
SMAI-JCM
SMAI Journal of
Computational Mathematics

Hybrid high-order methods for flow
simulations in extremely large

discrete fracture networks

Alexandre Ern, Florent Hédin, Géraldine Pichot & Nicolas Pignet
Volume 8 (2022), p. 375-398.
https://doi.org/10.5802/smai-jcm.92
© The authors, 2022.

The SMAI Journal of Computational Mathematics is a member
of the Centre Mersenne for Open Scientific Publishing

http://www.centre-mersenne.org/
Submissions at https://smai-jcm.centre-mersenne.org/ojs/submission

e-ISSN: 2426-8399

https://doi.org/10.5802/smai-jcm.92
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/
https://smai-jcm.centre-mersenne.org/ojs/submission

SMAI Journal of Computational Mathematics
Vol. 8, 375-398 (2022)

Hybrid high-order methods for flow simulations in extremely large
discrete fracture networks

Alexandre Ern 1

Florent Hédin 2

Géraldine Pichot 3

Nicolas Pignet 4

1 Université Paris-Est, CERMICS (ENPC), 6 et 8 av. Blaise Pascal, 77455 Marne-la-Vallée
Cedex 2, France and Inria, 2 rue Simone Iff, 75589 Paris, France
E-mail address: alexandre.ern@enpc.fr
2 Inria, 2 rue Simone Iff, 75589 Paris, France and Université Paris-Est, CERMICS (ENPC),
6 et 8 av. Blaise Pascal, 77455 Marne-la-Vallée Cedex 2, France
E-mail address: florent.hedin@inria.fr
3 Inria, 2 rue Simone Iff, 75589 Paris, France and Université Paris-Est, CERMICS (ENPC),
6 et 8 av. Blaise Pascal, 77455 Marne-la-Vallée Cedex 2, France
E-mail address: geraldine.pichot@inria.fr
4 EDF Lab Paris-Saclay, 7 boulevard Gaspard Monge, 91120 Palaiseau, France
E-mail address: nicolas.pignet@edf.fr.

Abstract. We investigate the computational performance of hybrid high-order methods applied to flow simulations
in extremely large discrete fracture networks (over one million of fractures). We study the choice of basis functions,
the trade-off between increasing the polynomial order and refining the mesh, and how to take advantage of polygonal
cells to reduce the number of degrees of freedom.

2020 Mathematics Subject Classification. 65N30, 65N50, 86A05.
Keywords. discrete fracture networks, flow simulations, hybrid high-order methods.

1. Introduction

It is well known that fractures play a major role in a wide range of applications (water resources, deep
geological waste storage, geothermy, among others) and cannot be neglected in subsurface modelling
as they are preferential flow paths [17]. Fractures are ubiquitous and have a large range of sizes (from
centimeters to kilometers) and apertures. In this paper, we consider flow simulations in crystalline rocks
where the rock matrix is assumed to be impervious and the fractures to have large transmissivities. We
do not consider the case of fractures acting like geological barriers and situations where flow occurs
in the rock matrix. A more general model can be found in [37]. A possible modelling strategy of
the network of fractures is the Discrete Fracture Network (DFN) approach. Fractures are modelled as
ellipses or disks whose properties (orientation, size, position, transmissivity) are governed by statistical
laws derived from field observations [8, 12, 24]. This model has been enriched in [17, 18] to include
the evolution of fracture network formation (nucleation, growth and arrest). The networks generated
with an arrest rule contain large numbers of T-shape intersections (where a fracture stops on another
one) compared to X-shape intersections (the two fractures cross each other). With no arrest rule, the
networks rather contain X-shape intersections. In this paper, the DFNs we consider are generated
with the software DFN.lab with no arrest rule. Examples of such networks are displayed in Figure 1.1.

This research has been partially supported by the LABEX AMIES ANR-10-LBX-0002-01 project.
https://doi.org/10.5802/smai-jcm.92
© The authors, 2022

375

mailto:alexandre.ern@enpc.fr
mailto:florent.hedin@inria.fr
mailto:geraldine.pichot@inria.fr
mailto:nicolas.pignet@edf.fr
https://fractorylab.org/dfnlab-software/
https://doi.org/10.5802/smai-jcm.92

A. Ern, F. Hédin, et al.

The largest test case contains 1,176,566 fractures embedded in a cubic domain of size L = 200m
(labelled “L200”: right panel). By decreasing the cube size, one obtains smaller (and embedded)
DFNs: L = 100m (left panel, labelled “L100”: 152,405 fractures) and L = 150m (central panel,
labelled “L150”: 508,339 fractures). To better emphasize the complexity of these DFNs, Table 1.1
gives the total number of intersections, the maximum number intersections per fracture, and the
range of transmissivity values, given as input (one value per fracture).

Figure 1.1. DFN test cases: (left) L100: 152,405 fractures; (center) L150: 508,339
fractures; (right) L200: 1,176,566 fractures. A different color is used for each fracture.

Table 1.1. Description of the three DFNs.

DFN #fractures #intersections Max(#intersections per fracture) transmissivity range ([m2.s−1])
L100 152k 302k 1,022 [3.5e-06; 20.33]
L150 508k 1,031k 4,930 [3.38-06; 25.8]
L200 1,176k 2,410k 11,710 [3.35-06; 25.8]

Figure 1.2 displays the histogram of the number of intersections per fracture for the test case L200.

106
(/)

� 104
::::l
.....

ü
CO
....
....

....

0

ai 102
..0

E
::::l
C

100
0 2000 4000 6000 8000 10000 12000

number of intersections per fracture

Figure 1.2. L200: histogram of the number of intersections per fracture.

As shown in Figure 1.2 and in agreement with natural field observations, there are mostly frac-
tures with a few number of intersections (below 1000) and a few ones with a very large number of
intersections. Figure 1.3 displays, for the test case L200, the fracture with the maximum number of
intersections (11,710 intersections) and indicated on Figure 1.2 (right). Figure 1.3 (center and right)
emphasizes the possible complexity of the network of intersections within a fracture.

Flow simulations are of primal importance to consider more involved physical and chemical couplings
in these complex DFNs. Flows in fractured rocks have been extensively studied in the litterature and
dedicated numerical methods have been developed to handle the challenging geometry of DFNs; see [28]
for a review and the references therein. Considering extremely large DFNs is challenging in terms of

376

Hybrid high-order methods

Figure 1.3. L200: (left) fracture (drawn in green) that contains the maximum number
of intersections (11,710); (center) 2D view: intersections are drawn in black; (right) 2D
view: zoom.

geometrical complexity, number of degrees of freedom and, therefore, computational ressources. The
major difference between the proposed methods lies in the way the DFN is meshed.

• The first possibility is to consider a mesh that is conforming to the intersections between
fractures. This can be realized in a matching way with nodes matching at the intersections [19,
26, 31, 32, 40] or in a nonmatching way with nodes from each fracture that may differ. This
second situation arises, for example, when choosing a different mesh step from one fracture
to another, and leads to the appearance of hanging nodes that can be managed either with
mortar methods [41] or with polytopal (polygonal/polyhedral) discretization methods such
as the virtual element method (VEM) [2] or the hybrid high-order (HHO) method [21, 22].
Flow simulations in DFNs using intersection-conforming meshes and polytopal discretization
methods have been reported in [27] for VEM and [13, 30] for HHO.

• The alternative is to use a mesh that does not take the intersections into account while the
numerical methods do. In the litterature, different methods have been proposed to handle
intersections that may cut the mesh cells: with an optimization approach [5, 7], by means of
the extended finite element method (XFEM) [25] or with VEM [3]. In [4], a node insertion
procedure ensures a global conformity of the mesh used with VEM.

In this work, we focus on intersection-conforming meshes that are constrained by the intersections
(first item above). The advantage of keeping the intersections explicitely in the mesh generation is
that it allows one to attach unknowns to the intersection edges so that continuity conditions at these
intersections are easier to impose. Moreover, we focus on HHO methods since they possess, in our
view, various interesting features for flow simulation in DFNs. Indeed, HHO methods are locally
conservative, they support polytopal meshes, their order of accuracy can be easily increased, and they
are computationally effective owing to the use of static condensation. Moreover, HHO methods have
been bridged to hybridizable discontinuous Galerkin methods in [16]. HHO methods have been applied
to a broad range of applications in computational mechanics and beyond; we refer the reader to the
two recent textbooks [15, 20] and the references therein. The main goal of the present work is to study
the computational performance of HHO methods in the context of extremely large DFNs (over one
million fractures). More particularly, we focus on the choice of basis functions, the trade-off between
increasing the polynomial order and refining the mesh, and how to take advantage of polygonal cells
to reduce the number of degrees of freedom.

The rest of this paper is organized as follows. Section 2 briefly recalls the mathematical model of
single-phase flow in DFNs. Section 3 presents the extremely large DFNs considered herein, as well as a
brief assessment of the quality of some generated meshes. Section 4 shortly presents the HHO method

377

A. Ern, F. Hédin, et al.

applied to flow simulation in a DFN. Section 5 discusses our results concerning the computational
performances of the HHO method on extremely large DFNs. Finally, conclusions and perspectives are
given in Section 6.

2. The flow problem

In this work, fracture networks are modeled using the DFN approach proposed in [17, 18]. We consider
a single-phase flow problem posed in a cubic domain of size L, where there are Nf intersecting fractures
that form the computational domain. The rock matrix is assumed to be impervious. Let fi be the ith

fracture, i = 1, . . . , Nf . Every fracture is assumed to be planar. Let Γi be the boundary of the fracture
fi (which may be truncated by the cube). Let x be the local 2D coordinates in the fracture fi. Let
NI be the total number of intersections between fractures, Im be the mth intersection, m = 1, . . . , NI ,
and Sm be the set of the indices of the fractures containing Im. In our applications, it is unlikely
to encounter intersection segments common to more than two fractures nor overlapping fractures.
Therefore, the set Sm only consists of two indices, the indices of the two fractures that intersect. In
each fracture fi, we assume that the governing equations for the hydraulic head pi (scalar-valued)
and for the flux per unit length ui (vector-valued) are the mass conservation equation and Darcy’s
law [37]:

∇ · ui(x) = gi(x) , for x ∈ fi , (2.1)
ui(x) = −κi ∇pi(x) , for x ∈ fi . (2.2)

The transmissivity field κi (unit [m2.s−1]) is taken as a positive-definite tensor that may be different
from one fracture to another (in Table 1.1, the transmissivity is proportional to the identity and we
report the scalar value). The function gi ∈ L2(fi) represents the sources/sinks. Boundary conditions
are imposed on the cube faces. Let us denote by ΓN the boundaries of the cube with Neumann
boundary conditions and ΓD the ones with Dirichlet boundary conditions with meas (ΓD) > 0. In
every fracture, the boundary conditions are as follows:

pi(x) = pD
i (x) , for x ∈ ΓD ∩ Γi , (2.3)

ui(x)·n = qN
i (x) , for x ∈ ΓN ∩ Γi , (2.4)

ui(x)·n = 0 , for x ∈ Γi\(ΓD ∪ ΓN) , (2.5)

where n denotes the outward normal unit vector on ΓN , pD
i the Dirichlet load, and qN

i is the Neumann
load. As the rock matrix is supposed impervious, for every fracture i, one also imposes a homogeneous
Neumann boundary condition on Γi\(ΓD ∪ ΓN).

Additionally, coupling conditions hold at the intersections between the fractures [24, 38]. For each
intersection Im, m = 1, . . . , NI , let us consider the associated intersecting fractures fj , j ∈ Sm. For
all j ∈ Sm, the fracture fj can have either one side (T-junction) or two sides (X-junction) at Im.
These sides are enumerated using a generic index σ ∈ Σj,m, where Σj,m consists of a single element
for a T-junction and of two elements for an X-junction. Let nσ

k,m be the unit vector normal to Im,
pointing outward the side σ of fj , and tangent to fj . Then, for each intersection Im, m = 1, . . . , NI ,
the following coupling conditions are enforced:

∃p0
m s.t. pσ

j,m = p0
m, ∀j ∈ Sm, ∀σ ∈ Σj,m , (2.6)∑

j∈Sm

∑
σ∈Σj,m

uj · nσ
j,m = 0 , (2.7)

378

Hybrid high-order methods

where pσ
j,m is the trace on Im from the side σ of the hydraulic head in the fracture fj . Condition (2.6)

enforces the continuity of the hydraulic head at the fracture intersections and condition (2.7) imposes
the conservation of mass.

3. Mesh generation

3.1. Algorithm

The mesh of the DFN is generated according to the algorithm described in [10, 35]. It is implemented
in the C software MODFRAC1. Parallelism is achieved using posix-threads. The mesh step can be the
same in the entire network, in which case the mesh is said to be matching at the intersections between
fractures. One can also vary the mesh step from one fracture to another, in which case the mesh
is generally nonmatching at the intersections between fractures. Figure 3.1 shows an example of a
matching and an example of a nonmatching mesh.

Figure 3.1. (left) A matching mesh at the fracture intersections; (right) A nonmatch-
ing mesh at the fracture intersections. The intersections are highlighted by red lines.

3.2. Notation

Let Ti be the mesh of the fracture fi and let T =
⋃

i Ti be the mesh of the DFN. Let F denote a
(boundary or interior) face of the mesh. Since the fractures are two-dimensional objects, a face F is
actually an edge. For every fracture fi, the interior faces are collected in the set F◦

i , the intersection
faces in the set FI

i and the boundary faces in the set F∂
i , so that the set

Fi := F◦
i ∪ FI

i ∪ F∂
i (3.1)

collects all the mesh faces contained in the fracture fi. Let F =
⋃

i Fi be the set of mesh faces.
Notice that every face that lies at the intersection between two fractures appears only once in the
set F . Moreover, we assume that the mesh faces are compatible with the partitioning of the domain
boundary related to the Dirichlet and Neumann boundary conditions, so that we can consider the
partition F = FD ∪ F\D, where FD (resp., F\D) is the set of faces located in (resp., outside) ΓD.

For a generic mesh cell T ∈ T , its boundary is denoted by ∂T and its unit outward normal by nT ,
FT denotes the collection of the mesh faces composing its boundary ∂T and for all F ∈ FT , nT |F
denotes the unit normal to F pointing outward T .

1MODFRAC is a proprietary software owned by Inria and the University of Technology of Troyes (UTT)

379

A. Ern, F. Hédin, et al.

3.3. Computational resources and mesh quality

We perform the mesh generation using the software MODFRAC for the three test cases of Figure 1.1 on
a Laptop Intel Core i7 4 cores CPU 32GiB RAM with 4 posix-threads. The quality δ(T) of a triangle
T with edge lengths li, i = 1, 2, 3 and area |T |, is defined as in [9]:

δ(T) := 4
√

3 |T |
l21 + l22 + l23

. (3.2)

The quality δ(T) is equal to 1 for an equilateral triangle. The lower δ(T), the worse the quality of T .
Table 3.1 gives examples of a mesh and its properties for the three test cases L100, L150, L200 and
also the mesh generation time.

Table 3.1. Examples of a mesh for the three DFNs: L100, L150 and L200.

DFN #fractures #Triangles MinT (|T |) Mean(δ) Min(δ) Time (hh:mm:ss)
L100 152k 2,770k 1.4e-09 0.66 3.10e-05 00:00:52
L150 508k 12,890k 1.16e-11 0.77 1.00e-04 00:02:25
L200 1,176k 20,522k 1.16e-11 0.63 9.25e-05 00:11:15

4. The HHO method

In this section, we describe how to apply the HHO method to DFN flow simulations. We recall
that the DFN is composed of fractures fi, i = 1, . . . , Nf , each with its mesh Ti and (tensor-valued)
transmissivity κi. The flow problem (2.1)-(2.2) in the fracture fi is a diffusion problem, and the
fracture problems are coupled together according to the conditions (2.6)-(2.7).

4.1. Local HHO spaces and operators

The HHO method attaches unknowns to the mesh faces and to the mesh cells. HHO uses one poly-
nomial of order k ≥ 0 on each mesh face and one polynomial of order l on each mesh cell. At the
algebraic level, the unknowns are therefore polynomial coefficients. We make the choice l := k + 1 for
the cell polynomial degree, which offers the advantage of leading to a simpler stabilization operator
than the equal-order choice l := k (see [16]).

Let Pl
2 be the space composed of divariate (real-valued) polynomials of total degree at most l. For

every mesh cell T ∈ T , Pk+1
2 (T) denotes the space composed of the restriction to T of the polynomials

in Pk+1
2 and Pk

1(F) the univariate polynomial space attached to a mesh face F ∈ Fi (defined using an
affine geometric mapping from the reference interval in R to F). The local HHO space in the mesh
cell T ∈ T is

V̂ k
T := Pk+1

2 (T) × Pk
1(FT), Pk

1(FT) :=
ą

F ∈FT

Pk
1(F) . (4.1)

A generic element in V̂ k
T is denoted by p̂T := (pT , p∂T) with p∂T := (pF)F ∈FT

.
The HHO method requires two main ingredients in every mesh cell T ∈ T :

• a local reconstruction operator to reconstruct locally a gradient operator from the cell and the
face unknowns;

• a stabilization term to ensure that the trace of the cell unknows and the face unknowns weakly
match.

380

Hybrid high-order methods

Let i = 1, . . . , Nf be the index of the fracture to which T belongs, i.e., T ∈ Ti (notice that i is
uniquely defined from T since every mesh cell belongs to one and only one fracture). Then, the local
reconstruction operator RT : V̂ k

T → Pk+1
2 (T) is such that for all p̂T := (pT , p∂T) ∈ V̂ k

T , the function
RT (p̂T) ∈ Pk+1

2 (T) is uniquely defined by the following equations:

(κi∇RT (p̂T), ∇q)L2(T) = (κi∇pT , ∇q)L2(T) + (p∂T − pT , ∇q·κinT)L2(∂T), (4.2)
(RT (p̂T), 1)L2(T) = (pT , 1)L2(T), (4.3)

where (4.2) holds for all q ∈ Pk+1
2 (T)⊥ := {q ∈ Pk+1

2 (T) | (q, 1)L2(T) = 0}. Moreover, the stabilization
operator S∂T : V̂ k

T → Pk
1(FT) is such that for all p̂T ∈ V̂ k

T ,

S∂T (p̂T) := Πk
∂T

(
pT |∂T − p∂T

)
, (4.4)

where Πk
∂T : L2(∂T) → Pk

1(FT) is the L2-orthogonal projection defined such that for all w ∈ L2(∂T),

(Πk
∂T (w) − w, q)L2(∂T) = 0, ∀q ∈ Pk

1(FT). (4.5)

Finally, the local bilinear form aT : V̂ k
T × V̂ k

T → R is devised by setting

aT (p̂T , ŵT) := (κi∇RT (p̂T), ∇RT (ŵT))L2(T) + ρi

ℓT
(S∂T (p̂T), S∂T (ŵT))L2(∂T), (4.6)

where ρi := ρ(κi) is the spectral radius of κi and ℓT := hT is a local length scale associated with T
and here taken equal to the diameter of T . (It is also possible to consider a specific length scale for
each face F ∈ FT , but our numerical experiments do not indicate any advantage for this alternative
choice).

4.2. Assembly of the discrete problem in the DFN

The HHO space in every fracture fi, i = 1, . . . , Nf , is defined as follows:

V̂ k
h,i := V k+1

Ti
× V k

Fi
, V k+1

Ti
:=

ą

T ∈Ti

Pk+1
2 (T), V k

Fi
:=

ą

F ∈Fi

Pk
1(F). (4.7)

A generic element in V̂ k
h,i is denoted by p̂h,i := (pT ,i, pF ,i) with pT ,i := (pT)T ∈Ti and pF ,i := (pF)F ∈Fi .

As illustrated in Figure 4.1, the face unknowns are uniquely defined for all F ∈ Fi. Similarly, the HHO
space in the DFN is defined as follows:

V̂ k
h := V k+1

T × V k
F , V k+1

T :=
ą

i=1,...,Nf

V k+1
Ti

, V k
F :=

ą

i=1,...,Nf

V k
Fi

. (4.8)

A generic element in V̂ k
h is denoted by p̂h := (pT , pF) with pT := (pT ,i)i=1,...,Nf

and pF := (pF ,i)i=1,...,Nf
.

Recall that every face F that lies at the intersection between two fractures appears only once in the set
F , so that the discrete unknowns attached to the face F appear only once in V k

F . This automatically
enforces at the discrete level the condition (2.6) at any intersection. Moreover, to account for the
Dirichlet boundary conditions on ΓD, we consider the subspaces

V̂ k
h,0 := V k+1

T × V k
F ,0, V k

F ,0 := {pF ∈ V k
F | pF = 0, ∀F ∈ FD} , (4.9)

V̂ k
h,D := V k+1

T × V k
F ,D, V k

F ,D := {pF ∈ V k
F | pF = Πk

F (pD
|F), ∀F ∈ FD}. (4.10)

The discrete bilinear form ah : V̂ k
h × V̂ k

h → R at the DFN level reads as follows:

ah(p̂h, ŵh) =
∑

i=1,...,Nf

∑
T ∈Ti

aT (p̂T , ŵT), (4.11)

381

A. Ern, F. Hédin, et al.

Figure 4.1. Discrete unknowns in three mesh cells. Here, the order of the cell poly-
nomials is l = k + 1, and k is the order of the face polynomials. (left) k = 0 and
(right) k = 1, where black dots represent face unknowns and green dots cell unknowns
(without necessarily meaning point evaluation).

where for all i = 1, . . . , Nf and all T ∈ Ti, p̂T (resp., ŵT) denotes the components of p̂h (resp., ŵh)
attached to the mesh cell T and to the faces in FT . The discrete problem is as follows:{

Find p̂h ∈ V̂ k
h,D such that

ah(p̂h, ŵh) = ℓ(wT), ∀ŵh ∈ V̂ k
h,0,

(4.12)

with ℓ(ŵh) :=
∑

i=1,...,Nf

(∑
T ∈Ti

(gi, wT)L2(T) +
∑

F ∈Fi∩ΓN (qN
i , wF)L2(F)

)
. As mentioned above, the

condition (2.6) at any intersection between fractures is automatically enforced owing to the choice of
the face unknowns, whereas the condition (2.7) is a consequence of the recovery of equilibrated fluxes
as detailed in Subsection 4.3 (see in particular (4.20)).

At the algebraic level, the components of p̂h attached to the Dirichlet boundary faces are eliminated,
that is, we only seek for the components of p̂h in

V̂ k
h,F\D := V k+1

T × V k
F\D , V k

F\D :=
ą

F ∈F\D

Pk
1(F). (4.13)

Let (PT , PF) ∈ RNk+1
T ×Nk

F\D be the corresponding component vectors of the discrete solution p̂h :=
(pT , pF) ∈ V k+1

T × V k
F\D (with obvious notation). Ordering the cell unknowns and then the face un-

knowns that are not Dirichlet, the algebraic realization of (4.12) is

A
[
PT
PF

]
=

[
FT
FF

]
with A :=

[
AT T AT F
AFT AFF

]
, (4.14)

and the right-hand side results from the sink/source terms and the Dirichlet/Neumann boundary
conditions. The matrix A is symmetric positive-definite. As the submatrix AT T is block-diagonal, a
computationally effective way to solve the linear system (4.14) is to eliminate locally the cell unknowns
and solve first for the face unknowns only. Defining the Schur complement matrix

As
FF := AFF − AFT A−1

T T AT F , (4.15)
the global transmission problem coupling all the face unknowns is

As
FFPF = FF − AFT A−1

T T FT . (4.16)
This linear system is only of size Nk

F\D . Once it is solved, one recovers locally the cell unknowns
by using that PT = A−1

T T (FT − AT FPF). The global transmission problem (4.16) being symmetric
positive-definite, it can be solved with a direct solver based on Cholesky’s factorization or an iterative
solver based on the preconditioned Conjugate Gradient (CG) algorithm.

Remark 4.1. In practice, for extremely large DFNs, it may happen that the Cholesky algorithm fails
with a “non positive-definite matrix” error. We suspect an effect of the use of floating-point numbers
also linked to the possibly high condition number of the linear system matrix. An alternative which

382

Hybrid high-order methods

proved successful in all our test cases run so far is to choose solvers based on LU factorization, like
the Intel Pardiso LU solver from Intel MKL library [33].

4.3. Recovery of equilibrated fluxes

HHO is a locally conservative method for which it is possible to define equilibrated fluxes at the
boundary of every mesh cell T ∈ T . Let i = 1, . . . , Nf be the index of the unique fracture to which
T belongs. Let p̂h ∈ V̂ k

h,D solve the discrete problem (4.12). We define the following fluxes associated
with p̂h:

ϕ∂T (p̂T) := −nT ·κi∇RT (p̂T)|∂T + ρi

ℓT
Πk

∂T (pT |∂T − p∂T) ∈ Pk
1(FT). (4.17)

As shown in [16], these fluxes satisfy the following properties:

• Balance with the source term in every mesh cell T ∈ Ti:
(κi∇RT (p̂T), ∇q)L2(T) + (ϕ∂T (p̂T), q)L2(∂T) = (gi, q)L2(T), ∀q ∈ Pk+1

2 (T). (4.18)

• Equilibrium at every mesh interface F ∈ F◦
i ∪ FI

i : (a) If F does not lie on the intersection
between two fractures, then F = ∂T− ∩ ∂T+ ∈ F◦

i , and we have
ϕ∂T −(p̂T−)|F + ϕ∂T +(p̂T+)|F = 0. (4.19)

(b) If instead F lies on an intersection Im for some m = 1, . . . , NI , then for all j ∈ Sm, denoting
by T j

σ ∈ Tj , σ ∈ Σj,m, the mesh cells in the fracture fj to which the face F belongs, we have∑
j∈Sm

∑
σ∈Σj,m

ϕ
∂T j

σ
(p̂

T j
σ
)|F = 0. (4.20)

• Equilibrium with the Neumann boundary conditions: For all i = 1, . . . , Nf and all F ∈ F∂
i

with F = ∂T ∩ Γi, if F ⊂ Γi\(ΓD ∪ ΓN), then
ϕ∂T (p̂T)|F = 0, (4.21)

whereas if F ⊂ Γi ∩ ΓN , then
ϕ∂T (p̂T)|F + Πk

F (qN
i) = 0. (4.22)

5. Study of computational performance

In this section, we study the computational performance of HHO methods in the context of extremely
large DFNs. We address the choice of the basis functions in Section 5.1, and the trade-off between
increasing the polynomial order and refining the mesh in Section 5.2. In these two sections, triangular
meshes are considered. We refer the reader to [30] for a comparison between HHO and lowest-order
Raviart–Thomas methods on triangular meshes; here, we focus on the performance of HHO methods
regarding basis functions and polynomial order. Section 5.3 contains numerical experiments in order
to evaluate whether computational resources can be saved by means of polygonal cells. In this last
section, the mesh in each fracture still matches the various intersections of the fracture, but its size is
independent of the mesh of the other fractures, thus creating hanging nodes, and thereby polygonal
cells, next to the fracture intersections.

The main numerical experiment to assess the accuracy of a simulation is the computation of the
equivalent permeability of a DFN by running a permeameter test case. For example, to estimate
the equivalent permeability Kx in the x-direction, we proceed as shown in Figure 5.1, i.e., we apply
hydraulic heads pD

1 and pD
2 (with ∆pD := pD

1 − pD
2 > 0) on the two opposite cube faces along the

x-direction and null flux boundary conditions on the other sides of the cube. The computed input flux

383

A. Ern, F. Hédin, et al.

is denoted Qin,x (units m3.s−1) and the computed output flux Qout,x (units m3.s−1). Recall that the
fluxes are computed as discussed in Subsection 4.3 and that, in the absence of round-off errors, we
have Qin,x = Qout,x since the HHO method is conservative. Then the equivalent permeability Kx is
estimated as Kx = Qin,x

L ∆pD .

Figure 5.1. Permeameter boundary conditions along the x-direction.

Our implementation is made in the Inria C++17 software called NEF++ [30] that relies on the Eigen
library, which is a C++ template library for linear algebra [29] and the open-source HHO library
Disk++ [14]. Parametric studies have been carried out using the Python tool Prune (Inria). In all the
test cases, the linear system is solved with the Intel Pardiso LU solver from Intel MKL library [33].
Except where indicated otherwise, all the simulations are carried out using the Inria cluster CLEPS
on a partition with 4 Intel Xeon E7-4860 v2 with 12 cores, 2.6-3.2GHz and 3TB RAM. In all the tables
reported in this section, the number of dofs is the one after static condensation.

5.1. Choice of the HHO basis functions

In the HHO method, the unknowns are polynomials coefficients, and there are various (classical)
possibilities for choosing the basis functions. On every mesh face F , we choose the scaled monomials
xα

F with α = 0, . . . , k and

xF := 2 (x − x̄F)
|F |

, (5.1)

where x̄F denotes the midpoint of F and |F | its length. On every mesh cell T ∈ T , we compare two
choices of scaled monomials:

• the basis composed of Cartesian monomials, hereafter called [Cartesian], and defined as xα
T yβ

T ,
with α, β = 0, . . . , l = k + 1, α + β ≤ l and

xT := 2 (x − x̄T)
hT

x

, yT := 2(y − ȳT)
hT

y

, (5.2)

where (x̄T , ȳT) denote the coordinates of the barycenter of T and hT
x , hT

y denote the lengths
of the bounding box of T according to the Cartesian axes;

• the basis composed of rotated monomials [1], hereafter called [Rotated], and defined as ξα
T ζβ

T ,
with α, β = 0, . . . , l = k + 1, α + β ≤ l and

ξT = 2
(x − x̄T , y − ȳT)·aT

ξ

hT
ξ

, ζT = 2
(x − x̄T , y − ȳT)·aT

ζ

hT
ζ

, (5.3)

384

Hybrid high-order methods

Table 5.1. Choice of the cell basis functions and its influence on the relative error on
the global mass conservation |Qin,x − Qout,x|/Qin,x on two DFNs

|Qin,x − Qout,x|/Qin,x

DFN k [Cartesian] [Rotated]
L100 0 0.00% 0.00 %

1 0.00% 0.00 %
2 0.08% 0.00 %
3 135% 0.00 %

L150 0 0.00% 0.00%
1 3e-3% 0.00%
2 183% 0.00%
3 691% 0.00%

where aT
ξ , aT

ζ denote the unit vectors aligned with the inertia axes of T and hT
ξ , hT

ζ the lengths
of the bounding box of T according to the inertia axes.

Both the Cartesian and rotated monomials are independent of translation (since they use the barycen-
ter of T) and of homothety (since they use the length of a suitable bounding box). Moreover, the rotated
monomials are also independent of rotation.

To compare the two choices for the cell basis functions (Cartesian vs. rotated), we report in Table 5.1
the relative error on the global mass conservation indicator |Qin,x − Qout,x|/Qin,x for these two choices
on the permeameter test case described above. We observe that both choices of basis functions behave
well for both DFNs for k = 0 and for the smaller DFN, L100, up to k = 2. For L100 with k > 2 and for
L150 with k > 0, global mass conservation (and also local mass conservation, omitted from the table for
brevity) is ensured only for the rotated basis functions. The reason of the poor behavior of the Cartesian
monomials is the presence of some highly deformed mesh cells which leads to highly ill-conditioned local
matrices when computing the reconstruction and stabilization operators, as discussed, e.g., in [20]. In
all the following simulations, we employ the rotated monomials.

Remark 5.1. Other choices for the basis functions are possible, such as an L2-orthonormalised basis,
which can help dealing with distorted elements (see [20, §B.1.1]). We have not tested this choice
because it is computationally more demanding than the choice of rotated monomials, especially with
a HHO library based on on-the-fly computations of the local matrices (as the one we are using).

5.2. Trade-off between polynomial order and mesh refinement

We investigate the trade-off between polynomial order and mesh refinement in the context of the
permeameter test case described above. As a first step, we perform a flow computation on a fine mesh
to obtain a reference value for the equivalent permeability Kx of the DFN. Then, we use this reference
value to compute errors on the equivalent permeability obtained using coarser meshes.

In the first step of our study, two fine meshes are built with the software MODFRAC: one with
12,890,943 triangles for the DFN L150 and one with 20,522,575 triangles for the DFN L200. Figure 5.2
reports the x-equivalent permeability versus the number of dofs for polynomials degrees k = 0, 1, 2, 3, 4,
and for the two DFNs L150 and L200. The equivalent permeability reaches a plateau as k increases.
The reference values for Kx are taken for k = 4 and are equal to Kref

x = 3.51 × 10−2 m2.s−1 for
L150 and Kref

x = 3.53 × 10−2 m2.s−1 for L200. Table 5.2 and Table 5.3 report the number of dofs,
the number of non-zeros of the matrix of the linear system (nnz), the relative error (in %) on the
equivalent permeability defined as RelErr(Kx):= |Kx − Kref

x |/Kref
x and the relative error (in %) on

the global mass conservation |Qin,x − Qout,x|/Qin,x for the test cases L150 and L200 respectively. The
computational times (total time Ttot) for the fine mesh flow simulations and the peak of RAM for

385

A. Ern, F. Hédin, et al.

Figure 5.2. x-equivalent permeability versus #dofs. Left: L150 (mesh step 1:
12,890,943 triangles); right: L200 (mesh step 1.5: 20,522,575 triangles).

the two test cases L150 and L200 are given in Table 5.4 and 5.5 respectively. The postprocessing
encompasses two steps: (1) the mean hydraulic head computations; (2) the flux recovery detailed in
Subsection 4.3. These two steps are known to be embarrassingly parallel, i.e. they can be performed
independently in each mesh cell, which means a potentially large gain in computational ressources with
respect to the present serial implementation. The only difference is that our application is not really
2D since the 2D coordinates change from one fracture to another. Our current version of the code is
based on a loop over the fractures. We could save computational time by an efficient parallelization
of this loop. Notice also that to save RAM, neither A−1

T T to compute PT (see Subsection 4.2), nor the
local gradient or the stabilization matrix are stored. This is the reason why the postprocessing step
has a sizable contribution to the costs.

Table 5.2. L150: Flow computation on a fine mesh.

k #dofs nnz RelErr(Kx) |Qin,x − Qout,x|/Qin,x

0 19,999k 97,199k 8.41 % 5.34e-09 %
1 39,998k 388,798k 2.04 % 1.70e-09 %
2 59,997k 874,797k 0.72 % 1.23e-09 %
3 79,996k 1,555,194k 0.24 % 5.51e-08 %
4 99,996k 2,429,992k 0.00 % 1.54e-07 %

Table 5.3. L200: Flow computation on a fine mesh.

k #dofs nnz RelErr(Kx) |Qin,x − Qout,x|/Qin,x

0 31,711k 154,704k 10.68 % 3.22e-09 %
1 63,422k 618,818k 2.64 % 9.85e-09 %
2 95,134k 1,392,340k 0.93 % 1.72e-08 %
3 126,845k 2,475,272k 0.30 % 9.28e-08 %
4 158,557k 3,867,613k 0.00 % 7.23e-08 %

Table 5.4. L150: Computational resources required for the flow computation on a
fine mesh: total time Ttot (hh:mm), time of the different steps: Input, Assembly, Solver,
Postprocessing (hh:mm and % of Ttot in parentheses) and peak of RAM (GiB).

k #dofs Ttot Input Assembly Solver Postprocessing RAM
0 19,999k 00:46 00:06 (13%) 00:08 (18%) 00:04 (9%) 00:27 (58%) 78
1 39,998k 01:47 00:07 (7%) 00:22 (21%) 00:09(9%) 01:06 (62%) 176
2 59,997k 02:29 00:06 (4%) 00:32 (22%) 00:19 (13%) 01:31 (61%) 314
3 79,996k 03:31 00:06 (3%) 00:48 (23%) 00:35 (17%) 02:00 (57%) 508
4 99,996k 04:50 00:06 (2%) 01:10 (24%) 00:54(19%) 02:38 (55%) 738

386

Hybrid high-order methods

Table 5.5. L200: Computational resources required for the flow computation on a
fine mesh: total time Ttot (hh:mm), time of the different steps: Input, Assembly, Solver,
Postprocessing (hh:mm and % of Ttot in parentheses) and peak of RAM (GiB).

k #dofs Ttot Input Assembly Solver Postprocessing RAM
0 31,711k 01:21 00:12 (15%) 00:15 (19%) 00:07 (10%) 00:44(55%) 128
1 63,422k 02:49 00:10 (6%) 00:34 (21%) 00:22 (13%) 01:40 (59%) 297
2 95,134k 04:33 00:11 (4%) 01:00 (22%) 00:46 (17%) 02:34 (57%) 551
3 126,845k 06:08 00:12 (3%) 01:24 (23%) 01:16 (21%) 03:15 (53%) 869
4 158,557k 08:48 00:10 (2%) 01:54 (22%) 02:25 (28%) 04:16 (49%) 1279

Let us now investigate the trade-off between polynomial order and mesh refinement. To do so,
simulations are performed on different coarser meshes of the DFN L150 (Table 5.6) and for each mesh,
we compute the resulting equivalent permeability for different polynomial degrees k ∈ {0, 1, 2, 3, 4}.

Table 5.6. L150: different meshes.

DFN mesh step #Triangles #edges
2 7,619k 11,732k

1.5 9,720k 15,074k
1 12,890k 19,999k

0.6 28,205k 43,531k
0.5 39,364k 60,555k
0.4 60,536k 92,727k

Figure 5.3 displays the relative error using the reference value obtained above in the first step.
Considering first the left panel based on the number of dofs (after static condensation), we observe
that k = 1 is the most effective choice on the three coarsest meshes if an accuracy between 2% and
4% is desired, whereas for smaller accuracies, going for k ≥ 2 is preferable. Considering the right
panel based on the computational time leads essentially to similar conclusions. Similar conclusions
are reached as well if one considers the peak of memory (results not shown for brevity). Actually,
the optimal choice depends on the initial mesh as shown on Figure 5.4. It is computationnally less
demanding to go for k = 1 on a fine mesh and to go for higher order k ≥ 2 on a coarse mesh. In
summary, as expected from the linear nature of the problem and the regularity of the solution, we
recommend:

• to use a face polynomial order k at least equal to 1, instead of refining a mesh while keeping
k = 0,

• to choose k = 1 on a fine mesh and k > 1 on a coarser mesh.
To provide some further insight on the relation between number of dofs, computational time and

peak memory, we report in Table 5.7 the computational time and RAM required for approximately the
same number of dofs with polynomial orders k = 0, 1, 2, 3. As expected, the time and RAM memory
requirements increase with k. This is shown in Figure 5.5 where we plot the computational time and
the peak of RAM versus the number of dofs. From Table 5.7 and Figure 5.5, we observe that the extra
time and RAM memory for k ≤ 2 seem negligible in comparison with the time and RAM at order
k = 0. For k > 2, the slopes become somewhat higher. We believe that these increases in time and
RAM for k > 2 are due to the solver since the matrices have more nonzero elements when k increases.

5.3. How to take advantage of polygonal cells?

So far, to get an accurate solution, the numerical simulations were performed on a fine mesh according
to the standard procedure described in Algorithm 1 below (where the steps are named “FT” for fully

387

A. Ern, F. Hédin, et al.

Figure 5.3. L150: relative error on the x-equivalent permeability versus #dofs (left)
and versus computational time (hh:mm:ss, right).

Figure 5.4. L150: relative error on the x-equivalent permeability versus computa-
tional time (hh:mm:ss).

Table 5.7. L150: Computational resources required for approximately a fixed number
of dofs and for different polynomial orders k = 0, 1, 2, 3.

k #dofs Total time RAM Relative error DFN
(hh:mm:ss) (GiB) RelErr(Kx) mesh step (m)

0 43,531k 01:51:14 133 4.77 % 0.6
1 39,998k 01:47:26 176 2.04 % 1
2 45,222k 02:15:48 203 1.50 % 1.5
3 46,930k 02:18:27 253 2.25 % 2

triangular). In this section, we study how to change this procedure to take advantage of polygonal
cells in order to (possibly) save computational resources.

Algorithm 1 Fully triangular mesh generation and flow computation
1: (FT1) Generate a fine mesh of the DFN with matching cells (in our case triangles) at the inter-

sections
2: (FT2) Perform the corresponding flow simulation

388

Hybrid high-order methods

Figure 5.5. L150: computational time (left) and RAM requirements (right) versus #dofs.

5.3.1. A mesh refinement/coarsening procedure

In DFN, flows are highly channelled, meaning that only a small number of fractures carry most of
the flow. A reasonable way to decrease the number of triangles in the mesh of a DFN is, therefore, to
use a fine mesh only for those fractures that mostly contribute to the flow and to use a coarse mesh
for the other fractures. To do so, one can use the fact that, by choosing a mesh step specific to each
fracture, the mesh generator MODFRAC allows one to generate triangular meshes that are nonmatching
at the intersections between fractures. Then, the resulting nonmatching mesh can be transformed into
a polygonal matching mesh which is supported by the HHO method. The detailed steps of the new
procedure are described in Algorithm 2. The resulting meshes are called “polygonal-triangular” meshes
(since they consist of triangular cells away from the intersections and polygonal cells at the intersection
between fractures meshes with different mesh steps). We use therefore the notation “PT” to name the
steps of Algorithm 2. The polygonal-triangular mesh can be viewed as an intermediate mesh between
the two fully triangular meshes where all the fractures are meshed with either a fine or a coarse
triangular mesh. Notice that coarsening at step (PT1) is limited by the geometry and intersections of
the fractures (above a given mesh step, no more coarsening is possible owing to geometric constraints).

Algorithm 2 Polygonal-triangular mesh generation and flow computation
1: (PT1) Generate a coarse mesh of the DFN
2: (PT2) Perform the coarse flow simulation
3: (PT3) Decide which fractures to refine according to their flow contribution
4: (PT4) Remesh the DFN according to step (PT3): only the selected fractures are refined and the

mesh is therefore nonmatching at the intersections between fractures
5: (PT5) Run a node insertion algorithm to build a (matching) polygonal mesh at intersections: the

mesh is therefore composed of triangles and polygons
6: (PT6) Perform the flow computation on the new polygonal mesh obtained at step (PT5)

In view of Algorithm 2, it appears that we need two additional ingredients with respect to the
standard procedure of Algorithm 1:

• an algorithm to select the most contributing fractures at step (PT3);

• a node insertion algorithm to create polygons from nonmatching triangles at step (PT5).

These two ingredients are now described.

389

A. Ern, F. Hédin, et al.

Selection of the most contributing fractures (step (PT3)). As proposed in [36], we charac-
terize each fracture fi by a single flow value Qi defined as the total flow exchanged between fi and its
intersecting fractures:

Qi := 1
2

N i
I∑

m=1
|Qi,m|, (5.4)

where N i
I is the number of intersections in the fracture fi, and Qi,m is the flow in fi exchanged through

the intersection m, m = 1, . . . , N i
I .

To know which fractures to refine/coarsen, we propose a basic idea consisting in two steps:

(1) for each fracture fi, compute Qi from the coarse flow simulation performed at step (PT2) and
compute the maximum value

Qmax := max
i=1,...,Nf

(Qi) ; (5.5)

(2) choose a fine mesh step for the fractures with Qi/Qmax above a given threshold.

Creation of polygons from nonmatching meshes (step (PT5)). The second ingredient is
an algorithm to create a polygonal mesh from a nonmatching triangular mesh. As illustrated in
Figure 5.6, choosing a mesh step that can be different from one fracture to another generally leads to
nonmatching cells at the intersections between fractures (notice that the two fractures do not lie on
the same plane). One way to transform these nonmatching cells into polygonal cells is to use a vertex
insertion algorithm (added vertices are displayed in red in Figure 5.6). The vertex insertion algorithm
is described in Algorithm 3.

Figure 5.6. (left) Nonmatching triangular mesh; (center) Vertex insertion (red dots)
to create a polygonal mesh; (right) Example of a triangle (initial vertices are in blue)
transformed into a quadrangle with two aligned sides (the extra vertex is in red). This
triangle/quadrangle is a zoom of the encircled triangle in the image at the center.

5.3.2. Numerical tests

Let us test the procedure proposed in Algorithm 2 for the DFN L150 of Figure 1.1. As the generated
mesh is conforming to the intersections between the fractures and as the DFN L150 and L200 contain
many intersections (see Table 1.1), the coarsening with triangles is limited. Therefore the coarse
simulation remains quite costly. For this reason, we exploit the fact that the DFN L150 is embedded
into the DFN L200 (Figure 1.1) and we reuse, for the test case DFN L200, the set of fractures
selected at step (PT3) for the DFN L150. Then, we save steps (PT1-PT3) for the DFN L200 and
we start Algorithm 2 at step (PT4). The potential price to pay is that some preferential flow paths

390

Hybrid high-order methods

Algorithm 3 Vertex insertion algorithm
1: Load the nonmatching triangular mesh, including the edges and vertices of each intersection on

both sides
2: For each intersection, compute the linear coordinates of the vertices on both sides in order to know

where to insert the vertices to create a matching discretization
3: Find the unique set of intersection vertices and create a new global numbering of the vertices
4: Add the extra vertices to create the polygons (red dots) and update the connectivity table that

defines the polygons in terms of vertices
5: Compute the 2D coordinates of the extra vertices in the fracture to which they now belong
6: Store the polygonal mesh

in the fractures that are present in L200 but not in L150 may be missed. Using this procedure is
only considered here to save some computational resources, and is not a limitation of the present
algorithms.

Step (PT1): Coarse mesh generation and mesh quality. The first step consists in running
a coarse mesh generation with MODFRAC for the DFN L150. Let us choose a coarse mesh step of size
10 m. Table 5.8 gives the properties of the coarse mesh and also the mesh generation time.

Table 5.8. Matching coarse mesh for the DFN L150.

DFN #fractures #Triangles MeanT (|T |) MinT (|T |) Mean(δ) Min(δ) Time (hh:mm:ss)
L150 508k 7,029k 0.47 1.16e-11 0.51 5.5e-05 00:01:53

Step (PT2): Coarse flow simulation. The coarse flow simulation is performed on a Laptop Intel
Core i7 4 cores CPU 32GiB RAM with 4 posix-threads. It takes 6 minutes to load the coarse mesh
plus 16 minutes to solve the coarse flow problem.

Step (PT3): Selection of the most contributing fractures. From the coarse simulation ob-
tained at Step (PT2), we compute for each fracture fi the quantity Qi. Figure 5.7 reports the number
of fractures versus Qi/Qmax (%) (recall that the maximum flux Qmax is defined in (5.5)). Table 5.9
reports the number of selected fractures according to different choices for the threshold parameter.

Figure 5.7. L150: number of fractures versus their percentage of the maximum output flux.

391

A. Ern, F. Hédin, et al.

Table 5.9. L150: Number of selected fractures according to different thresholds.

Threshold #fractures above the threshold ratio of selected fractures wrt the DFN
10% 64 0.01%
1% 1,200 0.23%
0.01% 97,277 19%

Step (PT4): Generation of the nonmatching mesh (with triangles). Let us choose the
threshold 0.01% in Table 5.9 (all other choices are possible). Then 97,277 fractures are selected as the
most contributing fractures at Step (PT3). We use this set of fractures for the test case L150 (19%
of the DFN) and also for the test case L200 (8% of the DFN) owing to the embedded feature of the
considered DFNs. For the test L150, we set a mesh step of size 1m for the 97,277 selected fractures
and we coarsen the other fractures with a mesh step of 2. For the test case L200, we set a mesh step
of 1.5m for the 97,277 selected fractures and we coarsen the other fractures with a mesh step of 2m.
Table 5.10 reports the properties of the nonmatching meshes and also the mesh generation time. The
quality of the mesh is computed according to Subsection 3.3. For L150, we obtain a nonmatching mesh
containing 10,461,407 triangles which is 19% triangles less than the fine mesh described in Table 3.1.
For L200, the nonmatching mesh contains 18,648,084 triangles, which is 9% less that the fine mesh
described in Table 3.1.

Table 5.10. Nonmatching meshes for the test cases L150 and L200.

DFN #fractures #Triangles MeanT (|T |) MinT (|T |) Mean(δ) Min(δ) Time (hh:mm:ss)
L150 508k 10,461k 0.36 1.16e-11 0.69 1e-04 00:02:21
L200 1,176k 18,648k 0.47 1.16e-11 0.59 7.8e-05 00:11:51

Remark 5.2. The mesh generation time is nearly the same for the nonmatching mesh as for the
matching mesh (compare with Table 3.1) despite a lower number of triangles. This comes from the
fact that the intersections are discretized twice in the nonmatching case versus once in the matching
case. Moreover, as the contours of the ellipses are discretized by polygonal lines, some automatic
corrections happen more frequently for coarse discretization to ensure that all discrete intersections
lie within the polygons [35]. Some code optimization/parallelization is currently under investigation
in the nonmatching case to improve the mesh generation time.

Step (PT5): Vertex insertion algorithm to build the polygonal-triangular mesh. The
vertex insertion procedure used in Algorithm 3 has been implemented in a Matlab code, named
NEF-flow-polygons (Inria). It takes 00:17:11 to load the nonmatching mesh and to insert the vertices
for the L150 test case and 01:11:47 for the L200 test case. In both cases, about half of the time is
dedicated to loading the mesh data. Figure 5.8 shows the polygonal mesh with the red dots representing
the inserted vertices. For L200, the red dots are rather inside the cube (since the selected fractures are
the ones of the test L150 and therefore rather located inside the embedding cube). Hence, a smaller
number of red dots are seen on the cube surface, and these dots belong to the largest fractures, common
to the test cases L150 and L200. For L150, 3.5% cells of the polygonal-triangular mesh are polygons,
whereas this number is 1% for L200.

Remark 5.3. The code NEF-flow-polygons is a Matlab prototype and is not fully optimized. Hence,
the computational time to run Algorithm 3 can be improved, especially as there are several loops. A
C version included in the mesh generator would be much more efficient (also as there would be no
need to read the mesh data files).

392

Hybrid high-order methods

Figure 5.8. (left) L150: polygonal mesh; (right) L200 polygonal mesh. In both cases,
the red dots represent the inserted vertices.

Step (PT6): Flow computation on the new polygonal-triangular mesh. The last stage is
to run the flow simulations on the polygonal-triangular mesh built at step (PT5) using the NEF++
software. Table 5.11 and Table 5.12 report the number of dofs, the number of non-zeros (nnz) in
the linear system matrix, and the relative error on the equivalent permeability RelErr(Kx) and the
relative error (in %) on the global mass conservation |Qin,x − Qout,x|/Qin,x for the test cases L150 and
L200, respectively. We observe a slight loss in mass conservation by comparison with Table 5.2 and
Table 5.3, respectively. This is due to a lower mesh quality of the nonmatching mesh by comparison
with the initial fully triangular matching mesh (see the columns Mean(δ) in Tables 3.1 and 5.10).

The computational time for the new polygonal-triangular mesh flow simulations and the peak of
RAM for the two test cases L150 and L200 are given in Table 5.13 and 5.14, respectively.

Table 5.11. L150: Flow computation on the polygonal-triangular mesh.

k #dofs nnz RelErr(Kx) |Qin,x − Qout,x|/Qin,x

0 16,094k 80,799k 8.71 % 1.94e-09 %
1 32,189k 323,198k 2.27 % 2.62e-07 %
2 48,284k 727,196k 0.94 % 2.30e-06 %
3 64,379k 1,292,792k 0.44 % 1.05e-05 %
4 80,474k 2,019,989k 0.20 % 2.49e-05 %

Table 5.12. L200: Flow computation on the polygonal-triangular mesh.

k #dofs nnz RelErr(Kx) |Qin,x − Qout,x|/Qin,x

0 28,685k 141,415k 11.73 % 6.76e-10 %
1 57,370k 565,660k 3.26 % 5.39e-08 %
2 86,055k 1,272,735k 1.46 % 9.79e-07 %
3 114,740k 2,262,640k 0.81 % 5.21e-06 %
4 143,425k 3,535,376k 0.49 % 1.19e-05 %

5.3.3. Discussion

Let us compare the results obtained with Algorithm 1 with the ones obtained with Algorithm 2 on
the two test cases L150 and L200.

393

A. Ern, F. Hédin, et al.

Table 5.13. L150: Computational resources required for the flow computation on the
new polygonal-triangular mesh: total time Ttot (hh:mm), time of the different steps:
Input, Assembly, Solver, Postprocessing (hh:mm and % of Ttot in parentheses) and
peak of RAM (GiB).

k #dofs Ttot Input Assembly Solver Postprocessing RAM
0 16,094k 00:38 00:05 (14%) 00:06(18%) 00:03 (10%) 00:22 (58%) 65
1 32,189k 01:20 00:05 (6%) 00:17(22%) 00:09(12%) 00:47 (59%) 147
2 48,284k 02:07 00:05 (4%) 00:29 (23%) 00:17 (14%) 01:15 (59%) 273
3 64,379k 02:42 00:05(3%) 00:36 (23%) 00:29 (18%) 01:30 (56%) 434
4 80,474k 03:59 00:05 (2%) 00:55 (23%) 00:49 (21%) 02:08(53%) 641

Table 5.14. L200: Computational resources required for the flow computation on the
new polygonal-triangular mesh: total time Ttot (hh:mm), time of the different steps:
Input, Assembly, Solver, Postprocessing (hh:mm and % of Ttot in parentheses) and
peak of RAM (GiB).

k #dofs Ttot Input Assembly Solver Postprocessing RAM
0 28,685k 01:11 00:09 (14%) 00:11(17%) 00:07 (11%) 00:40(57%) 119
1 57,370k 02:28 00:09 (7%) 00:24 (17%) 00:19 (13%) 01:33 (63%) 269
2 86,055k 03:39 00:10 (5%) 00:50(23%) 00:39 (18%) 01:58 (54%) 498
3 114,740k 05:20 00:10 (3%) 01:10(22%) 01:13 (23%) 02:45 (52%) 807
4 143,425k 07:41 00:09 (2%) 01:38(21%) 02:00 (26%) 03:52 (50%) 1172

Figure 5.9 displays the relative error on the x-equivalent permeability with respect to the num-
ber of dofs (#dofs) for the test case L150 and for the three types of mesh: fully triangular coarse,
polygonal-triangular and fully triangular fine. We observe that the intermediate polygonal-triangular
mesh produces an approximation of the x-equivalent permeability as accurate as the one obtained on
the fully triangular fine mesh, while saving (k + 1)∗3,904,298 dofs. This roughly represents 15% to
25% time saved and 13% to 16% RAM saved for a given polynomial degree k (compare Table 5.4 with
Table 5.13).

Figure 5.9. L150: relative error on the x-equivalent permeability versus #dofs. Ex-
ample of gain obtained with a polygonal discretization.

394

Hybrid high-order methods

For the test case L200, as shown in Figure 5.10, we observe again that the intermediate polygonal-
triangular mesh produces an approximation of the x-equivalent permeability as accurate as the one
obtained on the fully triangular fine mesh, while saving (k+1)∗3,026,232 dofs. This represents roughly
12% to 20% time saved and 7% to 10% RAM saved for a given degree k (see Table 5.5 versus Ta-
ble 5.14).

Figure 5.10. L200: relative error on the x-equivalent permeability versus #dofs. Ex-
ample of gain obtained with a polygonal discretization.

These time savings deserve some further comments since a fair comparison requires to compare the
overall time spent on steps (PT1)-(PT6) to the overall time spent on steps (FT1)-(FT2). In that case,
the polygonal strategy is not the most relevant in terms of computational time, but the gain remains
in terms of RAM memory requirements. Thus, the present results still provide a proof of concept that
the polygonal feature of HHO helps in decreasing the number of dofs. Moreover, this study emphasizes
that staying with triangles limits the coarsening possibilities (and therefore the computational gain)
due to the geometry of the DFN and intersections. To further improve the results with HHO, general
polygonal cells can be generated also away from the intersections between fractures, using a triangle
agglomeration strategy for example. Also, a more advanced procedure based on local error estimators
as proposed for example in [6] for VEM can be quite helpful. Furthermore, alternatives to reduce the
computational cost can be considered. For example, steps (PT1-PT2-PT3) could be replaced by a
single step that does not require any flow computation and based on recent applications of the graph
theory for DFNs to know which fractures to coarsen and to refine [23, 34]. Also, step (PT5) could be
included in the mesh generator (avoiding a costly mesh reload as it is the case now).

6. Conclusion

We have successfully tested the HHO method on large scale DFNs (more than 1 million of fractures).
The implementation of the method is locally and globally conservative (whatever the polynomial
degree). The use of basis functions based on hierarchical scaled rotated monomials is important to avoid
roundoff errors due to ill-conditioning. Moreover, the use of high order polynomials is an advantage
to compute a more accurate flow without much extra time compared to a low-order method, but the
RAM memory demand increases with the polynomial order for the same number of dofs. We have
also shown that the use of nonmatching meshes and the polygonal feature of the HHO method allow
one to exploit the channelling effect of DFN flows by reducing the number of dofs, and therefore

395

A. Ern, F. Hédin, et al.

the RAM requirements. Regarding the computational time, the strategy based on a mesh/coarsening
procedure involving an additional coarse flow simulation is still costly. Other promising methods will
be tested in a near future, especially the ones based on graph theory for DFN [23, 34] or a posteriori
error estimates [6, 42]. Moreover, further reduction of the number of dofs by using the unfitted HHO
method [11] and the possibility to merge the triangles in (possibly non convex) polygons can be
considered. Finally, we are also interested in studying iterative solvers to reduce the RAM memory
requirements [39].

Acknowledgements

The authors warmly thank Patrick Laug for his fruitful collaborative work regarding mesh generation.
The authors are also grateful to the LabCom fractory (CNRS, Université de Rennes 1 and Itasca
Consultants) for providing the geometry and transmissivity data for all the DFN considered in this
paper. The present simulations presented in this paper were carried out using the Inria CLEPS ex-
perimental testbed (https://paris-cluster-2019.gitlabpages.inria.fr/). The authors warmly
thank Simon Legrand (Inria, Paris) for his technical help with CLEPS.

References

[1] F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro, and P. Tesini. On the flexibility of agglomeration based
physical space discontinuous Galerkin discretizations. J. Comput. Phys., 231(1):45–65, 2012.

[2] Lourenço Beirão da Veiga, Franco Brezzi, Luisa Donatella Marini, and Alessandro Russo. Mixed virtual
element methods for general second order elliptic problems on polygonal meshes. ESAIM, Math. Model.
Numer. Anal., 50(3):727–747, 2016.

[3] Matías Fernando Benedetto, Stefano Berrone, Sandra Pieraccini, and Stefano Scialò. The virtual element
method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng., 280:135–156, 2014.

[4] Matías Fernando Benedetto, Stefano Berrone, and Stefano Scialò. A Globally Conforming Method for
Solving Flow in Discrete Fracture Networks Using the Virtual Element Method. Finite Elem. Anal. Des.,
109(C):23–36, 2016.

[5] S. Berrone, S. Scialò, and F. Vicini. Parallel meshing, discretization, and computation of flow in massive
discrete fracture networks. SIAM J. Sci. Comput., 41(4):c317–c338, 2019.

[6] Stefano Berrone, Andrea Borio, and Alessandro D’Auria. Refinement strategies for polygonal meshes ap-
plied to adaptive VEM discretization. Finite Elem. Anal. Des., 186, 2021.

[7] Stefano Berrone, Sandra Pieraccini, and Stefano Scialò. An optimization approach for large scale simulations
of discrete fracture network flows. J. Comput. Phys., 256:838–853, 2014.

[8] E. Bonnet, O. Bour, N. E. Odling, P. Davy, I. Main, P. Cowie, and B. Berkowitz. Scaling of fracture systems
in geological media. Reviews of Geophysics, 39(3):347–383, 2001.

[9] Houman Borouchaki and Paul-Louis George. Quality mesh generation. C. R. Acad. Sci., Paris, Sér. II,
Fasc. b, Méc., 328(6):505–518, 2000.

[10] Houman Borouchaki, Patrick Laug, and Paul-Louis George. Parametric surface meshing using a combined
advancing-front generalized Delaunay approach. Int. J. Numer. Methods Eng., 49(1-2):233–259, 2000.

[11] Erik Burman and Alexandre Ern. An unfitted hybrid high-order method for elliptic interface problems.
SIAM J. Numer. Anal., 56(3):1525–1546, 2018.

[12] M. C. Cacas, E. Ledoux, G. de Marsily, B. Tillie, A. Barbreau, E. Durand, B. Feuga, and P. Peaudecerf.
Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow
model. Water Resources Research, 26(3):479–489, 1990.

396

https://paris-cluster-2019.gitlabpages.inria.fr/

Hybrid high-order methods

[13] Florent Chave, Daniele A. Di Pietro, and Luca Formaggia. A hybrid high-order method for passive transport
in fractured porous media. GEM. Int. J. Geomath., 10(1), 2019.

[14] M. Cicuttin, D. A. Di Pietro, and A. Ern. Implementation of discontinuous skeletal methods on arbitrary-
dimensional, polytopal meshes using generic programming. J. Comput. Appl. Math., 344:852–874, 2018.

[15] Mattheo Cicuttin, Alexandre Ern, and Nicolas Pignet. Hybrid high-order methods. A primer with application
to solid mechanics. SpringerBriefs in Mathematics. Springer, 2021.

[16] Bernardo Cockburn, Daniele A. Di Pietro, and Alexandre Ern. Bridging the hybrid high-order and hy-
bridizable discontinuous Galerkin methods. ESAIM, Math. Model. Numer. Anal., 50(3):635–650, 2016.

[17] Philippe Davy, Romain Le Goc, and Caroline Darcel. A model of fracture nucleation, growth and arrest,
and consequences for fracture density and scaling. J. Geophys. Res. Solid Earth, 118(4):1393–1407, 2013.

[18] Philippe Davy, Romain Le Goc, Caroline Darcel, Olivier Bour, Jean-Raynald de Dreuzy, and R. Munier.
A likely universal model of fracture scaling and its consequence for crustal hydromechanics. J. Geophys.
Res. Solid Earth, 115(B10), 2010.

[19] Jean-Raynald de Dreuzy, Géraldine Pichot, Baptiste Poirriez, and Jocelyne Erhel. Synthetic Benchmark
for Modeling Flow in 3D Fractured Media. Comput. Geosci., 50:59–71, 2013.

[20] Daniele A. Di Pietro and Jérôme Droniou. The hybrid high-order method for polytopal meshes. Design,
analysis, and applications, volume 19. Springer, 2020.

[21] Daniele A. Di Pietro and Alexandre Ern. A hybrid high-order locking-free method for linear elasticity on
general meshes. Comput. Methods Appl. Mech. Eng., 283:1–21, 2015.

[22] Daniele A. Di Pietro, Alexandre Ern, and Simon Lemaire. An arbitrary-order and compact-stencil dis-
cretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl.
Math., 14(4):461–472, 2014.

[23] D. Doolaeghe, P. Davy, J. D. Hyman, and C. Darcel. Graph-based flow modeling approach adapted to
multiscale discrete-fracture-network models. Phys. Rev. E, 102(5), 2020.

[24] Jocelyne Erhel, Jean-Raynald de Dreuzy, and Baptiste Poirriez. Flow simulation in three-dimensional
discrete fracture networks. SIAM J. Sci. Comput., 31(4):2688–2705, 2009.

[25] Luca Formaggia, Alessio Fumagalli, Anna Scotti, and Paolo Ruffo. A reduced model for Darcy’s problem
in networks of fractures. ESAIM, Math. Model. Numer. Anal., 48(4):1089–1116, 2014.

[26] André Fourno, Tri-Dat Ngo, Benoit Noetinger, and Christian La Borderie. FraC: A new conforming mesh
method for discrete fracture networks. J. Comput. Phys., 376:713–732, 2019.

[27] Alessio Fumagalli and Eirik Keilegavlen. Dual virtual element method for discrete fractures networks. SIAM
J. Sci. Comput., 40(1):b228–b258, 2018.

[28] Alessio Fumagalli, Eirik Keilegavlen, and Stefano Scialò. Conforming, non-conforming and non-matching
discretization couplings in discrete fracture network simulations. J. Comput. Phys., 376:694–712, 2019.

[29] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.
[30] Florent Hédin, Géraldine Pichot, and Alexandre Ern. Hho-DFN: a Hybrid High Order (HHO) method for

the simulation of flow in large tridimensional Discrete Fracture Networks. In Numerical Mathematics and
Advanced Applications ENUMATH 2019. Springer, 2019.

[31] Jeffrey D. Hyman, Carl W. Gable, Scott L. Painter, and Nataliia Makedonska. Conforming Delaunay
triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection
algorithm for meshing strategy. SIAM J. Sci. Comput., 36(4):a1871–a1894, 2014.

[32] Jeffrey D. Hyman, Satish Karra, Nataliia Makedonska, Carl W. Gable, Scott L. Painter, and Hari S.
Viswanathan. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport.
Comput. Geosci., 84:10–19, 2015.

[33] Intel. Mkl. https://software.intel.com/en-us/mkl, 2019.

397

http://eigen.tuxfamily.org
https://software.intel.com/en-us/mkl

A. Ern, F. Hédin, et al.

[34] S. Karra, D. O’Malley, J. D. Hyman, H. S. Viswanathan, and G. Srinivasan. Modeling flow and transport
in fracture networks using graphs. Phys. Rev. E, 97(3), 2018.

[35] Patrick Laug and Géraldine Pichot. Mesh Generation and Flow Simulation in Large Tridimensional Fracture
Networks. In MASCOT2018 - 15th Meeting on Applied Scientific Computing and Tools, volume 22 of
IMACS Series in Computational and Applied Mathematics, 2019.

[36] J. Maillot, P. Davy, R. Le Goc, C. Darcel, and J.-R. de Dreuzy. Connectivity, permeability, and channel-
ing in randomly distributed and kinematically defined discrete fracture network models. Water Resources
Research, 52(11):8526–8545, 2016.

[37] Vincent Martin, Jérôme Jaffré, and Jean E. Roberts. Modeling fractures and barriers as interfaces for flow
in porous media. SIAM J. Sci. Comput., 26(5):1667–1691, 2005.

[38] Jiří Maryška, Otto Severýn, and Martin Vohralík. Numerical simulation of fracture flow with a mixed-
hybrid FEM stochastic discrete fracture network model. Comput. Geosci., 8(3):217–234, 2004.

[39] Ani Miraçi, Jan Papež, and Martin Vohralík. A multilevel algebraic error estimator and the corresponding
iterative solver with p-robust behavior. SIAM J. Numer. Anal., 58(5):2856–2884, 2020.

[40] Tri-Dat Ngo, André Fourno, and Benoit Noetinger. Modeling of transport processes through large-scale
discrete fracture networks using conforming meshes and open-source software. Journal of Hydrology, 554:66–
79, 2017.

[41] G. Pichot, J. Erhel, and J.-R. de Dreuzy. A generalized mixed hybrid mortar method for solving flow in
stochastic discrete fracture networks. SIAM J. Sci. Comput., 34(1):b86–b105, 2012.

[42] Martin Vohralík. A posteriori error estimates for lowest-order mixed finite element discretizations of
convection-diffusion-reaction equations. SIAM J. Numer. Anal., 45(4):1570–1599, 2007.

398

	1. Introduction
	2. The flow problem
	3. Mesh generation
	3.1. Algorithm
	3.2. Notation
	3.3. Computational resources and mesh quality

	4. The HHO method
	4.1. Local HHO spaces and operators
	4.2. Assembly of the discrete problem in the DFN
	4.3. Recovery of equilibrated fluxes

	5. Study of computational performance
	5.1. Choice of the HHO basis functions
	5.2. Trade-off between polynomial order and mesh refinement
	5.3. How to take advantage of polygonal cells?
	5.3.1. A mesh refinement/coarsening procedure
	5.3.2. Numerical tests
	5.3.3. Discussion

	6. Conclusion
	Acknowledgements
	References

