [17, 18]; these algorithms
may be seen as an extension to the compressible case of the celebrated MAC scheme, introduced
some years before [19]. These seminal papers have been the starting point for the development of
numerous schemes falling in the class of pressure correction algorithms (possibly iterative, in the
spirit of the SIMPLE method), some of them based on staggered finite volume space discretizations
[4, 24, 25, 44, 26, 34, 1, 50, 8, 42, 47, 46, 43, 45, 30]; a bibliography extended to the schemes using
other space discretizations may be found in [20]. To the best of our knowledge, the present paper
provides the first rigorous stability proof for such algorithms in the framework of the Navier-Stokes
equations. A key ingredient is the possibility to work with the internal energy balance to ensure the
positivity of this quantity, without losing the consistency with the conservative equations (including
the total energy balance) in the Euler case. Note also that, for the MAC scheme, a careful design of the
viscous dissipation term is necessary to satisfy a discrete analogue of (1.5) (Section 3.2). Finally, the
stability of the scheme also relies on the possibility to derive a local discrete kinetic energy balance,
for which a rescaling step of the pressure gradient was introduced in [20]. Note also that the scheme
proposed in this work implements a staggered finite-volume approach for first order terms (known for
its efficiency) while being able to cope with unstructured meshes.

This paper is structured as follows. We first describe the space discretization (Section 2), then the
scheme (Section 3). Section 4 is devoted to the proof of stability and existence of discrete solutions.
Numerical tests are presented in Section 5. Since the scaling of the pressure gradient allowing to
derive a discrete kinetic energy balance may be extended to other discretizations, we present the
essential arguments for its design in a time-discrete (and space-continuous) setting in Appendix A.
The behaviour of the scheme on contact discontinuities of the Euler equations is adressed in Appendix
B. Finally, in Appendix C, we provide some details about the numerical solution of the nonlinear
algebraic system associated to the pressure correction step; we also discuss the issue of spurious
pressure boundary conditions which are known to be inherent to the pressure correction time-splitting
technique.

2. Meshes and unknowns

Let M be a decomposition of the domain Ω, supposed to be regular in the usual sense of the finite
element literature (e.g. [5]). The cells may be:
- for a general domain Ω, either convex quadrilaterals (d = 2) or hexahedra (d = 3) or simplices,

both types of cells being possibly combined in a same mesh in two space dimensions,

- for a domain whose boundaries are hyperplanes normal to a coordinate axis, rectangles (d = 2)
or rectangular parallelepipeds (d = 3) (the faces of which, of course, are then also necessarily
normal to a coordinate axis).

By E and E(K) we denote the set of all (d − 1)-faces σ of the mesh and of the element K ∈ M

respectively. The set of faces included in the boundary of Ω is denoted by Eext and the set of internal
faces (i.e. E \ Eext) is denoted by Eint. A face σ ∈ Eint separating the cells K and L is denoted by
σ = K|L. The outward normal vector to a face σ of K is denoted by nK,σ. For 1 ≤ i ≤ d, we denote
by E(i), E(i)

int and E
(i)
ext the subset of the faces of E, Eint and Eext respectively which are perpendicular to

the ith unit vector of the canonical basis of Rd. For K ∈M and σ ∈ E, we denote by |K| the measure
of K and by |σ| the (d− 1)-measure of the face σ.
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The space discretization is staggered, using either the Marker-And Cell (MAC) scheme [19, 18], or
nonconforming low-order finite element approximations, namely the Rannacher and Turek (RT) ele-
ment [39] for quadrilateral or hexahedral meshes, or the lowest degree Crouzeix-Raviart (CR) element
[9] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure, the density and the
internal energy (i.e. the discrete pressure, density and internal energy unknowns) are associated to
the cells of the mesh M, and are denoted by:{

pK , ρK , eK , K ∈M
}
.

Let us then turn to the degrees of freedom for the velocity.
- Rannacher-Turek or Crouzeix-Raviart discretizations – The discrete velocity unknowns are

located at the center of the faces of the mesh, and we choose the version of the element where
they represent the average of the velocity through a face. The Dirichlet boundary conditions are
taken into account by setting the velocity unknowns associated to an external face to zero, so
the set of discrete velocity unknowns reads:

{uσ,i, σ ∈ Eint, 1 ≤ i ≤ d}.

- MAC discretization – The degrees of freedom for the ith component of the velocity are located
at the centre of the faces σ ∈ E(i), so the whole set of discrete velocity unknowns reads:{

uσ,i, σ ∈ E
(i)
int, 1 ≤ i ≤ d

}
.

Hence there are d unknowns per face of the primal mesh in the case of the CR-RT scheme, namely
the d components of the velocity, while there is only one unknown per face of the primal mesh in the
case of the MAC scheme, namely the normal component of the velocity.

We now introduce a dual mesh, for the finite volume approximation of the time derivative and
convection terms in the momentum balance equation.
- Rannacher-Turek or Crouzeix-Raviart discretizations – For the RT or CR discretizations,

the dual mesh is the same for all the velocity components. When K ∈M is a simplex, a rectangle
or a cuboid, for σ ∈ E(K), we define DK,σ as the cone with basis σ and with vertex the mass
center of K (see Figure 2.1). We thus obtain a partition of K in m sub-volumes, where m is
the number of faces of the cell, each sub-volume having the same measure |DK,σ| = |K|/m. We
extend this definition to general quadrangles and hexahedra, by supposing that we have built
a partition still of equal-volume sub-cells, and with the same connectivities. The volume DK,σ

is referred to as the half-diamond cell associated to K and σ. For σ ∈ Eint, σ = K|L, we now
define the diamond cell Dσ associated to σ by Dσ = DK,σ ∪DL,σ.

- MAC discretization – For the MAC scheme, the dual mesh depends on the component of the
velocity. For each component, the MAC dual mesh only differs from the RT or CR dual mesh
by the choice of the half-diamond cell, which, for K ∈M and σ ∈ E(K), is now the rectangle or
rectangular parallelepiped of basis σ and of measure |DK,σ| = |K|/2 (see Figures 3.1 and 3.2).

We denote by |Dσ| the measure (area of volume) of the dual cell Dσ, and by ε = Dσ|Dσ′ the face
separating two diamond cells Dσ and Dσ′ . The set of the (dual) faces of Dσ is denoted by Ē(Dσ).

Finally, in order to be able to write a unique expression of the discrete equations for both MAC
and CR/RT schemes, we introduce the set of faces E(i)

S associated to the degrees of freedom of the ith
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Dσ

Dσ′

σ′ = K|MK

L

M

|σ|

σ
=

K
|L

ε = D
σ |D

σ ′

Figure 1. Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart elements.

In addition, for the definition of the discrete diffusion terms in the momentum balance equation (1b) and in
the internal energy equation (7), we need to distinguish two classes of meshes: the so-called super-admissible
meshes, and the others, referred to as general meshes. In the present particular framework, super-admissible
meshes are obtained under the following condition:

∣∣∣∣∣∣∣∣

Each cell K of the mesh is either:

- a rectangle (d = 2) or a rectangular parallelepiped (d = 3); in this case,
we denote by xK the mass center of K;

- a simplex, the circumcenter xK of which is located inside K.

(10)

This condition implies that, for each neighboring control volumes K and L, the segment [xK , xL] is orthogonal
to the face K|L separating K from L, even when, in two space dimensions, one cell is a rectangle and the other
one a triangle (we recall that, in three space dimensions, the two types of cells cannot be mixed). For each
internal face σ = K|L, we denote by dσ the distance d(xK , xL).

Remark 2.1 (Impermeability and Neumann boundary conditions). If the velocity is not prescribed to zero at
the boundary, the space discretization is adapted as follows:

- if u · n = 0 is the only condition imposed on the boundary, the degrees of freedom do not change for the
MAC scheme, but the velocity unknowns corresponding to the tangential component(s) of the velocity
must be added for the RT and CR discretizations. We thus first need a definition of the dual cell at
a boundary face σ ∈ Eext; denoting by K the adjacent cell, we take for Dσ the same volume as DK,σ.

Next, we must extend E
(i)
S . This can be done in a straightforward way if the boundary is always normal

to a vector of the canonical basis of Rd; then we get E
(i)
S = E \ E

(i)
ext. This is the situation that we will

consider here. The extension to the general case is just technical: a change of unknown must be done to
make the velocity in the direction normal to each external face appear as a degree of freedom.

- when the velocity is free at a boundary face σ, this face must be treated in the definition of E
(i)
S as an

internal face, and the associated dual cell is defined as previously.

3. The pressure correction scheme

3.1. The algorithm

Let us consider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), which we suppose uniform.
Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the constant time step. The pressure correction scheme considered
here consists in the two following steps:

Figure 2.1. Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart elements.

component of the velocity (S stands for “scheme”):

E
(i)
S =

∣∣∣∣∣ E(i)
int for the MAC scheme,

Eint for the CR or RT schemes.

In addition, for the definition of the discrete diffusion terms in the momentum balance equation
(1.1b) and in the internal energy equation (1.7), we need to distinguish two classes of meshes: the so-
called super-admissible meshes, and the others, referred to as general meshes. In the present particular
framework, super-admissible meshes are obtained under the following condition:∣∣∣∣∣∣∣∣∣

Each cell K of the mesh is either:
- a rectangle (d = 2) or a rectangular parallelepiped (d = 3); in this

case, we denote by xK the mass center of K;

- a simplex, the circumcenter xK of which is located inside K.

(2.1)

This condition implies that, for each neighboring control volumes K and L, the segment [xK , xL] is
orthogonal to the face K|L separating K from L, even when, in two space dimensions, one cell is a
rectangle and the other one a triangle (we recall that, in three space dimensions, the two types of cells
cannot be mixed). For each internal face σ = K|L, we denote by dσ the distance d(xK , xL).

Remark 2.1 (Impermeability and Neumann boundary conditions). If the velocity is not prescribed
to zero at the boundary, the space discretization is adapted as follows:

- if u ·n = 0 is the only condition imposed on the boundary, the degrees of freedom do not change
for the MAC scheme, but the velocity unknowns corresponding to the tangential component(s)
of the velocity must be added for the RT and CR discretizations. We thus first need a definition
of the dual cell at a boundary face σ ∈ Eext; denoting by K the adjacent cell, we take for Dσ

the same volume as DK,σ. Next, we must extend E
(i)
S . This can be done in a straightforward

way if the boundary is always normal to a vector of the canonical basis of Rd; then we get
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E
(i)
S = E \ E(i)

ext. This is the situation that we will consider here. The extension to the general
case is just technical: a change of unknown must be done to make the velocity in the direction
normal to each external face appear as a degree of freedom.

- when the velocity is free at a boundary face σ, this face must be treated in the definition of E(i)
S

as an internal face, and the associated dual cell is defined as previously.

3. The pressure correction scheme

3.1. The algorithm

Let us consider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), which we suppose
uniform. Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the constant time step. The pressure correction
scheme considered here consists in the two following steps:

Pressure gradient scaling step:

∀σ ∈ Eint, ∇σ(pn+1) =
( ρnDσ

ρn−1
Dσ

)1/2
∇σ(pn). (3.1a)

Prediction step – Solve for ũn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

1
δt

(
ρnDσ

ũn+1
σ,i − ρ

n−1
Dσ

unσ,i
)

+ divσ(ρnũn+1
i un)− divσ,i τ (ũn+1) + ∇σ,i(pn+1) = 0. (3.1b)

Correction step – Solve for pn+1, en+1, ρn+1 and un+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

1
δt
ρnDσ

(un+1
σ,i − ũ

n+1
σ,i ) + ∇σ,i(pn+1)−∇σ,i(pn+1) = 0, (3.1c)

∀K ∈M,
1
δt

(ρn+1
K − ρnK) + divK(ρn+1un+1) = 0, (3.1d)

∀K ∈M,

1
δt

(ρn+1
K en+1

K − ρnKenK) + divK(ρn+1en+1un+1) + pn+1
K divK(un+1)

−λ (∆en+1)K =
(
τ (ũn+1) : ∇ũn+1)

K + Sn+1
K ,

(3.1e)

∀K ∈M, ρn+1
K = %

(
en+1
K , pn+1

K

)
. (3.1f)

The first step is a pressure gradient scaling step which is introduced in order to recover a discrete
kinetic energy inequality (see Appendix A). The second step is a classical semi-implicit solution of the
momentum balance equation to obtain a tentative velocity field. The third step is a nonlinear pressure
correction step, which couples the mass balance equation with the internal energy balance equation.
However expensive, this coupling seems to be the price to pay to obtain an unconditional stability
property (see Section 4.1, and [36, 37] for a discussion on this issue). In addition, in the Euler case, it
also allows the scheme to keep the velocity and pressure constant across (1D) contact discontinuities
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(see Appendix B). The last equation of this step is the equation of state, which is recast here as
ρ = %(e, p) (instead of p = ℘(ρ, e)) because, at the algebraic level, the density is first eliminated from
the system, this latter is solved for en+1 and pn+1, and ρn+1 is finally given by (3.1f) (see Appendix
C for the solution process).

We now give the expression of each term of this algorithm, except for the diffusion and dissipation
terms, which are defined in sections 3.2 and 3.3 below. The space discretization follows a specific order,
which is explained in Flow chart 3.1 below.

(i) (For the mass balance) Define the mass flux at each primal face:

divK(ρu) = 1
|K|

∑
σ∈E(K)

FK,σ, FK,σ = |σ| ρσ uK,σ,

uK,σ =normal velocity, ρσ =upwind density (ensures the positivity of the density).

(ii) From this primal mass flux,

(a) (For the momentum balance) Define the density at the faces ρDσ
and the mass fluxes

through the dual faces Fσ,ε in such a way that a mass balance holds on dual cells, and
define the flux of the ith velocity component through a dual face by Fσ,εuε,i, with uε,i
centered (yields a discrete kinetic energy balance);

(b) (For the internal energy balance) Define the energy flux through each primal face by
FK,σ eσ, with eσ =upwind energy (yields a maximum-principle-preserving convection op-
erator);

(c) (For the internal energy balance) Define the velocity divergence (just set ρ equal to 1
in the expression of divK(ρu)), and the pressure gradient by transposition (yields a total
energy estimate).

Flow chart 3.1. Process for the construction of the space discretization of the
hyperbolic part of the system of partial differential equations (i.e. Euler equations,
written in non-conservative form using the internal energy balance). This process must
be combined with a time stepping strategy which, in practice, may be of pressure
correction type (present paper, to ensure unconditional stability) or explicit (see [22]).

We begin with the discrete mass balance equation (3.1d). The convection term in this relation reads:

div(ρu)K = 1
|K|

∑
σ∈E(K)

FK,σ,

where FK,σ stands for the mass flux across σ outward K. By the impermeability boundary conditions,
it vanishes on external faces and is given on internal faces by:

∀σ ∈ Eint, σ = K|L, FK,σ = |σ| ρσ uK,σ, (3.2)

where uK,σ is an approximation of the normal velocity to the face σ outward K. This latter quantity
is defined by:

uK,σ =
∣∣∣∣∣uσ,i nK,σ · e(i) for σ ∈ E(i) in the MAC case,
uσ · nK,σ in the CR and RT cases,

(3.3)

where e(i) denotes the i-th vector of the orthonormal basis of Rd. The density at the face σ = K|L is
approximated by the upwind technique, i.e. ρσ = ρK if uK,σ ≥ 0 and ρσ = ρL otherwise.
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We now turn to the discrete momentum balance (3.1b). For both the MAC and the RT-CR dis-
cretizations, the time derivative and convection terms are approximated in (3.1b) by a finite volume
technique over the dual cells, so that the convection term reads:

divσ(ρũiu) = divσ
(
ũi(ρu)

)
= 1
|Dσ|

∑
ε∈Ē(Dσ)

Fσ,εũε,i,

where Fσ,ε stands for a mass flux through the dual face ε outward Dσ, and ũε,i is a centered approxi-
mation of the ith component of the velocity ũ on ε. The density at the dual cell ρDσ

is obtained by a
weighted average of the density in the neighbouring cells:

for σ ∈ Eint, σ = K|L, |Dσ| ρDσ
= |DK,σ| ρK + |DL,σ| ρL,

for an external face of a cell K, ρDσ
= ρK .

(3.4)

The mass fluxes (Fσ,ε)ε∈E(Dσ) are evaluated as linear combinations, with constant coefficients, of the
primal mass fluxes at the neighboring faces, in such a way that the following discrete mass balance
over the dual cells is implied by the discrete mass balance (3.1d):

∀σ ∈ E, for 0 ≤ n < N,
|Dσ|
δt

(ρn+1
Dσ
− ρnDσ

) +
∑

ε∈E(Dσ)
Fn+1
σ,ε = 0. (3.5)

This relation is critical to derive a discrete kinetic energy balance (see Section 4.1 below). The com-
putation of the dual mass fluxes Fσ,ε is such that the flux through a dual face lying on the boundary,
which is then also a primal face, is the same as the primal flux, that is zero. This computation yields
the expression (3.4) for the densities, and some linear combination of the primal fluxes for the dual
fluxes [13, 20, 21]. Since the mass balance is not yet solved at the velocity prediction stage, the den-
sities and dual fluxes have to be built from the mass balance at the previous time step: hence the
backward time shift for the densities in the time-derivative term.

In the rescaling step for the pressure gradient (3.1a) and in the correction equation (3.1c), the term
∇σ,i(p) stands for the ith component of the discrete pressure gradient at the face σ, which is built as
the transposed operator to the natural divergence (see Equations (3.8) and (3.9) below):

for σ = K|L ∈ Eint, ∇σ,i(p) = |σ|
|Dσ|

(pL − pK) nK,σ · e(i). (3.6)

This pressure gradient is only defined at internal faces since, thanks to the impermeability boundary
conditions, no momentum balance equation is written at the external faces. The quantity ∇σ,i(p) in
(3.1a) is obtained by a simple rescaling of the pressure gradient, which is needed to obtain a discrete
kinetic energy balance (see Section 4.1 and Appendix A). Note that ∇(p) is not a discrete gradient,
in the sense that there does not exist in the general case a discrete pressure p such that ∇(p) = ∇(p).

Equation (3.1e) is a finite-volume approximation of the internal energy balance over the primal cell
K. To ensure the positivity of the convection operator, the convection flux is defined as the product
of the mass flux with an upwind approximation of the internal energy [31]:

divK(ρeu) = divK
(
e (ρu)

)
= 1
|K|

∑
σ∈E(K)

FK,σeσ, (3.7)

with, for σ = K|L ∈ Eint, eσ = eK if FK,σ ≥ 0 and eσ = eL otherwise. The divergence of the velocity,
divK(u), is discretized as follows:

for K ∈M, divK(u) = 1
|K|

∑
σ∈E(K)

|σ| uK,σ, (3.8)
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and, as announced, this definition implies that the discrete gradient and divergence operators are dual
with respect to the L2 inner product:∑

K∈M
|K| pK divK(u) +

d∑
i=1

∑
σ∈E(i)

S

|Dσ| uσ,i ∇σ,i(p) = 0. (3.9)

The term SK at the right-hand side of (3.1e) is necessary to obtain a consistent scheme in the Euler
case [20]; its purpose is to compensate some numerical dissipation terms appearing in the discrete
kinetic energy balance equation, which may not tend to 0 as the mesh and time step tend to 0. Its
expression is derived in Section 4.1.

Remark 3.1 (Outflow or Neuman boundary conditions). When the normal velocity is not prescribed
to zero at the boundary face σ ∈ E(K), we suppose that the flow leaves the domain (i.e. uK,σ ≥ 0),
so the definition (3.2) of FK,σ remains unchanged (and ρσ = ρK). The face σ is also an external dual
face of the diamond cell Dσ, and the above mentioned construction procedure of the dual mass fluxes
yields Fσ,ε = FK,σ; at this face, we set ũε,i = ũσ,i. The expression (3.8) of the discrete divergence of
the velocity still holds, but now takes into account a (possibly) non-zero normal velocity uK,σ at the
external face σ. Therefore, the gradient-divergence duality property becomes:∑

K∈M
|K| pK divK(u) +

d∑
i=1

∑
σ∈E(i)

S

|Dσ| uσ,i ∇σ,i(p) =
∑

σ∈Eext

−|σ| pext

where pext stands for the external pressure involved in the Neumann boundary condition, and we have
supposed that the Neumann boundary condition is applied on the whole boundary (otherwise, the sum
at the right-hand side should be restricted to the faces included in the part of ∂Ω where Neumann
boundary conditions are prescribed). We thus obtain the following definition of the gradient on the
external face σ adjacent to the cell K:

∇σ,i(pn+1) = |σ|
|Dσ|

(pext − pn+1
K ) nK,σ · e(i).

Finally, the definition of the internal energy flux (3.7) remains unchanged (and eσ = eK).

In order to obtain a stability estimate, the dual mass balance (3.5) has to be satisfied when per-
forming the first velocity prediction step, and this complicates the initialization of the scheme. The
initial approximations for ρ, e and u are given by the average of the initial conditions ρ0, e0 and u0
on the primal and dual cells respectively:

∀K ∈M, ρ
(−1)
K = 1

|K|

∫
K
ρ0(x) dx, e0

K = 1
|K|

∫
K
e0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S , u0

σ,i = 1
|Dσ|

∫
Dσ

(u0(x))i dx.
(3.10)

Then the discrete mass balance (3.1d), written for n = −1, is solved for ρ0, and the initial pressure is
given by the equation of state (1.1e).

3.2. The viscous diffusion and dissipation term

The aim of this section is to define the viscous diffusion term divσ,i τ (ũ) of the momentum balance
equation (3.1b) and the viscous dissipation term (τ (ũ) : ∇ũ)K of the internal energy balance equation.
Besides usual numerical consistency considerations, we would like these quantities to satisfy the two
following constraints:
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(i) non-negativity of the dissipation:
∀K ∈M, (τ (ũ) : ∇ũ)K ≥ 0; (3.11)

(ii) consistency of the diffusion and the dissipation, in the following sense:

−
d∑
i=1

∑
σ∈E(i)

S

|Dσ| divσ,i τ (ũ) uσ,i =
∑
K∈M

|K| (τ (ũ) : ∇ũ)K , (3.12)

i.e. the discrete analogue of the identity
∫

Ω
divτ (u) · u = −

∫
Ω
τ (u) : ∇u.

Since the discretization of the diffusion term is different for the RT or CR discretization, on one side,
and for the MAC scheme, on the other side, we deal with these two cases separately.

3.2.1. Unstructured meshes, CR-RT discretization.

For the RT or CR discretization, we use the usual finite element discretization of the viscous term:

− divσ,i τ (ũ) = − 1
|Dσ|

∑
K∈M

∫
K
τ (ũ) : ∇ϕ(i)

σ dx, (3.13)

where ϕ(i)
σ stands for the vector-valued finite element shape function associated to the ith component

of the velocity and to the face σ; by definition of the RT or CR finite elements, this shape function
reads ϕσe(i), where ϕσ is the real-valued function of the approximation space whose mean value is 1
over σ and 0 over the other faces of the mesh.

The dissipation term is given by:

(τ (ũ) : ∇ũ)K = 1
|K|

∫
K
τ (ũ) : ∇ũdx. (3.14)

The non-negativity of this term is a classical result, which is a consequence of the following elementary
computation. By symmetry,

τ (ũ) : ∇ũ = µ (∇ũ+∇tũ) : ∇ũ−2µ
3 div(ũ) I : ∇ũ = µ

(
(∇ũ+∇tũ) : (∇ũ+∇tũ)−2

3 (divũ)2).
This expression is thus the sum of the squares of the off-diagonal entries of ∇ũ + ∇tũ and of the
following quantity

2µ
3
(
3

3∑
i=1

(∂iui)2 −
( 3∑
i=1

∂iui
)2)

,

which is non-negative.
Finally, by a simple reordering of the sums,

−
d∑
i=1

∑
σ∈E(i)

S

|Dσ| divσ,i τ (ũ) uσ,i

=
d∑
i=1

∑
σ∈E(i)

S

uσ,i
∑
K∈M

∫
K
τ (ũ) : ∇ϕ(i)

σ dx =
∑
K∈M

∫
K
τ (ũ) : ∇

( d∑
i=1

∑
σ∈E(i)

S

uσ,iϕ
(i)
σ

)
dx

=
∑
K∈M

∫
K
τ (ũ) : ∇ũdx =

∑
K∈M

|K| (τ (ũ) : ∇ũ)K ,

that is (3.12).
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Figure 2. Unknown and dual cell for the x-component of the velocity, notations for staggered discretizations.

3.2.2. MAC scheme

For the MAC scheme, the strategy used to build the viscous diffusion and dissipation terms is to mimic the
computation performed in the previous section. Hence, we first need to define the (discrete) partial derivatives of
the discrete velocities a.e in Ω, and then a finite volume analogue of the shape functions. With these ingredients,
expressions (23) and (24) still make sense, and their consequences (namely Relations (21) and (22)) hold.

The arguments presented in this section were already used in [13], but with a rather different approach and
notations; they are detailed here in the present framework.

The two-dimensional case - Since we have to deal with differential quotient formula on structured grids, we
use the standard notations in this context given on Figures 2 and 3. For the sake of clarity, we first concentrate
on the inner cells; the cells neighbouring the boundary and the boundary conditions are dealt with later.

The discrete partial derivatives of the velocity are defined as follows (see Figures 4 and 5):
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Figure 3. Unknowns and dual cell for the y-component of the velocity, notations for staggered
discretizations (continued).

Figure 3.1. Unknown and dual cell for the x-component of the velocity, notations for
staggered discretizations.

3.2.2. MAC scheme

For the MAC scheme, the strategy used to build the viscous diffusion and dissipation terms is to mimic
the computation performed in the previous section. Hence, we first need to define the (discrete) partial
derivatives of the discrete velocities a.e in Ω, and then a finite volume analogue of the shape functions.
With these ingredients, expressions (3.13) and (3.14) still make sense, and their consequences (namely
Relations (3.11) and (3.12)) hold.

The arguments presented in this section were already used in [13], but with a rather different
approach and notations; they are detailed here in the present framework.
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3.2.2. MAC scheme

For the MAC scheme, the strategy used to build the viscous diffusion and dissipation terms is to mimic the
computation performed in the previous section. Hence, we first need to define the (discrete) partial derivatives of
the discrete velocities a.e in Ω, and then a finite volume analogue of the shape functions. With these ingredients,
expressions (23) and (24) still make sense, and their consequences (namely Relations (21) and (22)) hold.

The arguments presented in this section were already used in [13], but with a rather different approach and
notations; they are detailed here in the present framework.

The two-dimensional case - Since we have to deal with differential quotient formula on structured grids, we
use the standard notations in this context given on Figures 2 and 3. For the sake of clarity, we first concentrate
on the inner cells; the cells neighbouring the boundary and the boundary conditions are dealt with later.

The discrete partial derivatives of the velocity are defined as follows (see Figures 4 and 5):
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– Let the primal cells be denoted by Ki,j = (xi−1/2, xi+1/2) × (yj−1/2, yj+1/2). The derivatives involved in

the divergence, ∂M
x ux and ∂M

y uy, are defined over the primal cell by, ∀x ∈ Ki,j:

∂M
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. (25)

– For the other derivatives, we introduce a fourth mesh which is vertex-centred, and we denote by Kxy the
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We are now in position to define the discrete stress tensor of ũ by:

(µ∇)Mũ =

[
µxx ∂

M
x ũx µxy ∂

M
y ũx

µyx ∂
M
x ũy µyy ∂

M
y ũy

]
, (µ div)M(ũ) = µxx ∂

M
x ũx + µyy ∂

M
y ũy,

τM(ũ) = (µ∇)Mũ +
(
(µ∇M)ũ

)t − 2

3
(µ div)Mũ I,

where µxx, µxy, µyx and µyy are approximations of the viscosity field on the various meshes; here, we choose to
use the same piecewise constant fields for µxx and µyy (respectively µxy and µyx), with the same mesh as their
associated partial derivatives, namely the primal cells (respectively the vertex-centred cells). The value of µxx

and µyy over Ki,j (respectively µxy and µyx over Kxy
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) is denoted by µi,j (respectively µi− 1
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).

We now introduce the ”finite-volume shape functions” for the components of the velocity. Let us denote by
Ix ⊂ N2 (resp. Iy ⊂ N2) the set of pairs (i, j) which are admissible in the sense that xi− 1

2 ,j (resp. xi,j− 1
2
) is the

mass center of a vertical (resp. horizontal) face of the mesh. For (i, j) ∈ Ix, we denote by ϕx,(i− 1
2 ,j) the shape

function associated to the degree of freedom of the x-component of the velocity located at xi− 1
2 ,j ; this discrete
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– Let the primal cells be denoted by Ki,j = (xi−1/2, xi+1/2) × (yj−1/2, yj+1/2). The derivatives involved in

the divergence, ∂M
x ux and ∂M

y uy, are defined over the primal cell by, ∀x ∈ Ki,j:
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– For the other derivatives, we introduce a fourth mesh which is vertex-centred, and we denote by Kxy the
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We are now in position to define the discrete stress tensor of ũ by:

(µ∇)Mũ =

[
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]
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M
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y ũy,

τM(ũ) = (µ∇)Mũ +
(
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)t − 2

3
(µ div)Mũ I,

where µxx, µxy, µyx and µyy are approximations of the viscosity field on the various meshes; here, we choose to
use the same piecewise constant fields for µxx and µyy (respectively µxy and µyx), with the same mesh as their
associated partial derivatives, namely the primal cells (respectively the vertex-centred cells). The value of µxx
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The two-dimensional case - Since we have to deal with differential quotient formula on structured
grids, we use the standard notations in this context given on Figures 3.1 and 3.2. For the sake of
clarity, we first concentrate on the inner cells; the cells neighbouring the boundary and the boundary
conditions are dealt with later.

The discrete partial derivatives of the velocity are defined as follows (see Figures 3.3 and 3.4):
– Let the primal cells be denoted by Ki,j = (xi−1/2, xi+1/2) × (yj−1/2, yj+1/2). The derivatives

involved in the divergence, ∂Mx ux and ∂My uy, are defined over the primal cell by, ∀x ∈ Ki,j :

∂Mx u
x(x) =

ux
i+ 1

2 ,j
− ux

i− 1
2 ,j

hxi
, ∂My u

y(x) =
uy
i,j+ 1

2
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2

hyj
. (3.15)

– For the other derivatives, we introduce a fourth mesh which is vertex-centred, and we denote
by Kxy the generic cell of this new mesh, with Kxy

i− 1
2 ,j−

1
2

= (xi−1, xi) × (yj−1, yj). Then, ∀x ∈
Kxy

i− 1
2 ,j−

1
2
:

∂My u
x(x) =

ux
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, ∂Mx u
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hx
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2

. (3.16)

We are now in position to define the discrete stress tensor of ũ by:

(µ∇)Mũ =
[
µxx ∂

M
x ũ

x µxy ∂
M
y ũ

x

µyx ∂
M
x ũ

y µyy ∂
M
y ũ

y

]
, (µ div)M(ũ) = µxx ∂

M
x ũ

x + µyy ∂
M
y ũ

y,

τM(ũ) = (µ∇)Mũ+
(
(µ∇M)ũ

)t − 2
3 (µ div)Mũ I,
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where µxx, µxy, µyx and µyy are approximations of the viscosity field on the various meshes; here, we
choose to use the same piecewise constant fields for µxx and µyy (respectively µxy and µyx), with the
same mesh as their associated partial derivatives, namely the primal cells (respectively the vertex-
centred cells). The value of µxx and µyy over Ki,j (respectively µxy and µyx over Kxy

i− 1
2 ,j−

1
2
) is denoted

by µi,j (respectively µi− 1
2 ,j−

1
2
).

We now introduce the "finite-volume shape functions" for the components of the velocity. Let us
denote by Ix ⊂ N2 (resp. Iy ⊂ N2) the set of pairs (i, j) which are admissible in the sense that xi− 1

2 ,j

(resp. xi,j− 1
2
) is the mass center of a vertical (resp. horizontal) face of the mesh. For (i, j) ∈ Ix, we

denote by ϕx,(i−
1
2 ,j) the shape function associated to the degree of freedom of the x-component of the

velocity located at xi− 1
2 ,j

; this discrete function is defined by:

(ϕx,(i−
1
2 ,j))x

k− 1
2 ,`

= δik δ
j
` , ∀(k, `) ∈ Ix and (ϕx,(i−

1
2 ,j))y

k,`− 1
2

= 0, ∀(k, `) ∈ Iy.

Similarly, for (i, j) ∈ Iy, we denote by ϕy,(i,j−
1
2 ) the shape function associated to the degree of freedom

for the y-component of the velocity located at xi,j− 1
2
, which is defined by

(ϕy,(i,j−
1
2 ))x

k− 1
2 ,`

= 0, ∀(k, `) ∈ Ix and (ϕy,(i,j−
1
2 ))y

k,`− 1
2

= δik δ
j
` , ∀(k, `) ∈ Iy.

Then, the viscous diffusion and dissipation terms are defined by the following analogues of (3.13) and
(3.14):

∀(i, j) ∈ Ix, −(divτ (ũ))x
i− 1

2 ,j
= 1
|Kx

i− 1
2 ,j
|

∫
Ω
τM(ũ) : ∇Mϕx,(i−

1
2 ,j) dx,

∀(i, j) ∈ Iy, −(divτ (ũ))y
i,j− 1

2
= 1
|Ky

i,j− 1
2
|

∫
Ω
τM(ũ) : ∇Mϕy,(i,j−

1
2 ) dx,

(3.17)

and:
(τ (ũ) : ∇ũ)K = 1

|K|

∫
K
τM(ũ) : ∇Mũdx. (3.18)

As a consequence of these definitions, as announced, the constraints (3.11) and (3.12) are satisfied. Let
us now check that the definition (3.17) coincides with the usual definition of the viscous diffusion term
for the MAC scheme. To this purpose, we consider the equation corresponding to the (i− 1

2 , j) unknown
for the x-component of the velocity. The shape function associated to this equation is ϕx,(i−

1
2 ,j) and

its non-zero partial derivatives are ∂Mx ϕx,(i−
1
2 ,j) and ∂My ϕx,(i−

1
2 ,j):

∂Mx ϕ
x,(i− 1

2 ,j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
hxi−1

over Ki−1,j ,

−1
hxi

over Ki,j ,

0 elsewhere,

∂My ϕ
x,(i− 1

2 ,j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
hy
j− 1

2

over Kxy

i− 1
2 ,j−

1
2
,

−1
hy
j+ 1

2

over Kxy

i− 1
2 ,j+

1
2
,

0 elsewhere.

The corresponding entries of the discrete stress tensor of ũ (recall that, at the continuous level, this
tensor is defined by τ xx(ũ) = 4

3 µ∂xũ
x − 2

3 µ∂yũ
y and τ xy = µ(∂yũx + ∂xũ

x)) read over Ki−1+ε,j , with
ε = 0 and ε = 1:

τM(ũ)xxi−1+ε,j = 4
3 µi−1+ε,j

ũx
i− 1

2 +ε,j − ũ
x
i− 3

2 +ε,j

hxi−1+ε
− 2

3 µi−1+ε,j

ũy
i+ε,j+ 1

2
− ũy

i+ε,j− 1
2

hyj
,
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: Kxy

i− 1
2 ,j− 1

2

∂M
y ux(x) =

ux
i− 1

2 ,j
− ux

i− 1
2 ,ext

hy

j− 1
2

xi− 3
2

xi− 1
2

xi+ 1
2

yj− 1
2

yj+ 1
2

yj+ 3
2

ux
i− 1

2 ,j
ux

i− 3
2 ,j

ux
i+ 1

2 ,j

ux
i− 1

2 ,j+1

hx
i

hy

j− 1
2

Figure 6. Boundary conditions, x-component of the velocity

Kxy associated to a vertex lying on the boundary, and for one of the discrete partial derivatives on this cell:
∂M

y ux near an horizontal boundary and ∂M
x uy near a vertical boundary. Let us deal for instance with the first

case, using the notations of Figure 6. Roughly speaking, everything is done as if we were supposing that there
is an additional horizontal stripe of mesh at the boundary, with zero height and where the x-velocity is set at
the prescribed value, let us say ux

i− 1
2 ,ext

(which is zero in case of homogeneous Dirichlet boundary conditions).

Therefore, Kxy

i− 1
2 ,j− 1

2

= (xi−1, xi) × (yj− 1
2
, yj), hy

j− 1
2

= hy
j /2 and

∂M
y ux(x) =

ux
i− 1

2 ,j
− ux

i− 1
2 ,ext

hy

j− 1
2

, ∀x ∈ Kxy

i− 1
2 ,j− 1

2

.

The other partial derivative ∂M
x uy defined on Kxy

i− 1
2 ,j− 1

2

is computed with its usual expression, but using the

prescribed value for uy

i−1,j− 1
2

and uy

i,j− 1
2

; this derivative vanishes in case of homogeneous boundary conditions

(in fact, as soon as the prescribed value for uy does not depend on x). For the computation of the partial
derivative of the shape functions, the external value is always zero (which is consistent with the fact that a test
function for an elliptic boundary value problem is supposed to vanish on the boundary).

Remark 3.2 (Neumann or perfect slip boundary conditions). In the case of Neumann or perfect slip boundary
condition, the quantity at the boundary is supposed to be the same as in the domain (i.e., for the example
chosen above, ux

i− 1
2 ,ext

= ux
i− 1

2 ,j
). If the considered Neumann boundary condition involves a non-zero shear

surface force, this latter must be added at the righ-hand side of the balance equation.

The three-dimensional case – Extending the computations of the preceding section to three space dimensions
yields the following construction.

– First, define three new meshes, which are ”edge-centred”: Kxy

i+ 1
2 ,j+ 1

2 ,k
is staggered from the primal mesh

Ki,j,k in the x and y direction (so Kxy

i+ 1
2 ,j+ 1

2 ,k
= (xi, xi+1) × (yi, yj+1) × (zk− 1

2
, zk+ 1

2
), see Figure 7),

Kxz
i+ 1

2 ,j,k+ 1
2

in the x and z direction, and Kyz

i,j+ 1
2 ,k+ 1

2

in the y and z direction.

– The partial derivatives of the velocity components are then defined as piecewise constant functions, the
value of which is obtained by natural finite differences:
- for ∂M

x ux, ∂M
y uy and ∂M

z uz, on the primal mesh,

- for ∂M
y ux and ∂M

x uy on the cells (Kxy

i+ 1
2 ,j+ 1

2 ,k
),

- for ∂M
z ux and ∂M

x uz on the cells (Kxz
i+ 1

2 ,j,k+ 1
2

),

- for ∂M
y uz and ∂M

z uy on the cells (Kyz

i,j+ 1
2 ,k+ 1

2

).

– Then, define four families of values for the viscosity field, µ, µxy, µxz and µyz, associated to the primal
and the three edge-centred meshes respectively.

– The shear stress tensor is obtained by the extension of (27) to d = 3, and the dissipation term is given
by (28).

Figure 3.5. Boundary conditions, x-component of the velocity

and, over Kxy

i− 1
2 ,j−

1
2 +ε, still with ε = 0 and ε = 1:

τM(ũ)xy
i− 1

2 ,j−
1
2 +ε = µi− 1

2 ,j−
1
2 +ε

[ ũx
i− 1

2 ,j+ε
− ũx

i− 1
2 ,j−1+ε

hy
j− 1

2 +ε
+
ũy
i−1,j− 1

2 +ε − ũ
y

i,j− 1
2 +ε

hx
i− 1

2

]
.

We thus get: ∫
Ω
τM(ũ)xx ∂Mx ϕx,(i−

1
2 ,j) dx = Fi,j − Fi−1,j ,

where, for ε = 0 and ε = 1, Fi−1+ε,j = hyj τ
M(ũ)xxi−1+ε,j , which is the usual viscous diffusion flux across

the face σxi−1+ε,j (see Figure 3.1). Similarly,∫
Ω
τM(ũ)xy ∂My ϕx,(i−

1
2 ,j) dx = Fi− 1

2 ,j+
1
2
− Fi− 1

2 ,j−
1
2
,

where, for ε = 0 and ε = 1, Fi− 1
2 ,j−

1
2 +ε = hxi−1/2 τ

M(ũ)xy
i− 1

2 ,j−
1
2 +ε, which is the usual expression of the

MAC viscous flux across the face σx
i− 1

2 ,j−
1
2 +ε (once again defined on Figure 3.1). The same arguments

apply for the y-component of the momentum balance equation.
Let us now show how to extend these definitions up to the boundary and how to deal with Dirichlet

boundary conditions. Modification of the above material is necessary only for the definition of a "twice-
staggered cell" Kxy associated to a vertex lying on the boundary, and for one of the discrete partial
derivatives on this cell: ∂My ux near an horizontal boundary and ∂Mx uy near a vertical boundary. Let us
deal for instance with the first case, using the notations of Figure 3.5. Roughly speaking, everything is
done as if we were supposing that there is an additional horizontal stripe of mesh at the boundary, with
zero height and where the x-velocity is set at the prescribed value, let us say ux

i− 1
2 ,ext (which is zero

in case of homogeneous Dirichlet boundary conditions). Therefore, Kxy

i− 1
2 ,j−

1
2

= (xi−1, xi)× (yj− 1
2
, yj),

hy
j− 1

2
= hyj/2 and

∂My u
x(x) =

ux
i− 1

2 ,j
− ux

i− 1
2 ,ext

hy
j− 1

2

, ∀x ∈ Kxy

i− 1
2 ,j−

1
2
.

The other partial derivative ∂Mx uy defined on Kxy

i− 1
2 ,j−

1
2
is computed with its usual expression, but

using the prescribed value for uy
i−1,j− 1

2
and uy

i,j− 1
2
; this derivative vanishes in case of homogeneous

boundary conditions (in fact, as soon as the prescribed value for uy does not depend on x). For the
computation of the partial derivative of the shape functions, the external value is always zero (which
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: Kxy

i+ 1
2 ,j+ 1

2 ,k

xi+ 1
2

yj+ 1
2

zk− 1
2

zk+ 1
2

Figure 7. The xy-staggered cell Kxy

i+ 1
2 ,j+ 1

2 ,k
, used in the definition of ∂M

y ux, ∂M
x uy, and

τM(u)x,y = τM(u)y,x.

3.3. The heat diffusion term

The discretization of the diffusion term depends on whether the mesh is super-admissible (in the sense of
Section 2, Condition (10)) or not. In the first case, we use the usual finite volume scheme based on a two-point
approximation of the fluxes [12]:

∀K ∈ M, −λ (∆e)K = λ
∑

σ=K|L∈E(K)

|σ|
dσ

(eK − eL). (29)

Note that, in this relation, no flux is computed on the external faces, which is consistent with homogeneous
Neumann boundary conditions. In the second case, we use the so-called SUSHI scheme, in the variant described
in [38, Section 3.1] for general meshes.

For a ∈ R, let us denote by a+ and a− the positive and negative part of a respectively, i.e. a+ = max(a, 0)
and a− = − min(a, 0), so a+ ≥ 0, a− ≥ 0 and a = a+ − a−. For the scheme to ensure the positivity of the
internal energy, we need the Laplace operator to be monotone, in the following sense:

∀ (eK)K∈M ⊂ R,
∑

K∈M

−λ (∆e)K (−e−
K) ≥ 0. (30)

Lemma 3.3. The finite volume scheme based on the two-point approximation of the fluxes (29) satisfies the
property (30).

Proof. Let (eK)K∈M ⊂ R be given. Then, by definition and then reordering the sums:

∑

K∈M

−λ (∆e)K (−e−
K) =

∑

K∈M

(−e−
K)

∑

σ=K|L∈E(K)

|σ|
dσ

(eK − eL)

=
∑

σ=K|L∈Eint

|σ|
dσ

(eK − eL) (e−
L − e−

K),

and the conclusion follows by remarking that the function s &→ s− is non-increasing. !

Remark 3.4 (Two-points flux discrete Laplace operator with Dirichlet boundary conditions). In case of Dirich-
let boundary conditions, the definition (29) of the discrete Laplace operator must be changed to:

−(∆e)K =
∑

σ=K|L∈E(K)

|σ|
dσ

(eK − eL) +
∑

σ∈E(K)∩Eext

|σ|
dσ

(eK − eσ,D),

Figure 3.6. The xy-staggered cell Kxy

i+ 1
2 ,j+

1
2 ,k

, used in the definition of ∂My ux, ∂Mx uy,
and τM(u)x,y = τM(u)y,x.

is consistent with the fact that a test function for an elliptic boundary value problem is supposed to
vanish on the boundary).

Remark 3.2 (Neumann or perfect slip boundary conditions). In the case of Neumann or perfect slip
boundary condition, the quantity at the boundary is supposed to be the same as in the domain (i.e.
, for the example chosen above, ux

i− 1
2 ,ext = ux

i− 1
2 ,j

). If the considered Neumann boundary condition
involves a non-zero shear surface force, this latter must be added at the righ-hand side of the balance
equation.

The three-dimensional case – Extending the computations of the preceding section to three space
dimensions yields the following construction.
– First, define three new meshes, which are "edge-centred":Kxy

i+ 1
2 ,j+

1
2 ,k

is staggered from the primal
mesh Ki,j,k in the x and y direction (so Kxy

i+ 1
2 ,j+

1
2 ,k

= (xi, xi+1) × (yi, yj+1) × (zk− 1
2
, zk+ 1

2
), see

Figure 3.6), Kxz
i+ 1

2 ,j,k+ 1
2
in the x and z direction, and Kyz

i,j+ 1
2 ,k+ 1

2
in the y and z direction.

– The partial derivatives of the velocity components are then defined as piecewise constant func-
tions, the value of which is obtained by natural finite differences:
- for ∂Mx ux, ∂My uy and ∂Mz uz, on the primal mesh,
- for ∂My ux and ∂Mx uy on the cells (Kxy

i+ 1
2 ,j+

1
2 ,k

),
- for ∂Mz ux and ∂Mx uz on the cells (Kxz

i+ 1
2 ,j,k+ 1

2
),

- for ∂My uz and ∂Mz uy on the cells (Kyz

i,j+ 1
2 ,k+ 1

2
).

– Then, define four families of values for the viscosity field, µ, µxy, µxz and µyz, associated to the
primal and the three edge-centred meshes respectively.

– The shear stress tensor is obtained by the extension of (3.17) to d = 3, and the dissipation term
is given by (3.18).

3.3. The heat diffusion term

The discretization of the diffusion term depends on whether the mesh is super-admissible (in the sense
of Section 2, Condition (2.1)) or not. In the first case, we use the usual finite volume scheme based on
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a two-point approximation of the fluxes [12]:

∀K ∈M, −λ (∆e)K = λ
∑

σ=K|L∈E(K)

|σ|
dσ

(eK − eL). (3.19)

Note that, in this relation, no flux is computed on the external faces, which is consistent with homo-
geneous Neumann boundary conditions. In the second case, we use the so-called SUSHI scheme, in
the variant described in [38, Section 3.1] for general meshes.

For a ∈ R, let us denote by a+ and a− the positive and negative part of a respectively, i.e.
a+ = max(a, 0) and a− = −min(a, 0), so a+ ≥ 0, a− ≥ 0 and a = a+ − a−. For the scheme to ensure
the positivity of the internal energy, we need the Laplace operator to be monotone, in the following
sense:

∀ (eK)K∈M ⊂ R,
∑
K∈M

−λ (∆e)K (−e−K) ≥ 0. (3.20)

Lemma 3.3. The finite volume scheme based on the two-point approximation of the fluxes (3.19)
satisfies the property (3.20).

Proof. Let (eK)K∈M ⊂ R be given. Then, by definition and then reordering the sums:∑
K∈M

−λ (∆e)K (−e−K) =
∑
K∈M

(−e−K)
∑

σ=K|L∈E(K)

|σ|
dσ

(eK − eL)

=
∑

σ=K|L∈Eint

|σ|
dσ

(eK − eL) (e−L − e
−
K),

and the conclusion follows by remarking that the function s 7→ s− is non-increasing.

Remark 3.4 (Two-points flux discrete Laplace operator with Dirichlet boundary conditions). In case
of Dirichlet boundary conditions, the definition (3.19) of the discrete Laplace operator must be changed
to:

−(∆e)K =
∑

σ=K|L∈E(K)

|σ|
dσ

(eK − eL) +
∑

σ∈E(K)∩Eext

|σ|
dσ

(eK − eσ,D),

where eσ,D stands for the prescribed value for e on the face σ, and, for an external face, dσ stands for
the distance between σ and xK . Let us suppose that eσ,D ≥ 0. The additional terms (compared to the
Neumann case) in the expression of

∑
K∈M−λ (∆e)K (−e−K) read:

λ
∑

σ∈Eext, σ∈E(K)

|σ|
dσ

(eK − eσ,D)(−e−K),

and this sum is non-negative, since, by definition of the negative part of a real number, both products
eK (−e−K) and −eσ,D (−e−K) are non-negative. The two-point fluxes discrete Laplace operator thus still
satisfies the assumption (3.20) in case of Dirichlet boundary conditions.

Unfortunately, the fact that the discrete Laplace operator obtained by the SUSCHI scheme satisfies
(3.20) is wrong on general meshes; this restricts the applicability of the following analysis to super-
admissible meshes or to the Euler equations. As a matter of fact, however, this seems unavoidable
that the stability of the scheme be conditioned to the fact that internal energy remains non-negative,
and thus that the diffusion operator is monotone; circumventing this problem will require to build a
discrete Laplace operator satisfying a maximum principle, which is still an active subject of research
(and, of course, out of the scope of the present paper).
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4. Properties of the scheme

4.1. A priori estimates

The following lemma is an easy extension of [20, Lemma 3.11], to cope with diffusion terms (while [20]
only deals with Euler equations). Its proof follows, at the discrete level, the computation performed
in Appendix A, which clarifies the effects of the pressure gradient scaling step.

Lemma 4.1 (Discrete kinetic energy balance).
A solution to the scheme (3.1) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E

(i)
S and 0 ≤ n ≤ N−1:

1
2
|Dσ|
δt

[
ρnDσ

(un+1
σ,i )2 − ρn−1

Dσ
(unσ,i)2

]
+ 1

2
∑

ε∈Ē(Dσ)

Fnσ,ε ũ
n+1
σ,i ũn+1

σ′,i

+ |Dσ| ∇σ,i(pn+1) un+1
σ,i − |Dσ|divσ,i τ (ũn+1) ũn+1

σ,i + Pn+1
σ,i − P

n
σ,i = −Rn+1

σ,i , (4.1)
where

Pn+1
σ,i = δt |σ|2

2|Dσ|
1
ρnDσ

(pn+1
L − pn+1

L )2, Rn+1
σ,i = 1

2
|Dσ|
δt

ρn−1
Dσ

(
ũn+1
σ,i − u

n
σ,i

)2
. (4.2)

The residual terms Rn+1
σ,i may be seen as a numerical dissipation generated by the upwinding in time

of the scheme (i.e. the use of a backward time discretization). For viscous flows, it may be anticipated
that these terms tend to zero when the space and time steps tend to zero. On the opposite, it is
not the case when dealing with Euler equations, where they may subsist as measures borne by the
shocks (see Remark 4.2 below). Since, in this context, the scheme needs to be consistent with the total
energy balance, this dissipation (as the usual physical viscous dissipation) has to be compensated in
the internal energy balance; this is done by the corrective terms SK in (3.1e), which we are now in
position to define:

∀K ∈M, Sn+1
K =

d∑
i=1

Sn+1
K,i , with Sn+1

K,i = 1
2 ρ

n−1
K

∑
σ∈E(K)∩E(i)

S

|DK,σ|
δt

(
ũn+1
σ,i − u

n
σ,i

)2
. (4.3)

Thanks to the definition (3.4) of the density on the duals cells, this relation results from a distribution
of the residual terms associated to a face to its (one or two) adjacent cells. Therefore, we get:

∑
K∈M

Sn+1
K =

d∑
i=1

∑
σ∈E(i)

S

Rn+1
σ,i . (4.4)

A theoretical justification of this process is provided in [20], where it is shown in the 1D case that,
if the scheme is stable and converges to a limit, this limit indeed satisfies the weak form of the total
energy balance (1.1c). Note however that the scheme does not provide a conservative discretization of
the (conservative) total energy balance. Indeed, the discrete kinetic energy balance(s) and the internal
energy balance are not posed on the same mesh: precisely speaking, the kinetic energy is the sum
of the terms 1

2ρu
2
i , for 1 ≤ i ≤ d, and the discrete balance equation (4.1) for each of these terms is

posed on the mesh associated to the ith velocity component (that is d different meshes for the MAC
scheme, and a single mesh for the RT-CR discretization), while the internal energy balance is posed
on the primal mesh. To the best of our knowledge, these d+ 1 relations cannot be combined to obtain
a consistent discrete analogue of the total energy balance. This latter equation is only obtained in
the weak sense at the limit of vanishing time and space steps. A similar algorithm was developed
for co-located discretization in [23], in which case the discrete kinetic energy inequality and internal
energy equation are written on the same mesh, so that local conservation of the total energy can be
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ensured. Note that for both types of discretizations (staggered or colocated), without corrective terms,
the scheme is observed in numerical experiments to yield wrong shock solutions, which do not satisfy
the Rankine-Hugoniot conditions.

Remark 4.2 (Behaviour of the remainder R (or the corrective term S)). Let us consider a one-
dimensional problem posed over Ω = (0, 1) and t ∈ (0, 1), and let u be a discrete function increasing
with x and such that, for x ∈ (0, 1), u(x, t) = 0 for t ∈ (0, T0(x)), u(x, t) = 1 for t ∈ (T1(x), 1) and
u(x, .) affine in the interval (T0(x), T1(x)). We suppose in addition that the number of time steps in the
interval (T0(x), T1(x)) does not depend on x, and is equal to N . This situation is obtained, for instance,
when u is a travelling-in-time piecewise-affine profile (with T0(x) = x0 + c t and T1(x) = x1 + c t, c
being the travelling velocity). In these conditions, for σ ∈ E, the difference un+1

σ − unσ is, up to side
effects, equal to 1/N for N time steps and to zero for the other ones, so we get, for the space-time
L1-norm of R or S:

N−1∑
n=0

∑
σ∈E

δt Rn+1
σ =

N−1∑
n=0

∑
K∈M

δt Sn+1
K ∼ |Ω| N 1

N2 = |Ω|
N
.

Let us now make this computation for a sequence of more and more refined meshes. We then have
two situations: either N is bounded, and the L1-norm of R or S does not vanish, or N tends to +∞
when h tends to zero. These two situations seem to be encountered in the computations [20]:
– Shocks appear to be captured in a finite number of cells, for any space step, and so, when h tends

to zero, R and S tend to measures borne by the shocks (the L1-norm remains constant while the
measure of the support tends to zero); consequently, for solutions combining only shocks, one
may expect a near-to-one order of convergence in L1-norm. This behaviour may be explained by
the fact that the flow is compressive, and the convection counterbalances the numerical diffusion.

– On the contrary, the scheme is much more diffusive at contact discontinuities; if we suppose
a diffusion induced by the upwinding, with a velocity which remains constant at the contact
discontinuity (so the diffusion is also constant, and of range h), we may anticipate a smearing of
the solution jump over a distance scaling like h1/2. In this case, R and S tend to zero. Moreover,
the first order convergence is lost: the order is reduced to approximately 1/2 (still in L1-norm)
in numerical experiments.

We now turn to the positivity of the scalar variables. The positivity of the density is a consequence
of the upwind discretization of the mass balance equation [14, Lemma 2.1]. To prove that the internal
energy remains positive, we need a preliminary lemma, which we now state. Let ψ a regular real
function. Then, at the continuous level, the following computation holds (formally), using twice the
mass balance equation:

ψ′(e)
(
∂t(ρe) + div(ρeu)

)
= ρψ′(e)

(
∂te+ u ·∇e

)
= ρ

(
∂t
(
ψ(e)

)
+ u ·∇

(
ψ(e)

))
= ∂t

(
ρψ(e)

)
+ div

(
ρψ(e)u

)
.

Thus, integrating over the domain Ω and using the boundary conditions:∫
Ω
ψ′(e)

(
∂t(ρe) + div(ρeu)

)
dx = d

dt

∫
Ω
ρψ(e) dx.

The following lemma states a discrete analogue of this identity, which holds only for convex func-
tions ψ, because of the diffusion generated by the upwinding of the convection term. Its proofs is a
straightforward consequence of [20, Lemma A.2],
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Lemma 4.3. Let ψ, R −→ R, be a continuously differentiable convex function. A solution to the
scheme (3.1) satisfies the following inequality:
∑
K∈M

|K| ψ′(en+1
K )

[ 1
δt

(ρn+1
K en+1

K − ρnKenK) + divK(ρn+1en+1un+1)
]

≥ 1
2
∑
K∈M

|K|
δt

[
ρn+1
K ψ(en+1

K )− ρnK ψ(enK)
]
. (4.5)

We are now in position to state and prove the following result.

Lemma 4.4 (Positivity of the internal energy). Let us suppose that the discrete heat diffusion operator
satisfies the monotonicity property (3.20), and that the equation of state satisfies (1.8). Let n be such
that 0 ≤ n ≤ N − 1, and let us suppose that en > 0 (i.e. enK > 0,∀K ∈ M). Then a solution to the
scheme (3.1) satisfies en+1 > 0.

Proof. Let us multiply the discrete internal energy equation (3.1e) by −|K| (en+1
K )− and sum over

K ∈M. We obtain T1 + T2 + T3 = T4 with:

T1 =
∑
K∈M

−|K| (en+1
K )−

[ 1
δt

(ρn+1
K en+1

K − ρnKenK) + divK(ρn+1en+1un+1)
]
,

T2 =
∑
K∈M

−|K| (en+1
K )− pn+1

K divK(un+1),

T3 =
∑
K∈M

λ |K| (en+1
K )− (∆en+1)K ,

T4 =
∑
K∈M

−|K| (en+1
K )−

[(
τ (ũn+1) : ∇ũn+1)

K
+ Sn+1

K

]
.

Thanks to Lemma 4.3 applied with the continuously differentiable convex function ψ(s) = (s−)2/2,
we have for the term T1, since en ≥ 0:

T1 ≥
1
2
∑
K∈M

|K|
δt

[
ρn+1
K

(
(en+1
K )−

)2 − ρnK ((enK)−
)2] = 1

2
∑
K∈M

|K|
δt
ρn+1
K

(
(en+1
K )−

)2
.

Thanks to Assumption (1.8), we have T2 = 0, since, when (en+1
K )− 6= 0, en+1

K ≤ 0 and so the pressure
satisfies pn+1

K = ℘(ρn+1
K , en+1

K ) = 0. The relation (3.20) yields T3 ≥ 0. Finally, by construction, the
viscous dissipation term and Sn+1

K are non-negative, so T4 ≤ 0. Gathering all the terms, we obtain:∑
K∈M

|K|
δt
ρn+1
K

(
(en+1
K )−

)2 ≤ 0,

which shows that (en+1
K )− = 0, for all K ∈ M, and thus en+1 ≥ 0. Let us now consider a cell K such

that en+1
K = 0. The internal energy balance on K reads:

− 1
δt
ρnKe

n
K −

∑
σ=K|L

(FK,σ)−en+1
L − λ

∑
σ=K|L

|σ|
dσ
en+1
L =

(
τ (ũn+1) : ∇ũn+1

)
K

+ Sn+1
K .

The first term at the left-hand side is by assumption negative, the other terms are non-positive and
the right-hand side is non-negative, which raises a contradiction. This concludes the proof.
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Finally, we obtain the following estimate, which is a discrete analogue of the conservation of the
total energy.
Theorem 4.5 (Unconditional stability of the scheme). Let us suppose that the discrete heat diffusion
operator satisfies the monotonicity property (3.20), that the equation of state satisfies (1.8), and that
the initial conditions for ρ and e are positive. Then, for 0 ≤ n ≤ N −1, a solution to the scheme (3.1)
satisfies ρn+1 > 0, en+1 > 0 and the following estimate:

∑
K∈M

|K| ρn+1
K en+1

K + 1
2

d∑
i=1

∑
σ∈E(i)

S

|Dσ| ρnDσ
(un+1
σ,i )2 + δt2

2 |pn+1|2ρn,M

≤
∑
K∈M

|K| ρnKenK + 1
2

d∑
i=1

∑
σ∈E(i)

S

|Dσ| ρn−1
Dσ

(unσ,i)2 + δt2

2 |pn|2ρn−1,M (4.6)

where, for any discrete pressure q and density ρ,

|q|2ρ,M =
∑

σ=K|L∈Eint

1
ρDσ

|σ|2

|Dσ|
(qL − qK)2.

Proof. Since the initial condition for ρ and e are assumed to be positive, by induction, the positivity
of the density is ensured by the upwind discretization of the scheme, and the positivity of the internal
energy follows from Lemma 4.4. Summing the discrete internal energy equation (3.1e) over the cells
K ∈M, we obtain, by conservativity of the diffusion fluxes:∑

K∈M

|K|
δt

[
ρn+1
K en+1

K − ρnK enK
]

+
∑
K∈M

|K| pn+1
K divK(un+1)

=
∑
K∈M

|K| (τ (ũn+1) : ∇ũn+1)K + Sn+1
K .

On the other hand, summing over the edges and the components i the equation of discrete kinetic
energy balance (4.1) yields, by conservativity of the convection flux of the kinetic energy:

1
2

d∑
i=1

∑
σ∈E(i)

S

[ |Dσ|
δt

(
ρnDσ

(un+1
σ,i )2 − ρn−1

Dσ
(unσ,i)2

)
+ |Dσ| ∇σ,i(pn+1) un+1

σ,i + Pn+1
σ,i − P

n
σ,i

]

=
d∑
i=1

∑
σ∈E(i)

S

[
|Dσ|divσ,i τ (ũn+1) ũn+1

σ,i −R
n+1
σ,i

]
.

Summing these two relations and using the ∇− div duality property (3.9), the consistency property
(3.12) of the viscous diffusion and dissipation terms, the fact that the residual term in the kinetic
energy balance and the corrective term in the internal energy equation are designed to compensate
themselves (Equation (4.4)) and the definition (4.2) of Pn+1

σ,i concludes the proof.

4.2. Existence of a discrete solution

We recall the following theorem, which is a consequence of the topological degree theory (see e.g. [11]),
and which is a very powerful tool for the proof of existence of a solution to non-linear systems arising
from the discretization of non-linear partial differential equations.
Theorem 4.6 (Application of the topological degree, finite dimensional case).
Let V be a finite dimensional vector space on R, ‖.‖ a norm on V , let f be a continuous function
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from V to V and let R > 0. Let us assume that there exists a continuous function F : V × [0, 1]→ V
satisfying:
(i) F(., 1) = f ,

(ii) ∀α ∈ [0, 1], if v ∈ V is such that F(v, α) = 0 then v ∈ BR = {v ∈ V ; ‖v‖ < R},

(iii) the topological degree of F(., 0) with respect to 0 and to BR is equal to d0 6= 0.
Then the topological degree of F(., 1) with respect to 0 and to BR is also equal to d0 6= 0; consequently,
there exists at least a solution v ∈ BR such that f(v) = 0.

Theorem 4.7. Under the assumptions of Theorem 4.5, there exists a solution to the scheme (3.1).

Proof. Let us begin with the velocity prediction step. The step is a linear system of unknown ũ and,
applying Lemma 4.3 with ψ(s) = s2 to each component of the velocity yields:

1
2

d∑
i=1

∑
σ∈E(i)

S

[ |Dσ|
δt

ρnDσ
(ũn+1
σ,i )2 − |Dσ| divσ,i τ (ũn+1) ũn+1

σ,i

]

≤
d∑
i=1

∑
σ∈E(i)

S

[
|Dσ| ρn−1

Dσ
(unσ,i)2 − |Dσ| ∇σ,i(pn+1) ũn+1

σ,i .
]

Since ρn > 0 and the sum associated to the viscous diffusion (which is equal, by construction, to the
integral of the viscous dissipation over the domain) is non-negative, this relation yields an estimate
for ũn+1 by the Young’s inequality. The system thus has one and only one solution.

Let us now define M ∈ N and X ∈ RM by:

M =
d∑
i=1

card(E(i)
S ) + 2 card(M), X =

(
(un+1
σ,i )

σ∈E(i)
S
, 1≤i≤d , (ρn+1

K )K∈M, (ρn+1
K en+1

K )K∈M
)
.

Let F, RM × [0, 1] −→ RM be the continuous function defined by
F(X,α) =

(
(Fuσ,i)σ∈E(i)

S
, 1≤i≤d , (FρK)K∈M, (FeK)K∈M

)
with:

∀σ ∈ E
(i)
S , 1 ≤ i ≤ d, Fuσ,i = 1

δt
ρnDσ

(un+1
σ,i − ũ

n+1
σ,i ) + α ∇σ,i(pn+1)−∇σ,i(pn+1),

∀K ∈M, F
ρ
K = 1

δt
(ρn+1
K − ρnK) + α divK(ρn+1un+1),

∀K ∈M, FeK = 1
δt

(ρn+1
K en+1

K − ρnKenK)−
(
τ (ũn+1) : ∇ũn+1

)
K
− Sn+1

K

+ α
[
divK(ρn+1en+1un+1) + pn+1

K divK(un+1)− λ (∆en+1)K
]
,

where, ∀K ∈ M, pn+1
K = ℘

(
ρn+1
K , en+1

K

)
. The system of equations F(X, 1) = 0 corresponds to the

correction step. The function X 7→ F(X, 0) is linear (note that ρn, ũn+1, ∇(pn+1) and Sn+1 are
known quantities) and one to one. In addition, the positivity of ρn+1 and en+1 solution to F(X,α) = 0
is preserved for α ∈ [0, 1], by the same arguments as for the scheme itself. By conservativity, the
equation: ∑

K∈M
F
ρ
K = 0

72



A pressure correction scheme for compressible Navier-Stokes

yields a uniform (with respect to α) bound for ρn+1 (in any norm, since we are in finite dimensions).
Let us now consider the equation:

d∑
i=1

∑
σ∈E(i)

S

Fuσ,i u
n+1
σ,i +

∑
K∈M

FeK = 0.

Invoking the identity 2a(a − b) = a2 + (a − b)2 + b2, the ∇-div duality argument and, finally, the
conservativity of the diffusion and convection fluxes of the internal energy, we obtain:

1
2δt

d∑
i=1

∑
σ∈E(i)

S

ρnDσ
(un+1
σ,i )2 +

∑
K∈M

ρn+1
K en+1

K ≤ C,

where the bound C only depends on known quantities (and is independent on α). We thus get a
uniform bound for ũn+1, (ρe)n+1 and, since ρn+1 is controlled, on X. Hence Theorem 4.6 applies, and
the correction step admits at least one solution. This concludes the proof.

5. Numerical tests

We present in this section numerical tests, to assess the behaviour of the scheme. We begin with a
convergence study, on a two-dimensional analytical solution (Section 5.1). Then we address the limiting
cases which the scheme should be able to cope with, namely the computation of high speed inviscid
flows and of low Mach number viscous flows. Consequently, sections 5.2, 5.3 and 5.4 are dedicated to
classical benchmarks for Euler solvers, while we compute in the first part of Section 5.5 an (almost)
incompressible flow around a cylinder. Since the three first Euler tests are performed with the MAC
space discretization, we continue this study in the remaining of Section 5.5 by computing a high
speed viscous flow on a general geometry (with the Rannacher-Turek space discretization), obtained
by keeping the same domain as in the previous incompressible case and decreasing the pressure range
(and thus the range of the speed of sound) up to get a supersonic flow. Finally, we address a three
dimensional inviscid case in Section 5.6.

For all the following test-cases, the fluid is supposed to obey the equation of state:
p = (γ − 1) ρ e, with γ = 1.4.

Computations are performed with the software component library CALIF3S, developed at IRSN [3].

5.1. A convergence study

In this section, we compare the numerical results obtained by implementing the above algorithm in
CALIF3S with an analytical solution. This latter is built as follows: we first derive an exact analytical
solution to stationary Euler equations, by extending to compressible flows the classical test for incom-
pressible flows often referred to as the "standing-vortex" problem; then the diffusion in the momentum
balance equation and in the energy balance, and the viscous dissipation in this latter equation are dealt
with by a compensation at the right-hand side; finally, the problem is made unstationary by a time
translation (i.e. , given a constant vector field a, the density ρ, the internal energy e and the velocity
v are deduced from the steady state solution ρ̂, ê and v̂ by ρ(x, t) = ρ̂(x−at), e(x, t) = ê(x−at) and
v(x, t) = v̂(x−at) +a; the change of variable x = x̂−at is also performed on the right hand sides).

By construction, the velocity field is divergence-free, without consequence on the convergence study
(this specificity is not seen by the scheme whose solution is not discretely divergence-free); in addition,
letting the sound speed tend to infinity (i.e. the Mach number tend to zero), we obtain a problem
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which tends to an incompressible flow problem. This allows us to check the behaviour of the scheme
in the zero Mach number limit. We therefore address four problems: Euler or Navier-Stokes equations,
for a Mach number in the range of unity and in the range of 10−3.
Steady solution to the Euler equations – As in the standing-vortex problem, we search for

a velocity perpendicular to the position vector x = (x, y), with a magnitude only depending on the
radius:

u(x) =
[
u1
u2

]
= f(ξ)

[
−y
x

]
,

where ξ = |x|2 = (x2 + y2)2. Since this velocity field is divergence-free, we have, for i = 1, 2,
div(ρuiu) = u ·∇(ρui) = ρu ·∇ui + uiu ·∇ρ.

Choosing ρ = %(ξ), we observe that
div(ρu) = u ·∇ρ = 0,

and the mass balance equation is thus satisfied. In addition, div(ρuiu) = ρu · ∇ui, and an easy
computation yields:

ρ

[
u ·∇u1
u ·∇u2

]
= −%(ξ) f(ξ)2

[
x
y

]
Let us now suppose that the pressure reads p = g(ξ). We thus have:

∇p = 2g′(ξ)
[
x
y

]
.

The momentum balance equation is therefore satisfied provided that

g′ = 1
2ρf

2, so g(ξ) = p0 + 1
2

∫ ξ

0
%(s) f(s)2 ds,

with p0 a given pressure. Finally, the equation of state yields e = p/((γ − 1)ρ), thus e is a function of
ξ only, and we have:

div(ρeu) + p divu = u ·∇(ρe) + p divu,
and both terms vanish since ∇(ρe) is normal to u and divu = 0, which shows that the energy balance
is satisfied.
Numerical tests – We choose for f and % the following functions:

f(ξ) =
∣∣∣∣∣ 40 ξ2 (1− ξ)2 if ξ ≤ 1

0 otherwise
, % = 1 + f,

so the vortex is local (i.e. of finite spatial extension) and both functions are in H2(Ω). The center
of the vortex is initially located at x0 = (0, 0)t, the translation velocity a is set to a = (1, 1)t and
Ω = (−1.5, 2.5)2. The range of variation of each unknown is ρ ∈ [1, 3.5], vi ∈ [−0.8, 2.8] for i = 1, 2
and p ∈ [p0, p0 + 3.93]. The final time is t = 1, and the solution is constant over the boundary
all over the computational interval, and thus may be fixed to this value if the diffusion is taken into
account (for the Euler equations, the normal velocity is set to zero, and so are all the convection fluxes;
since the pressure gradient operator is built as the transposed of the divergence, it vanishes on the
boundaries). The considered meshes are n×n grids, with n ∈ {80, 160, 320, 640, 1280}, and the time
step is δt = 0.01× 80/n, so the CFL number is constant, and close to 2 (with a CFL number related
to the material velocity only, defined by CFL=(ρ|u| δt)/h). The space discretization is performed with
the MAC scheme.

Two tests are performed or the full Navier-Stokes equations with diffusion coefficients equal to
µ = 0.1 and λ = 0.1 γ: in the first one, p0 = 10, so the celerity of sound waves is close to 4 and
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the maximum Mach number is close to 0.75; in the second one, p0 = 105, so the Mach number is
everywhere lower than 0.01.

Then we turn to the Euler equations, still with p0 = 10 and p0 = 105. For these two tests, a
numerical viscosity µh is added to compensate the fact that we use a centered discretization in the
convection term of the momentum balance equation. The quantity µh scales as the space step and is
taken equal to µ = 0.01 ∗ 80/n, so close to (ρ|u|)maxh/50 where (ρ|u|)max stands for the maximum
value of the quantity ρ|u|; this value has to be compared with the range of the numerical viscosity
which would be induced by an upwind discretization, which reads ρ|u|h/2. Since this diffusion is a
numerical artefact, no compensating term is added at the right hand side of the momentum and energy
balance (contrary to what is done in the Navier-Stokes case). The transport of the internal energy is
performed with an upwind discretization, so no stabilization has to be added (i.e. λ = 0).

On Figure 5.1, we plot the difference between the computed and the analytical solution at t = 1,
as a function of the time and space step. This difference is evaluated in discrete L2-norm, defined for
both a regular and a discrete function ξ by:

||ξ|| =
( ∑
K∈M

|K| ξ(xK)2
)1/2

,

where, for K ∈ M, xK stands for the mass center of K. There errors are normalized with respect to
the error found for n = 80. We observe a very similar convergence for the two considered values of the
Mach number, both in the Navier-Stokes and Euler case. For diffusive cases, the order of convergence
is close to one; it is slightly lower (close to 0.8) without diffusion.

5.2. The Mach 3 facing step

We begin with a classical benchmark popularized in [48]. The computational domain is Ω = Ω \ S,
where Ω = (0, 3) × (0, 1) and S = (0.6, 3) × (0, 0.2), and the computation time interval is (0, 0.25).
The flow enters the domain through the left boundary {0} × (0, 1) with a velocity corresponding to
Mach= 3: ρu

p

 ((0, x2)t, t
)

=

 1.4
(3, 0)t

1

 , ∀x2 ∈ (0, 1), ∀t ∈ (0, 0.25).

The initial data is the same as the inflow conditions:ρu
p

 (x, 0) =

 1.4
(3, 0)t

1

 , ∀x ∈ Ω.

At the right boundary {3} × (0, 1), the flow should be free, since it leaves the domain at a velocity
greater than the sound speed. However, at the discrete level, an external pressure pext is needed to
evaluate the pressure gradient on the boundary faces; it is taken here at the same value as the pressure
at the entrance of the domain, so pext = 1; we discuss later on the effects of this numerical artefact.
An impermeability and perfect slip condition (i.e. u ·n = 0, with n the unit outward normal on ∂Ω,
and τ (n) · t = 0 for any vector t such that t · n = 0) is prescribed on the rest of the boundary. At
t = 0, a shock is generated by this boundary condition at the flow-facing step, and then moves upflow,
and reaches and reflects on the upper and lower horizontal boundaries of the domain.

We display on Figure 5.2 the results obtained with the MAC space discretization, with a mesh built
from a 1200×400 uniform grid, by removing the cells included in S. The time step is δt = h/4 = 0.001,
which corresponds to a CFL number in the range of unity with respect to the celerity of the fastest
wave (u1 + c = 4 at the inlet boundary, where c stands for the speed of sound). The artificial viscosity
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Figure 8. Numerical errors in the Navier-Stokes (plots (a) and (b)) and Euler cases (plots
(c) and (d)), for a Mach number in the range of unity (plots (a) and (c)) or lower than 0.01
(plots (b) and (d)).

At the right boundary {3}× (0, 1), the flow should be free, since it leaves the domain at a velocity greater than
the sound speed. However, at the discrete level, an external pressure pext is needed to evaluate the pressure
gradient on the boundary faces; it is taken here at the same value as the pressure at the entrance of the domain,
so pext = 1; we discuss later on the effects of this numerical artefact. An impermeability and perfect slip
condition (i.e. u · n = 0, with n the unit outward normal on ∂Ω, and τ (n) · t = 0 for any vector t such that
t · n = 0) is prescribed on the rest of the boundary. At t = 0, a shock is generated by this boundary condition
at the flow-facing step, and then moves upflow, and reaches and reflects on the upper and lower horizontal
boundaries of the domain.

We display on Figure 9 the results obtained with the MAC space discretization, with a mesh built from
a 1200 × 400 uniform grid, by removing the cells included in S. The time step is δt = h/4 = 0.001, which
corresponds to a CFL number in the range of unity with respect to the celerity of the fastest wave (u1 + c = 4
at the inlet boundary, where c stands for the speed of sound). The artificial viscosity is set to µ = 0.001, which
roughly corresponds to a fifth of the numerical viscosity introduced by the classical upwinding µupw ≃ ρ |u| h/2
of the convection term.

At first glance, the results are comparable to those presented in the recent literature [6, 7, 16, 49]. As could
be expected, the stability of the scheme seems to be paid by a greater diffusion: some authors observe a Kelvin-
Helmholtz instability at the contact discontinuity line issued from the Mach triple point (whose occurrence, even
in the absence of any shear-stress, is plausible, since the slip line is unstable) which does not appear here, and we
also obtain a spurious Mach reflection at the bottom boundary, probably caused by perturbations issued from
the step corner. One way to circumvent this problem would be to use (nonconforming) local mesh refinement;
the development of such a scheme is underway.

Pressure correction schemes are known to generate spurious boundary conditions for the pressure, which,
for the discretization used here, are implicit in the pressure elliptic operator in the correction step (see [10,
Section 2.3] for a discussion on this topic, with the same space discretization as here but for the toy problem

Figure 5.1. Numerical errors in the Navier-Stokes (plots (a) and (b)) and Euler cases
(plots (c) and (d)), for a Mach number in the range of unity (plots (a) and (c)) or lower
than 0.01 (plots (b) and (d)).

is set to µ = 0.001, which roughly corresponds to a fifth of the numerical viscosity introduced by the
classical upwinding µupw ' ρ |u|h/2 of the convection term.

At first glance, the results are comparable to those presented in the recent literature [7, 16, 49, 6].
As could be expected, the stability of the scheme seems to be paid by a greater diffusion: some authors
observe a Kelvin-Helmholtz instability at the contact discontinuity line issued from the Mach triple
point (whose occurrence, even in the absence of any shear-stress, is plausible, since the slip line is
unstable) which does not appear here, and we also obtain a spurious Mach reflection at the bottom
boundary, probably caused by perturbations issued from the step corner. One way to circumvent this
problem would be to use (nonconforming) local mesh refinement; the development of such a scheme
is underway.

Pressure correction schemes are known to generate spurious boundary conditions for the pressure,
which, for the discretization used here, are implicit in the pressure elliptic operator in the correction
step (see [10, Section 2.3] for a discussion on this topic, with the same space discretization as here
but for the toy problem of the time-dependent incompressible Stokes equations, and Appendix C of
the present paper). For a free outlet boundary (as for a Neuman condition), the artificial boundary
condition is a non-homogeneous Dirichlet boundary condition for the pressure, with the prescribed
value pext corresponding to the external pressure used in the gradient approximation at the boundary
faces. This boundary condition may be observed on Figure 5.2 to generate a very narrow boundary
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Figure 9. Mach 3 step – From top to bottom: density, pressure, enthalpy (H = e + p/ρ),
first and second component of the velocity at t = 4, obtained with h = 2.5 × 10−3, δt = 10−3

and µ = 10−3. The variation intervals of the unknowns are ρ ∈ [0.235, 6.4], p ∈ [0.216, 12.04],
H ∈ [2.46, 8.11], u1 ∈ [0., 3.046], and u2 ∈ [−0.92, 1.82].

of the time-dependent incompressible Stokes equations, and Appendix C of the present paper). For a free
outlet boundary (as for a Neuman condition), the artificial boundary condition is a non-homogeneous Dirichlet
boundary condition for the pressure, with the prescribed value pext corresponding to the external pressure used
in the gradient approximation at the boundary faces. This boundary condition may be observed on Figure 9 to
generate a very narrow boundary layer near the outlet section, but without any effect in the remainder of the

Figure 5.2. Mach 3 step – From top to bottom: density, pressure, enthalpy (H = e+
p/ρ), first and second component of the velocity at t = 4, obtained with h = 2.5×10−3,
δt = 10−3 and µ = 10−3. The variation intervals of the unknowns are ρ ∈ [0.235, 6.4],
p ∈ [0.216, 12.04], H ∈ [2.46, 8.11], u1 ∈ [0., 3.046], and u2 ∈ [−0.92, 1.82].
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layer near the outlet section, but without any effect in the remainder of the domain. A similar behaviour
was already observed for a similar scheme in the case of barotropic flows [28, Section 4].

5.3. The double Mach reflection

We now consider the classical test case (e.g. [16]) of a Mach=10 shock in air (γ = 1.4) impinging a
wall with a 60◦ angle. The right state (pre-shock) initial conditions correspond to a fluid at rest and
the left state is given by the Rankine-Hugoniot conditions, supposing that the velocity of the shock is
ω = 10 (while the speed of sound in the pre-shock state is c = 1, hence the denomination "Mach=10
shock"): ρLuL

pL

 =

 8
8.25 (

√
3/2, 1/2)t

116.5

 ,
ρRuR
pR

 =

 1.4
(0, 0)t

1

 .
The computational domain is Ω = (0, 4) × (0, 1), as shown in Figure 5.3. The reflecting wall lies
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domain. A similar behaviour was already observed for a similar scheme in the case of barotropic flows [28, Section
4].

5.3. The double Mach reflection

We now consider the classical test case (e.g. [16]) of a Mach=10 shock in air (γ = 1.4) impinging a wall with
a 60◦ angle. The right state (pre-shock) initial conditions correspond to a fluid at rest and the left state is
given by the Rankine-Hugoniot conditions, supposing that the velocity of the shock is ω = 10 (while the speed
of sound in the pre-shock state is c = 1, hence the denomination ”Mach=10 shock”):

⎡
⎣
ρL

uL

pL

⎤
⎦ =

⎡
⎣

8

8.25 (
√

3/2, 1/2)t

116.5

⎤
⎦ ,

⎡
⎣
ρR

uR

pR

⎤
⎦ =

⎡
⎣

1.4
(0, 0)t

1

⎤
⎦ .

The computational domain is Ω = (0, 4) × (0, 1). The reflecting wall lies at the bottom of the domain and
starts at x1 = 1/6, i.e. impermeability and free slip boundary conditions are enforced on ∂Ωr = (1/6, 4) × {0}
and outflow boundary conditions are prescribed at ∂Ωo = (0, 1/6) × {0}. At t = 0, the shock impinges the

reflecting wall (at x1 = 1/6), so the fluid is in the left state for x1 ≤ 1/6 + x2/
√

3 and in the right state in
the rest of the domain. Then, in the zones of Ω which are not perturbed by the reflections, the shock moves
with a velocity equal to ω (

√
3/2, −1/2)t. The external pressure at the outflow boundary ∂Ωo is thus prescribed

throughout the transient state to pL = 116.5. On the top of the domain (0, 4) × {1}, the boundary condition is
consistent to the undisturbed shock wave, thus the unknowns ρ, u and p are prescribed to the left state values
for x1 ≤ 1/6 + 1/

√
3 + (2 ∗ω/

√
3) t and to the right state values on the other part of the boundary. Finally, on

{4} × (0, 1), the velocity is prescribed to uR = (0, 0)t.

We plot on Figure 11 the results obtained with the MAC scheme, for t = 0.2 with a 1600×400 grid (consisting
of square cells) and a time step δt = h/100. The artificial viscosity is µ = 0.01 (to be compared, for instance,
with ρL |uL| h/2 = 0.0825). Once again, the results are comparable to those presented in the recent literature
(e.g. [16]).

∂Ωr∂Ωo

left state

right state

shock position
at t = 0.2

Figure 10. Double Mach reflection – Geometry and initial conditions.

Figure 5.3. Double Mach reflection – Geometry and initial conditions.

at the bottom of the domain and starts at x1 = 1/6, i.e. impermeability and free slip boundary
conditions are enforced on ∂Ωr = (1/6, 4) × {0} and outflow boundary conditions are prescribed at
∂Ωo = (0, 1/6) × {0}. At t = 0, the shock impinges the reflecting wall (at x1 = 1/6), so the fluid
is in the left state for x1 ≤ 1/6 + x2/

√
3 and in the right state in the rest of the domain. Then, in

the zones of Ω which are not perturbed by the reflections, the shock moves with a velocity equal to
ω (
√

3/2,−1/2)t. The external pressure at the outflow boundary ∂Ωo is thus prescribed throughout
the transient state to pL = 116.5. On the top of the domain (0, 4) × {1}, the boundary condition is
consistent to the undisturbed shock wave, thus the unknowns ρ, u and p are prescribed to the left
state values for x1 ≤ 1/6 + 1/

√
3 + (2 ∗ ω/

√
3) t and to the right state values on the other part of the

boundary. Finally, on {4} × (0, 1), the velocity is prescribed to uR = (0, 0)t.
We plot on Figure 5.4 the results obtained with the MAC scheme, for t = 0.2 with a 1600 × 400

grid (consisting of square cells) and a time step δt = h/100. The artificial viscosity is µ = 0.01 (to be
compared, for instance, with ρL |uL|h/2 = 0.0825). Once again, the results are comparable to those
presented in the recent literature (e.g. [16]).
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Figure 11. Double Mach reflection – From top left to bottom right: density, pressure,
enthalpy (H) and first and second component of the velocity at t = 0.2, obtained with h =
2.5 10−3, δt = 2.5 10−5 and µ = 0.01. The variation ranges of the unknowns are ρ ∈ [1.4, 22.4],
p ∈ [1, 559], H ∈ [2.5, 87.8], u1 ∈ [−1.74, 15.9], and u2 ∈ [−5.53, 1.74]. A right part of the
domain, where the solution is constant, is not drawn.

Figure 5.4. Double Mach reflection – From top left to bottom right: density, pressure,
enthalpy (H) and first and second component of the velocity at t = 0.2, obtained with
h = 2.5 10−3, δt = 2.5 10−5 and µ = 0.01. The variation ranges of the unknowns are
ρ ∈ [1.4, 22.4], p ∈ [1, 559], H ∈ [2.5, 87.8], u1 ∈ [−1.74, 15.9], and u2 ∈ [−5.53, 1.74].
A right part of the domain, where the solution is constant, is not drawn.
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5.4. A two-dimensional Riemann problem

We address in this section a two-dimensional Riemann problem introduced in [41]. The computa-
tional domain is Ω = (−0.5, 0.5)2 and the initial data consists in four constant states, in each of
the four sub-squares of Ω obtained by splitting it along the lines joining the mid-points of each seg-
ment of the boundary (i.e. in Ω1,1 = (−0.5, 0) × (0, 0.5), Ω1,2 = (0, 0.5)2, Ω2,1 = (−0.5, 0)2 and
Ω2,2 = (0, 0.5)× (−0.5, 0)). These constant states are chosen in such a way that each associated one-
dimensional Riemann problem (i.e. each one-dimensional problem obtained by picking as left and
right initial state the values of ρ, p in two adjacent sub-squares, together with the velocity component
normal to the line separating these sub-squares) has for solution a single wave. The four constant
states chosen here are:

Ω1,1 : ρ = 1, p = 1, u =
[
0.7276

0

]
Ω1,2 : ρ = 0.5313, p = 0.4, u =

[
0
0

]

Ω2,1 : ρ = 0.8, p = 1, u =
[
0
0

]
Ω2,2 : ρ = 1, p = 1, u =

[
0

0.7276

]
This configuration is referred to as the configuration 12 in [41]. Two shocks develop, the first one at
the interface of Ω1,1 and Ω1,2 and the second one at the interface of Ω2,2 and Ω1,2; they move toward
the right and the top of the domain, respectively. The other two interfaces (separating Ω2,1 from Ω1,2
and Ω2,2) do not move with time, and the tangential velocity is different on both sides of the interface;
such an interface is called in [41] a slip line, and corresponds to a (steady) contact discontinuity of the
system.

27

Figure 12. 2D Riemann problem – Isolines of the density in the domain, and zoom at the
center and the upper right corner of the domain.

Figure 5.5. 2D Riemann problem – Isolines of the density in the domain, and zoom
at the center and the upper right corner of the domain.
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Results obtained with the MAC variant of the scheme, a 1000×1000 uniform grid, δt = 2.5 10−4 and
an artificial viscosity fixed to µ = 5 10−5 are shown on Figures 5.5 and 5.6. They are in good agreement
with reference solutions (e.g. [41, 32, 29]). However, the used stabilization technique, namely adding a
physical-like artificial diffusion term, generates shear-stress instabilities along the slip lines, as zoomed
in Figure 5.6. This seems to be unavoidable, and more elaborate techniques are necessary to avoid this
phenomenon. Note however that the solution is not destabilized (in particular, we do not observe the
generation of spurious pressure waves polluting the solution in the whole domain). In addition, the
problem of computing accurately a standing slip line may look rather academic, since actual difficulties
appear when the slip line moves, i.e. when the (constant across the line) normal component of the
velocity is not zero; up to our knowledge, avoiding significant perturbation of the solution in this latter
case indeed remains a challenging issue for numerical Euler solvers (see Appendix B).28

Figure 13. 2D Riemann problem – Isolines of the density along the horizontal slip line.
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Figure 14. Low Mach flow past a cylinder – Geometry.

Figure 15. A “coarse version“ of the mesh.

5.5. Navier-Stokes flows past a cylinder

We turn now to the Navier-Stokes equations, and first investigate the accuracy of the scheme in the quasi-
incompressible limit. To this purpose, we consider a problem addressed as a benchmark for (incompressible)
Navier-Stokes solvers in [40]. The problem is two-dimensionnal, and consists in a flow between two parallel
plates past a cylindrical obstacle. The geometry of the problem is described in Figure 14. The fluid enters the
domain on the left boundary, with an imposed velocity profile:

u =
(
4umy

H − y

H
, 0

)t
,

where H = 0.41 is the height of the channel and um = 1.5; the velocity is prescribed to zero at the other
boundaries except for the right-hand side, where we use a Neuman boundary condition:

(τ (u) − p I) n = −pext n,

where pext stands for a given external pressure. The initial pressure and pext are set both to 105, and the initial
density is ρ = 1. With these values, the sound speed c = (γp/ρ)1/2 is c ≃ 370, so the characteristic Mach
number is close to 0.003. The viscosity is µ = 0.001, so the Reynolds number, defined as Re = ρūD/µ, where
D = 0.1 is the diameter of the cylinder and ū = 2ux(0, H/2)/3, is equal to 100.

A “coarse version“ of the meshes used for the presented computation is sketched in Figure 15; real meshes
are considerably refined with respect to this one, by diminishing the discretization step along the characteristic
lines (the boundaries and the concentric circles around the cylinder). In all the computations, we set the time
step to δt = 5 · 10−4s.

Figure 5.6. 2D Riemann problem – Isolines of the density along the horizontal slip line.

5.5. Navier-Stokes flows past a cylinder
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Figure 13. 2D Riemann problem – Isolines of the density along the horizontal slip line.
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Figure 15. A “coarse version“ of the mesh.

5.5. Navier-Stokes flows past a cylinder

We turn now to the Navier-Stokes equations, and first investigate the accuracy of the scheme in the quasi-
incompressible limit. To this purpose, we consider a problem addressed as a benchmark for (incompressible)
Navier-Stokes solvers in [40]. The problem is two-dimensionnal, and consists in a flow between two parallel
plates past a cylindrical obstacle. The geometry of the problem is described in Figure 14. The fluid enters the
domain on the left boundary, with an imposed velocity profile:

u =
(
4umy

H − y

H
, 0

)t
,

where H = 0.41 is the height of the channel and um = 1.5; the velocity is prescribed to zero at the other
boundaries except for the right-hand side, where we use a Neuman boundary condition:

(τ (u) − p I) n = −pext n,

where pext stands for a given external pressure. The initial pressure and pext are set both to 105, and the initial
density is ρ = 1. With these values, the sound speed c = (γp/ρ)1/2 is c ≃ 370, so the characteristic Mach
number is close to 0.003. The viscosity is µ = 0.001, so the Reynolds number, defined as Re = ρūD/µ, where
D = 0.1 is the diameter of the cylinder and ū = 2ux(0, H/2)/3, is equal to 100.

A “coarse version“ of the meshes used for the presented computation is sketched in Figure 15; real meshes
are considerably refined with respect to this one, by diminishing the discretization step along the characteristic
lines (the boundaries and the concentric circles around the cylinder). In all the computations, we set the time
step to δt = 5 · 10−4s.

Figure 5.7. Low Mach flow past a cylinder – Geometry.
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We turn now to the Navier-Stokes equations, and first investigate the accuracy of the scheme in
the quasi-incompressible limit. To this purpose, we consider a problem addressed as a benchmark for
(incompressible) Navier-Stokes solvers in [40]. The problem is two-dimensionnal, and consists in a flow
between two parallel plates past a cylindrical obstacle. The geometry of the problem is described in
Figure 5.7. The fluid enters the domain on the left boundary, with an imposed velocity profile:

u =
(
4umy

H − y
H2 , 0

)t
,

where H = 0.41 is the height of the channel and um = 1.5; the velocity is prescribed to zero at the
other boundaries except for the right-hand side, where we use a Neuman boundary condition:

(τ (u)− p I) n = −pextn,

where pext stands for a given external pressure. The initial pressure and pext are set both to 105, and
the initial density is ρ = 1. With these values, the sound speed c = (γp/ρ)1/2 is c ' 370, so the
characteristic Mach number is close to 0.003. The viscosity is µ = 0.001, so the Reynolds number,
defined as Re = ρūD/µ, where D = 0.1 is the diameter of the cylinder and ū = 2ux(0, H/2)/3, is
equal to 100.

A “coarse version“ of the meshes used for the presented computation is sketched in Figure 5.8;
real meshes are considerably refined with respect to this one, by diminishing the discretization step
along the characteristic lines (the boundaries and the concentric circles around the cylinder). In all
the computations, we set the time step to δt = 5 · 10−4s.
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5.5. Navier-Stokes flows past a cylinder

We turn now to the Navier-Stokes equations, and first investigate the accuracy of the scheme in the quasi-
incompressible limit. To this purpose, we consider a problem addressed as a benchmark for (incompressible)
Navier-Stokes solvers in [40]. The problem is two-dimensionnal, and consists in a flow between two parallel
plates past a cylindrical obstacle. The geometry of the problem is described in Figure 14. The fluid enters the
domain on the left boundary, with an imposed velocity profile:

u =
(
4umy

H − y

H
, 0

)t
,

where H = 0.41 is the height of the channel and um = 1.5; the velocity is prescribed to zero at the other
boundaries except for the right-hand side, where we use a Neuman boundary condition:

(τ (u) − p I) n = −pext n,

where pext stands for a given external pressure. The initial pressure and pext are set both to 105, and the initial
density is ρ = 1. With these values, the sound speed c = (γp/ρ)1/2 is c ≃ 370, so the characteristic Mach
number is close to 0.003. The viscosity is µ = 0.001, so the Reynolds number, defined as Re = ρūD/µ, where
D = 0.1 is the diameter of the cylinder and ū = 2ux(0, H/2)/3, is equal to 100.

A “coarse version“ of the meshes used for the presented computation is sketched in Figure 15; real meshes
are considerably refined with respect to this one, by diminishing the discretization step along the characteristic
lines (the boundaries and the concentric circles around the cylinder). In all the computations, we set the time
step to δt = 5 · 10−4s.

Figure 5.8. A “coarse version“ of the mesh.

We observe in our computations the usual vortex-shedding phenomenon, well-known for incompress-
ible flows (the so-called Von-Karmann alley), and the pressure and density show very small variations
in space (the difference between the maximum and minimum value for the pressure and the density in
the domain is in the range of 2 and 3.10−5 respectively). To assess in a quantitative way the accuracy
of the results, we compute some characteristic flow quantities. The drag and lift coefficients, denoted
by cd and cl respectively, are given by

cd = 2Fd
ρū2D

, cl = 2Fl
ρū2D

,

where Fd and Fl are the drag and lift forces respectively:

Fd =
∫
D
(µ∂ut
∂n

ny − pnx) dγ, , Fl =
∫
D
(−µ∂ut

∂n
nx − pny) dγ.

with D the disk surface, n = (nx, ny)t its outward normal vector and ut the velocity in the direction
tangent to the disk, i.e. collinear to t = (ny,−nx)t. In Table 5.1 below, we denote by cd,max and cl,max
the maximum absolute values of these coefficients. The Strouhal number is defined as St = Df/ū,
where f is the frequency of separation, calculated directly from the period of Fl. We gather in Table 5.1
the obtained values for these parameters for different meshes, together with their plausible range
derived from the set of the contributions to the benchmark [40]. Values entering this reference interval
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are typeset in bold. The present algorithm seems as accurate as the incompressible pressure-correction
solver based on the same space discretization studied in [2].

Mesh Space unks cd,max cl,max St

m2 64840 3.4937 0.9141 0.2850
m3 215545 3.2887 0.9891 0.2955
m4 381119 3.2614 1.0062 0.2972
m5 531301 3.2365 1.0148 0.2976

Reference range 3.22 - 3.24 0.99 - 1.01 0.295 - 0.305

Table 5.1. Characteristic flow quantities.

We now turn to a compressible version of this test, with a high characteristic Mach number, close
to Ma=

√
10. To this purpose, we set the initial pressure and the external pressure pext at the value

γ /10 ρ, so that the sound speed is now given by c2 = 0.1. In this case, since the heating on the
surface of the cylinder is important, we prescribe the internal energy at its inlet value at the surface
of the disk, and fix the thermal conductivity of the fluid to λ = 10−3. To avoid to complicate the flow
structure near the domain boundaries, we impose an impermeability and perfect slip condition at the
upper and lower boundaries and the inlet velocity is prescribed to a constant in space (and time) value
u = (1, 0)t. The time step is δt = 10−4. The rest of the configuration is unchanged, and the initial
values are still the same as the inlet values.

Results obtained at t = 5 with a mesh of about 106 cells are shown on Figures 5.9 and 5.10. We
observe a strong shock upstream the disk, with a Mach reflection at the upper and lower boundaries.
Subsequent (downstream) reflections yield "X-structures" for the pressure field; they are progressively
damped, both by the physical viscosity and (probably) by the scheme diffusion. As in the Euler case,
the artificial boundary conditions imposed by the pressure correction technique to the pressure at the
outlet section spoil the flow only on a narrow (numerical) boundary layer.
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Figure 16. Mach=10 flow past a cylinder – Top: iso-lines of pressure near the disk (p ∈
(0.0713, 0.957)) at t = 5; bottom: still pressure iso-lines but on the whole computational
domain, and restricted to the interval (0.0713, 0.2)) (so the areas left in white on the figure
correspond to zones where p > 0.2).

Figure 5.9. Mach=10 flow past a cylinder – Top: iso-lines of pressure near the disk
(p ∈ (0.0713, 0.957)) at t = 5; bottom: still pressure iso-lines but on the whole compu-
tational domain, and restricted to the interval (0.0713, 0.2)) (so the areas left in white
on the figure correspond to zones where p > 0.2).
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Figure 17. Mach=10 flow past a cylinder – From top to bottom: internal energy, density, x-
component of velocity, y-component of velocity at t = 5. The variation ranges of the unknowns
are e ∈ [0.178, 0.536], ρ ∈ [0.804, 12.23], u1 ∈ [−0.11, 1], and the value u1 = 0 corresponds to
the fourth iso-line starting from the center of the vortex attached to the cylinder, u2 ∈
[−0.326, 0.327].

Figure 5.10. Mach=10 flow past a cylinder – From top to bottom: internal energy,
density, x-component of velocity, y-component of velocity at t = 5. The variation ranges
of the unknowns are e ∈ [0.178, 0.536], ρ ∈ [0.804, 12.23], u1 ∈ [−0.11, 1], and the
value u1 = 0 corresponds to the fourth iso-line starting from the center of the vortex
attached to the cylinder, u2 ∈ [−0.326, 0.327].
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5.6. Interaction of a shock and a cube

To conclude this section, we turn to a three-dimensional problem, which consists in the interaction of
a shock wave and a cube. We consider the same pure shock wave as for the double Mach reflection
problem, which now travels in the x1-direction:ρLuL

pL

 =

 8
8.25 (1, 0, 0)t

116.5

 ,
ρRuR
pR

 =

 1.4
(0, 0, 0)t

1

 ,
and (ρ,u, p) = (ρL,uL, pL) (resp. (ρ,u, p) = (ρR,uR, pR)) for x1 ≤ −1.3 (resp. x1 ≥ −1.3). The
obstacle is the cube (−1, 1)3. Since the problem presents two symmetry planes, defined by x2 = 0
and x3 = 0 respectively, the chosen computational domain is Ω = (−3, 5) × (0, 4) × (0, 4). The cells
are cubes of edges 0.02 long, which leads to a 400 × 200 × 200 uniform grid from which the cells
corresponding to the interior of the obstacle have been removed; the mesh finally includes 15 750 000
control volumes. The final time is T = 0.6 (remember that, in absence of obstacle, the shock speed is
equal to 10, so the front location at the final time should be the plane x1 = 4.7), and the chosen time
step is δt = 0.0005, which corresponds to a CFL number close to 1/3 with respect to the maximum
wave celerity in the left state (c ' 4.5). The MAC scheme is used for the space discretization, and the
convection operator in the momentum balance equation is centered and stabilized with an artificial
viscosity µ = 0.5 (lower than the diffusion entailed by the classical upwinding ρ |u|h/2 of this term,
which is greater than 1 locally in space and time during the computation).

The obtained pressure field is shown on Figures 5.11 and 5.12. A strong reflection is observed on
the obstacle: the maximum pressure rises to p ' 900 at the first reflections, and then progressively
decreases to p ' 500. Then the pressure wave overpasses the obstacle, and a "shock-against-shock"
recomposition is observed at a time close to t = 0.45 (first illustration on Figure 5.11) at the intersection
of the symmetry planes, which leads to a maximum pressure close to the pressure observed on the
left face of the obstacle, i.e. p ' 500; the pressure field at t = 0.456 on the plane x1 = 2 (so at
a distance of 1 after the obstacle) is shown on Figure 5.12. This recomposition leads to an irregular
Mach reflection, which clearly appears later (second illustration on Figure 5.11, t = 0.6).

Since this test is representative of industrial applications, we now give some information about the
numerical resolution. The computation is performed in parallel (the CALIF3S software uses PETSc
primitives) on an infiniband linux cluster and involves 60 Intel Xeon X5660 2.8GHz processors, for
about 14 hours of restitution time. The solution of the linear system for the prediction step is performed
with a GMRES algorithm, preconditioned on each subdomain by ILU0; the solution of the system
takes about 1.5 hours (cumulated over the 1200 time steps), for about 47 106 unknowns (the degrees
of freedom of the 3 components of the velocity, which are coupled in the same system, to allow the
discretization of the viscous tensor under its general form, used here only for stabilization purposes).
The correction step is solved by a Newton algorithm (see Appendix C), which converges in 4 to 5
iterations. Each internal system is solved by the same GMRES solver as in the prediction step, with
now about 30 106 unknowns (pressure and internal energy degrees of freedom), for a cumulated time
close to 3.3 hours. The rest of the CPU time (about 8 hours) is used for the assembling of these
systems.
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Figure 18. Interaction between a shock and a cube – Pressure on the symmetry planes x=20
and x3 = 0 at times t = 0.456 (top) and t = 0.6 (bottom).Figure 5.11. Interaction between a shock and a cube – Pressure on the symmetry
planes x=20 and x3 = 0 at times t = 0.456 (top) and t = 0.6 (bottom).
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Figure 19. Interaction between a shock and a cube – Pressure at t = 0.456 on the plane x1 = 2.

Figure 5.12. Interaction between a shock and a cube – Pressure at t = 0.456 on the
plane x1 = 2.
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Appendix A. Pressure correction methods and kinetic energy balance

When applying a pressure correction method to the computation of a variable density flow, a specific
treatment of the pressure is necessary to obtain a kinetic energy identity. To this purpose, an ad hoc
technique was introduced in [15] and, to our knowledge, it is still today the only work on this topic.
We propose here a different method, and briefly compare it with the algorithm described in [15].

To present the difficulty which we face, let us work in the time semi-discrete formalism, and let us
denote by ∇pn+1 the pressure gradient used in the velocity prediction step, postponing its definition
for a while. Let us also denote by C(ũn+1) the convection operator for the velocity, and let us suppose
that this operator satisfies an identity of the form:

C(ũn+1) · ũn+1 = 1
2 δt

[
ρm+1|ũn+1|2 − ρm|un|2

]
+1

2div(|ũn+1|2 q`) + Rn+1, (A.1)

where ` and m stand for time indices depending on n and q` stands for an approximation of the mass
flux, and with Rn+1 ≥ 0. In the present paper, we have:

C(ũn+1) = 1
δt

(ρnũn+1 − ρn−1un) + div(ρnũn+1 ⊗ un),

and Relation (A.1) is satisfied with m = n − 1 and q = ρu, ` = n. Other choices for the convection
operator are possible [15, 33, 35]. With the above notations, the velocity prediction step reads:

C(ũn+1)− div
(
τ (ũn+1)

)
+ ∇pn+1 = 0. (A.2)

Our aim here is to obtain a discrete equivalent of the kinetic energy balance, which we recall:
1
2∂t(ρ |u|

2) + 1
2div(ρ |u|2 u)− div(τ (u)) · u+ ∇p · u = 0. (A.3)

This relation is obtained by taking the inner product of the momentum balance equation by the
velocity. Thus, let us take the inner product of (A.2) by ũn+1. Using (A.1), we get:

1
2 δt

[
ρm+1|ũn+1|2 − ρm|un|2

]
+1

2div(|ũn+1|2 q`)

− div
(
τ (ũn+1)

)
· ũn+1 + ∇pn+1 · ũn+1 = −Rn+1. (A.4)

This relation is not a discrete analogue of (A.3), since the first two terms cannot be interpreted as a
discrete time derivative, due to the presence in the first term of |ũn+1|2 instead of |un+1|2. Hence, we
now turn to the correction step, and write the velocity correction equation as:

1
δt
ρm+1un+1 + ∇pn+1 = 1

δt
ρm+1ũn+1 + ∇pn+1.

Let us multiply this relation by [δt/(2ρm+1)]1/2 and square the resulting equation, to obtain:

1
2δt ρ

m+1|un+1|2 + ∇pn+1 · un+1 + δt

2ρm+1 |∇pn+1|2

= 1
2δt ρ

m+1|ũn+1|2 + ∇pn+1 · ũn+1 + δt

2ρm+1 |∇pn+1|2.

Adding this relation with (A.4), we get:

1
2 δt

[
ρm+1|un+1|2 − ρm|un|2

]
+1

2div(|ũn+1|2 q`)

− div
(
τ (ũn+1)

)
· ũn+1 + ∇pn+1 · un+1 = −Rn+1 − Rn+1

∇ . (A.5)
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with:
Rn+1

∇ = δt

2ρm+1 |∇pn+1|2 − δt

2ρm+1 |∇pn+1|2.

Equation (A.5) is now a discrete analogue to (A.3). However, it is interesting to recast Rn+1
∇ as a

difference of the same quantity at two different time levels, for at least two reasons:
– first, summing (A.5) in time, we obtain in this case a stability estimate.

– Second, if Relation (A.5) is multiplied by a regular test function, lest us say ϕn+1, and, once
again, summed in time, a discrete integration by parts in time makes δt times the (discrete) time
derivative of ϕ appear. The factor δt is decisive to prove that the corresponding sum, i.e. the
sum over n of Rn+1

∇ ϕn+1, tends to zero, even for an irregular (shock) solution. No counterpart
of the remainder term Rn+1

∇ thus needs to be introduced in the internal energy balance in the
case of the Euler equations.

To reach this goal, we thus need to have:
δt

2ρm+1 |∇pn+1|2 = δt

2ρm |∇pn|2

which yields the following definition for ∇pn+1:

∇pn+1 =
[ρm+1

ρm

]1/2
∇pn. (A.6)

Note that this quantity is not necessarily the (discrete) gradient of a discrete pressure field (hence,
the notation ∇p instead of ∇p).

Finally, we thus only need to multiply the beginning-of-step pressure gradient by a factor (hopefully
known, which is the case here with m = n− 1), which almost leaves unchanged the count of algebraic
operations associated to a time step.

On the contrary, the method proposed in [15] consists in solving for pn+1 the following elliptic
problem:

div
[ 1
ρm+1 ∇pn+1

]
= div

[ 1
(ρm+1 ρm)1/2 ∇pn

]
. (A.7)

By more intricate arguments than for (A.6) (especially for the issue of the introduction of corrective
terms in the internal balance energy), it may be shown that (A.7) provides the same benefits as
(A.6) [27]. In addition, in one space dimension, both relations yields the same corrected gradient (i.e.
∇pn+1 = ∇pn+1).

Remark A.1 (On the choice of m.). In [15], from which Equation (A.7) is extracted, the authors
design a scheme for incompressible density varying flows modelled by the incompressible Navier-Stokes
equations complemented by a transport equation for the density. In this case, a natural algorithm is
– first update ρ by solving the associated transport equation, with the beginning-of-step velocity,

– then solve Navier-Stokes equations by a projection scheme.
In this case, the choice m = n is natural (and, indeed, m = n in (A.7)). This algorithm has been
implemented for the same problem at IRSN, and seems to work quite well.

In past studies, we also designed a more complicated scheme for quasi-incompressible flows, which
consists in performing a prediction for the density by solving the mass balance a first time, let say for
ρn+1/2, and then use this density in the velocity prediction step (so that m = n − 1/2), and finally
correct the velocity with once again the mass balance, but with the end-of-step density. This scheme
seemed to yield good results, but if it was not conservative for the momentum. More generally, this
kind of procedure is often used to get more accuracy with respect to the time discretization (even if
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the beneficial effects are not so clear, and the consistency in the hyperbolic limit may become difficult
to obtain...).

These examples show that other choices than m = n − 1 are possible, and some are found in the
literature in the discrete momentum balance equation.

Appendix B. Behaviour of the scheme on contact discontinuities

In this section, we check the ability of the proposed scheme to deal with contact discontinuities without
generating numerical perturbations. We forget boundary conditions, or, in other words, suppose that
Ω = Rd, 1 ≤ d ≤ 3.

In 1D, this just amounts to check that the scheme is able to propagate a discontinuity for ρ and e
while keeping the velocity and the pressure constant. Let us thus suppose that, at the time level n,
un and pn are constant, let us say un ≡ ū and pn ≡ p̄, and let us examine the consequences of this
assumption in the scheme (3.1):
- Since the pressure gradient ∇pn vanishes, so does ∇pn+1;

- Thanks to the fact that the convection operator in the momentum balance equation (3.1b)
vanishes for constant advected fields ũn+1 (or, in other words, thanks to the fact that the mass
balance over dual cells (3.5) holds), we obtain that ũn+1 ≡ ū. In addition, the expression (4.2)
of the remainder terms (Rn+1

σ ) shows that they vanish, and so do the corrective terms (Sn+1
K )

(see Equation (4.3)).

- Let us now suppose that the equation of state is such that the product ρe is a function of the
pressure only:

ρe = f(p). (B.1)
Typical exampled of such a situation are perfect gases (p = (γ − 1) ρe) or stiffen gases (p =
(γ − 1) ρe + γp∞, with p∞ a fixed positive constant). Then it is easy to see the pn+1 ≡ p̄ and
un+1 ≡ ū satisfy Equations (3.1c) and (3.1e). Equation (3.1d) can then be seen as a transport
equation (since un+1 is constant) and yields ρn+1 while the equation of state yields en+1.

This shows that the pressure and velocity remain constant through contact discontinuities, provided
that the assumption (B.1) holds.

Let us now turn to the two-dimensional case. The preceding reasoning still holds for the specific
solutions where u and p are constant and ρ and e are transported. We now consider the contact discon-
tinuity wave (specific to the two-dimensional case) which consists of the transport of one component
of the velocity, let us say u · t, by a velocity field constant in the direction n, with n · t = 0. For
instance, such a situation is obtained for the initial data:

ρ0 = 1, p0 = 1, u =
[
1
5

]
on (−∞, 0)× R and u =

[
1
−5

]
on (0,+∞)× R.

By similar arguments as previously, we would obtain that u1 ≡ 1, ρ ≡ 1 and p ≡ 1 while u2 is a
solution of a transport equation given by the second component of the momentum balance, provided
that the corrective terms (SnK) identically vanish. Unfortunately, the discrete kinetic energy balance
is not exactly satisfied (see the expression (4.2) of the remainder terms), the terms (SnK) are not equal
to zero, and we cannot expect the constant solution for ρ, p (and e) and u1 to be preserved. This may
be observed on Figure B.1, where we plot the solution obtained with Ω = (−0.5, 0.5) × (−0.5, 0.5),
a mesh consisting of 3 horizontal stripes of n = 500, n = 1000 and n = 2000 cells, at t = 0.12. The
equation of state is:

p = (γ − 1) ρe, γ = 1.4,
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so that the constant sound speed satisfies c2 = 1.4. The time step is set to δt = 1/(4n) (the CFL number
is therefore close to 1/2), and the artificial viscosity is set to µ = 1/(40n) (so 20 times lower than the
viscosity which would be generated by an upwind discretization of the velocity convection term). As
shown by the profile for u2, this diffusion is sufficient to damp most of the oscillations which should
be generated by the transport of a discontinuity by a centered convection operator. Numerically, we
observe a strong heating at the contact discontinuity, which leads to a strong decrease of the density,
and subsequent perturbations on the pressure and the horizontal velocity (recall that these quantities
are constant in the continuous solution). The difference between the numerical and the exact solutions
seems to be only bounded in the L∞-norm (in fact, for ρ and e only) and to tend to zero in L1 (and
therefore in Lp, for any finite p).

To the best of our knowledge, the observed behaviour is common to all Euler solvers. Moreover, the
previous analysis shows that, to avoid perturbations, the scheme should satisfy an exact discrete kinetic
balance (i.e. without remainder term). As soon as ρ is constant, this can be achieved by switching from
a backward Euler to a Crank-Nicolson time discretization of the momentum balance and setting to zero
the artificial viscosity [2]; however, it is of little interest, since the second component of the velocity
then suffers from numerical oscillations and, essentially, since ρ varies across a contact discontinuity
in the general case. For our scheme, a solution could be also to arbitrarily set the corrective terms
(SnK) to zero, since they are probably not necessary at contact discontinuities to the consistency of the
scheme (indeed, contrary to what happens at shocks, they are expected to tend to zero in L1 as the
mesh and time steps tend to 0, see Remark 4.2); however, this would require to be able to distinguish
dynamically (i.e. in view of the results, during the computation) a contact discontinuity from a shock,
which does not seems to be an easy task.

Appendix C. Numerical solution of the correction step

Case of the Euler equations, ρe = f(p) – When the equation of state is such that the product ρe
is a function of the pressure only, and in the absence of heat diffusion (i.e. λ = 0), the correction step
may be solved in two decoupled substeps:
- First step - From Equation (3.1c), the end-of-step velocity may be written as a function of the

end-of-step pressure (and of known quantities). Inserting this expression in the internal energy
balance (3.1e) yields a discrete nonlinear parabolic problem for the pressure only, which thus
allows to compute pn+1. Then, (3.1c) gives un+1.

- Second step - The mass balance (3.1d) is now a linear problem for ρn+1 (or 1/en+1), and the
equation of state finally yields en+1 (or ρn+1).

Let us now write the discrete parabolic problem for the pressure as:

∀K ∈M,
|K|
δt

[
f(pn+1

K )− f(pnK)
]

+
∑

σ∈E(K)
Gn+1
K,σ = Sn+1

K . (C.1)

Let us now give the expression of each term of this equation. From (3.1c), we get:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S , un+1

σ,i = ũn+1
σ,i −

δt

ρnDσ

∇σ,i(pn+1) + δt

ρnDσ

∇σ,i(pn+1).

Considering only the normal component of the velocity at the face and using the definition (3.6) of
the discrete gradient, we get:

∀σ = K|L ∈ Eint, un+1
K,σ = ũn+1

K,σ + δt |σ|
ρnDσ
|Dσ|

(pn+1
K − pn+1

L )− δt |σ|
(ρnDσ

)1/2(ρn−1
Dσ

)1/2 |Dσ|
(pnK − pnL),
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Figure 20. Slip contact discontinuity – Results for h = 1/500, h = 1/1000 and h = 1/2000,
along a line parallel to the x-axis. Internal energy (top-left), density (top-right), pressure
(middle-left), x-velocity (middle-right) and y-velocity (bottom).

- First step - From Equation (11c), the end-of-step velocity may be written as a function of the end-of-step
pressure (and of known quantities). Inserting this expression in the internal energy balance (11e) yields
a discrete nonlinear parabolic problem for the pressure only, which thus allows to compute pn+1. Then,
(11c) gives un+1.

- Second step - The mass balance (11d) is now a linear problem for ρn+1 (or 1/en+1), and the equation
of state finally yields en+1 (or ρn+1).

Let us now write the discrete parabolic problem for the pressure as:

∀K ∈ M,
|K|
δt

[
f(pn+1

K ) − f(pn
K)

]
+

∑

σ∈E(K)

Gn+1
K,σ = Sn+1

K . (45)

Let us now give the expression of each term of this equation. From (11c), we get:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S , un+1

σ,i = ũn+1
σ,i − δt

ρn
Dσ

∇σ,i(p
n+1) +

δt

ρn
Dσ

∇σ,i(p
n+1).

Figure B.1. Slip contact discontinuity – Results for h = 1/500, h = 1/1000 and
h = 1/2000, along a line parallel to the x-axis. Internal energy (top-left), density (top-
right), pressure (middle-left), x-velocity (middle-right) and y-velocity (bottom).

where ũn+1
K,σ is defined according to Relation (3.3). When the normal velocity is prescribed to zero at

the external faces, so is the pressure gradient, and thus un+1
K,σ = 0. Let us denote by ṽn+1

K,σ the known
part of the right-hand side in the previous relation, i.e. :

∀σ = K|L ∈ Eint, ṽn+1
K,σ = ũn+1

K,σ −
δt |σ|

(ρnDσ
)1/2(ρn−1

Dσ
)1/2 |Dσ|

(pnK − pnL).

Using this relation in (3.1e), we get:

∀σ = K|L ∈ Eint, Gn+1
K,σ = (Gn+1

K,σ )conv + (Gn+1
K,σ )diff , with

(Gn+1
K,σ )conv = |σ| f(pn+1

σ ) ṽn+1
K,σ , (Gn+1

K,σ )diff = δt |σ|2

ρnDσ
|Dσ|

[
f(pn+1

σ ) + pn+1
K

]
(pn+1
K − pn+1

L ),

where pn+1
σ stands for the upwind value of pn+1 with respect to un+1

K,σ . On the external faces, still with
impermeability conditions, Gn+1

K,σ = 0. This nonlinear problem is solved by a quasi-Newton iteration,
and the upwinding of pn+1 is performed with respect to the normal velocity at the previous Newton
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iteration, which does not seem to pose any problem of convergence. The system (C.1) may be seen as
a discrete parabolic problem, with a discrete convection-diffusion operator whose diffusion part obeys
a Neumann boundary condition (since the flux (Gn+1

K,σ )diff is zero at the external faces). Note that this
problem is not conservative (the "diffusion coefficient" is proportional to f(pn+1

σ ) +pn+1
K on one side of

the face and to f(pn+1
σ ) + pn+1

L on the other side), which is a consequence of the fact that the internal
energy balance itself is non-conservative.

When the normal velocity is free at some external face σ, the predicted velocity and the pressure
gradient at σ no longer vanish, and we get, denoting by K the cell adjacent to σ:

Gn+1
K,σ = δt |σ|2

ρnDσ
|Dσ|

[
f(pn+1

K ) + pn+1
K

]
(pn+1
K − pext) + f(pn+1

K )ṽn+1
K,σ ,

where we have supposed that the flow leaves the domain, so the upwind value for pn+1 at σ is pn+1
K ,

and pext stands for the external pressure used to approximate the gradient at the face. The discrete
diffusion operator for p thus now incorporates an implicit Dirichlet boundary condition on σ.

General case – In the general case, the above-mentioned decoupling of equations in the correction
step is not possible, and we use a procedure which is more standard in pressure correction algorithms:
as previously, from Equation (3.1c), the end-of-step velocity is written as a function of the end-of-step
pressure (and of known quantities), but this expression is now inserted in the mass balance (3.1d),
to produce an equation which once again looks like a discrete nonlinear parabolic problem for the
pressure, but unfortunately still involves the internal energy, through the computation of the density
thanks to the equation of state; then this equation is solved simultaneously with the internal energy
balance (3.1e), by a coupled Newton iteration.

This latter algorithm seems rather robust, and has been used for all the tests of this paper; it
typically converged in five or less iterations. However, switching to the decoupled version presented
for the Euler case sometimes proved useful (in the sense that it allowed significantly greater time
steps) in industrial cases, combining stiff shocks with a space grid resolution limited by the computing
time; for instance, this was done to compute a jet generated by a leak through a wall separating a
low pressure (some Pa) large containment from the outside atmosphere ("loss-of-vacuum" accident
scenario in the ITER facility). Note that, whenever the equation of state gives ρe as a function of p
only, then the decoupled algorithm may be used even for the general Navier-Stokes equations, at the
price of postponing the treatment of the diffusion in the internal energy balance to an additional step
of the algorithm.
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