Tensor-Product Discretization for the Spatially Inhomogeneous and Transient Boltzmann Equation in Two Dimensions
The SMAI Journal of computational mathematics, Volume 3 (2017), pp. 219-248.

We consider the spatially inhomogeneous and nonlinear Boltzmann equation for the variable hard spheres model. The distribution function is discretized by a tensor-product ansatz by combining Maxwellian modulated Laguerre polynomials in velocity with continuous, linear finite elements in the spatial domain. The advection problem in phase space is discretized through a Galerkin least squares technique and yields an implicit formulation in time. The discrete collision operator can be evaluated with an asymptotic effort of 𝒪(K 5 ), where K is the number of velocity degrees of freedom in a single direction. Numerical results in 2D are presented for rarefied gases with different Mach and Knudsen numbers.

Published online:
DOI: 10.5802/smai-jcm.26
Classification: 76J20, 76H05, 76P05, 82C40, 82D05, 65Y05, 65M60
Philipp Grohs 1; Ralf Hiptmair 2; Simon Pintarelli 2

1 University of Vienna, Faculty of Mathematics
2 ETH Zürich, Seminar for Applied Mathematics
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2017__3__219_0,
     author = {Philipp Grohs and Ralf Hiptmair and Simon Pintarelli},
     title = {Tensor-Product {Discretization} for the {Spatially} {Inhomogeneous} and {Transient} {Boltzmann} {Equation} in {Two} {Dimensions}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {219--248},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {3},
     year = {2017},
     doi = {10.5802/smai-jcm.26},
     zbl = {1416.82038},
     mrnumber = {3716757},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.26/}
}
TY  - JOUR
AU  - Philipp Grohs
AU  - Ralf Hiptmair
AU  - Simon Pintarelli
TI  - Tensor-Product Discretization for the Spatially Inhomogeneous and Transient Boltzmann Equation in Two Dimensions
JO  - The SMAI Journal of computational mathematics
PY  - 2017
SP  - 219
EP  - 248
VL  - 3
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.26/
DO  - 10.5802/smai-jcm.26
LA  - en
ID  - SMAI-JCM_2017__3__219_0
ER  - 
%0 Journal Article
%A Philipp Grohs
%A Ralf Hiptmair
%A Simon Pintarelli
%T Tensor-Product Discretization for the Spatially Inhomogeneous and Transient Boltzmann Equation in Two Dimensions
%J The SMAI Journal of computational mathematics
%D 2017
%P 219-248
%V 3
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.26/
%R 10.5802/smai-jcm.26
%G en
%F SMAI-JCM_2017__3__219_0
Philipp Grohs; Ralf Hiptmair; Simon Pintarelli. Tensor-Product Discretization for the Spatially Inhomogeneous and Transient Boltzmann Equation in Two Dimensions. The SMAI Journal of computational mathematics, Volume 3 (2017), pp. 219-248. doi : 10.5802/smai-jcm.26. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.26/

[1] M. Abramowitz; I. Stegun Handbook of Mathematical Functions, Dover, 1972 http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0486612724 | Zbl

[2] W. Bangerth; T. Heister; L. Heltai; G. Kanschat; M. Kronbichler; M. Maier; B. Turcksin The deal.II library, Version 8.3, Archive of Numerical Software, Volume 4 (2016) no. 100, pp. 1-11 http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/23122 | DOI

[3] G. A Bird Molecular Gas Dynamics And The Direct Simulation Of Gas Flows, Clarendon Press; Oxford University Press, 1994 http://app.knovel.com/hotlink/toc/id:kpMGDDSGF3/molecular-gas-dynamics

[4] A. Bobylev; S. Rjasanow Difference scheme for the Boltzmann equation based on the Fast Fourier Transform, European Journal of Mechanics, B/Fluids, Volume 16 (1997) no. 2, pp. 293-306 | MR | Zbl

[5] A. V. Bobylev; S. Rjasanow Fast deterministic method of solving the Boltzmann equation for hard spheres, Eur. J. Mech. B. Fluids, Volume 18 (1999) no. 5, pp. 869-887 http://www.sciencedirect.com/science/article/pii/S0997754699001211 | DOI | MR | Zbl

[6] C. Cercignani Chapter 1 - The Boltzmann Equation and Fluid Dynamics, Handbook of Mathematical Fluid Dynamics (S. Friedlander D. Serre, ed.), Volume 1, North-Holland, 2002, pp. 1-69 http://www.sciencedirect.com/science/article/pii/S1874579202800039 | DOI | Zbl

[7] G. Dimarco; L. Pareschi Numerical methods for kinetic equations, Acta Numerica, Volume 23 (2014), pp. 369-520 | DOI | MR | Zbl

[8] A. F. Emery An evaluation of several differencing methods for inviscid fluid flow problems, J. Comput. Phys., Volume 2 (1968) no. 3, pp. 306-331 http://www.sciencedirect.com/science/article/pii/0021999168900600 | DOI | MR | Zbl

[9] A. Ya Ender; I. A. Ender Polynomial expansions for the isotropic Boltzmann equation and invariance of the collision integral with respect to the choice of basis functions, Physics of Fluids (1994-present), Volume 11 (1999) no. 9, pp. 2720-2730 | DOI | MR | Zbl

[10] F. Filbet On deterministic approximation of the Boltzmann equation in a bounded domain, Multiscale Modeling & Simulation, Volume 10 (2012) no. 3, pp. 792-817 | DOI | MR | Zbl

[11] F. Filbet; C. Mouhot; L. Pareschi Solving the Boltzmann equation in N log N, SIAM J. Sci. Comput., Volume 28 (2006) no. 3, pp. 1029-1053 | arXiv | DOI | Zbl

[12] F. Filbet; L. Pareschi; T. Rey On steady-state preserving spectral methods for homogeneous Boltzmann equations, C.R. Math., Volume 353 (2015) no. 4, pp. 309-314 http://www.sciencedirect.com/science/article/pii/S1631073X15000412 | DOI | MR

[13] E. Fonn; P. Grohs; R. Hiptmair Polar spectral scheme for the spatially homogeneous Boltzmann equation (2014) no. 2014-13 (Technical report)

[14] G. Kitzler; J. Schöberl Efficient spectral methods for the spatially homogeneous Boltzmann equation (2013) no. 13/2013 http://www.asc.tuwien.ac.at/preprint/2013/asc13x2013.pdf (Technical report)

[15] I. M. Gamba; S. H. Tharkabhushanam Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states, J. Comput. Phys., Volume 228 (2009) no. 6, pp. 2012-2036 http://www.sciencedirect.com/science/article/pii/S002199910800613X | DOI | MR | Zbl

[16] G. H. Golub; J. H. Welsch Calculation of Gauss quadrature rules, Math. Comput., Volume 23 (1969) no. 106, p. 221-s10 http://www.jstor.org/stable/2004418 | DOI | MR | Zbl

[17] H. Grad Principles of the kinetic theory of gases, Thermodynamics of Gases (S. Flügge, ed.) (Encyclopedia of Physics), Springer Berlin Heidelberg, 1958 no. 3 / 12, pp. 205-294 | DOI

[18] P. Grohs; R. Hiptmair; S. Pintarelli Tensor-product discretization for the spatially inhomogeneous and transient Boltzmann equation in 2D (2015) no. 2015-38 https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2015/2015-38.pdf (Technical report)

[19] M.A. Heroux; R. A. Bartlett; V. E. Howle; R. J. Hoekstra; J. J. Hu; T. G. Kolda; R. B. Lehoucq; K. R. Long; R. P. Pawlowski; E. T. Phipps; A. G. Salinger; H. K. Thornquist; R. S. Tuminaro; J. M. Willenbring; A. Williams; K. S. Stanley An Overview of the Trilinos Project, ACM Trans. Math. Softw., Volume 31 (2005) no. 3, pp. 397-423 | DOI | MR

[20] T. Jahnke; C. Lubich Error Bounds for Exponential Operator Splittings, BIT Numerical Mathematics, Volume 40 (2000) no. 4, pp. 735-744 https://link.springer.com/article/10.1023/A:1022396519656 | DOI | MR | Zbl

[21] R. Käppeli; S. C. Whitehouse; S. Scheidegger; U.-L. Pen; M. Liebendörfer FISH: A Three-dimensional Parallel Magnetohydrodynamics Code for Astrophysical Applications, The Astrophysical Journal Supplement Series, Volume 195 (2011) no. 2 http://stacks.iop.org/0067-0049/195/i=2/a=20 | DOI

[22] G. Kitzler; J. Schöberl A high order space–momentum discontinuous Galerkin method for the Boltzmann equation, Computers & Mathematics with Applications, Volume 70 (2015) no. 7, pp. 1539-1554 http://www.sciencedirect.com/science/article/pii/S0898122115002977 | DOI | MR

[23] K. Nanbu Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent Gases, J. Phys. Soc. Jpn., Volume 49 (1980) no. 5, pp. 2042-2049 | DOI

[24] P. B. Bochev; M. D. Gunzburger Least-squares finite element methods, Applied mathematical sciences, 166, Springer, 2009 | DOI | MR | Zbl

[25] L. Pareschi; B. Perthame A Fourier spectral method for homogeneous Boltzmann equations, Transp. Theory Stat. Phys., Volume 25 (1996) no. 3-5, pp. 369-382 | DOI | MR | Zbl

[26] L. Pareschi; G. Russo Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator, SIAM J. Numer. Anal., Volume 37 (2000) no. 4, pp. 1217-1245 | DOI | MR | Zbl

[27] B. Shizgal A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems, J. Comput. Phys., Volume 41 (1981) no. 2, pp. 309-328 http://www.sciencedirect.com/science/article/pii/0021999181900991 | DOI | MR | Zbl

[28] C. Villani A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, Vol. 1 (S. Friedlander; D. Serre, eds.), Elsevier, 2002, pp. 71-305 http://www.umpa.ens-lyon.fr/~cvillani/GZPDF/B01.Handbook.pdf.gz | DOI | Zbl

[29] U. Wiesmann The Spherical Laguerre Method for the Spatially Homogeneous Boltzmann Equation (2015) (masterthesis, ETH Zurich)

[30] L. Wu; C. White; T. J. Scanlon; J. M. Reese; Y. Zhang Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, J. Comput. Phys., Volume 250 (2013), pp. 27-52 http://www.sciencedirect.com/science/article/pii/S0021999113003276 | DOI | MR | Zbl

Cited by Sources: