Computational Serendipity and Tensor Product Finite Element Differential Forms
The SMAI journal of computational mathematics, Volume 5 (2019), pp. 1-21.

Many conforming finite elements on squares and cubes are elegantly classified into families by the language of finite element exterior calculus and presented in the Periodic Table of the Finite Elements. Use of these elements varies, based principally on the ease or difficulty in finding a “computational basis” of shape functions for element families. The tensor product family, ${𝒬}_{r}^{-}{\Lambda }^{k}$, is most commonly used because computational basis functions are easy to state and implement. The trimmed and non-trimmed serendipity families, ${𝒮}_{r}^{-}{\Lambda }^{k}$ and ${𝒮}_{r}{\Lambda }^{k}$ respectively, are used less frequently because they are newer to the community and, until now, lacked a straightforward technique for computational basis construction. This represents a missed opportunity for computational efficiency as the serendipity elements in general have fewer degrees of freedom than elements of equivalent accuracy from the tensor product family. Accordingly, in pursuit of easy adoption of the serendipity families, we present complete lists of computational bases for both serendipity families, for any order $r\ge 1$ and for any differential form order $0\le k\le n$, for problems in dimension $n=2$ or $3$. The bases are defined via shared subspace structures, allowing easy comparison of elements across families. We use and include code in SageMath to find, list, and verify these computational basis functions.

Supplementary Materials:

Published online:
DOI: 10.5802/smai-jcm.41
Classification: 65N30
Keywords: Finite element differential forms, finite element exterior calculus, serendipity elements, cubical meshes, cubes
@article{SMAI-JCM_2019__5__1_0,
author = {Andrew Gillette and Tyler Kloefkorn and Victoria Sanders},
title = {Computational {Serendipity} and {Tensor} {Product}  {Finite} {Element} {Differential} {Forms}},
journal = {The SMAI journal of computational mathematics},
pages = {1--21},
publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
volume = {5},
year = {2019},
doi = {10.5802/smai-jcm.41},
mrnumber = {3928533},
zbl = {07090177},
language = {en},
url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.41/}
}
TY  - JOUR
TI  - Computational Serendipity and Tensor Product  Finite Element Differential Forms
JO  - The SMAI journal of computational mathematics
PY  - 2019
DA  - 2019///
SP  - 1
EP  - 21
VL  - 5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.41/
UR  - https://www.ams.org/mathscinet-getitem?mr=3928533
UR  - https://zbmath.org/?q=an%3A07090177
UR  - https://doi.org/10.5802/smai-jcm.41
DO  - 10.5802/smai-jcm.41
LA  - en
ID  - SMAI-JCM_2019__5__1_0
ER  - 
%0 Journal Article
%T Computational Serendipity and Tensor Product  Finite Element Differential Forms
%J The SMAI journal of computational mathematics
%D 2019
%P 1-21
%V 5
%I Société de Mathématiques Appliquées et Industrielles
%U https://doi.org/10.5802/smai-jcm.41
%R 10.5802/smai-jcm.41
%G en
%F SMAI-JCM_2019__5__1_0
Andrew Gillette; Tyler Kloefkorn; Victoria Sanders. Computational Serendipity and Tensor Product  Finite Element Differential Forms. The SMAI journal of computational mathematics, Volume 5 (2019), pp. 1-21. doi : 10.5802/smai-jcm.41. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.41/

[1] M. Alnæs; J. Blechta; J. Hake; A. Johansson; B. Kehlet; A. Logg; C. Richardson; J. Ring; M. E Rognes; G. N Wells The FEniCS project version 1.5, Archive of Numerical Software, Volume 3 (2015) no. 100, pp. 9-23

[2] M. Alnæs; A. Logg; K. Ølgaard; M. Rognes; G. Wells Unified form language: a domain-specific language for weak formulations of partial differential equations, ACM Transactions on Mathematical Software, Volume 40 (2014) no. 2, pp. 9:1-37 | Article | MR: 3181899 | Zbl: 1308.65175

[3] D. Arnold; G. Awanou Finite element differential forms on cubical meshes, Mathematics of Computation, Volume 83 (2014) no. 288, pp. 1551-1570 | Article | MR: 3194121 | Zbl: 1297.65142

[4] D. Arnold; D. Boffi; F. Bonizzoni Finite element differential forms on curvilinear cubic meshes and their approximation properties, Numerische Mathematik (2014), pp. 1-20

[5] D. Arnold; A. Logg Periodic Table of the Finite Elements, SIAM News, Volume 47 (2014. femtable.org) no. 9

[6] D. N Arnold; R. S Falk; R. Winther Geometric decompositions and local bases for spaces of finite element differential forms, Computer Methods in Applied Mechanics and Engineering, Volume 198 (2009) no. 21-26, pp. 1660-1672 | Article | MR: 2517938 | Zbl: 1227.65091

[7] D. N Arnold; R. S Falk; R. Winther Finite element exterior calculus: from Hodge theory to numerical stability, Bulletin of the American Mathematical Society, Volume 47 (2010) no. 2, pp. 281-354 | Article | MR: 2594630 | Zbl: 1207.65134

[8] W. Bangerth; R. Hartmann; G. Kanschat deal.II—a general-purpose object-oriented finite element library, ACM Transactions on Mathematical Software (TOMS), Volume 33 (2007) no. 4, p. 24-es | Article | MR: 2404402 | Zbl: 1365.65248

[9] A. Bossavit A uniform rationale for Whitney forms on various supporting shapes, Mathematics and Computers in Simulation, Volume 80 (2010) no. 8, pp. 1567-1577 | Article | MR: 2647251 | Zbl: 1196.78024

[10] F. Brezzi; J. Douglas Jr; L. D. Marini Two families of mixed finite elements for second order elliptic problems, Numerische Mathematik, Volume 47 (1985) no. 2, pp. 217-235 | Article | MR: 799685 | Zbl: 0599.65072

[11] W. Chen; Y. Wang Minimal degree $H$(curl) and $H$(div) conforming finite elements on polytopal meshes, Mathematics of Computation (2016) | Article | Zbl: 1364.65244

[12] A. Douglas; F. Richard; W. Ragnar Finite element exterior calculus, homological techniques, and applications, Acta Numerica (2006), pp. 1-155 | MR: 2269741 | Zbl: 1185.65204

[13] A. Gillette; T. Kloefkorn Trimmed serendipity finite element differential forms, Mathematics of Computation, Volume to appear (2018) | Zbl: 1405.65149

[14] A. Gillette; A. Rand; C. Bajaj Construction of Scalar and Vector Finite Element Families on Polygonal and Polyhedral Meshes, Computational Methods in Applied Mathematics, Volume 16 (2016) no. 4, pp. 667-683 | Article | MR: 3552487 | Zbl: 1348.65163

[15] J.-C. Nédélec Mixed finite elements in ${\mathbf{R}}^{3}$, Numerische Mathematik, Volume 35 (1980) no. 3, pp. 315-341 | Article

[16] J.-C. Nédélec A new family of mixed finite elements in ${\mathbf{R}}^{3}$, Numerische Mathematik, Volume 50 (1986) no. 1, pp. 57-81 | MR: 864305 | Zbl: 0625.65107

[17] F. Rathgeber; D. A Ham; L. Mitchell; M. Lange; F. Luporini; A. TT McRae; G.-T. Bercea; G. R Markall; P. HJ Kelly Firedrake: automating the finite element method by composing abstractions, ACM Transactions on Mathematical Software (TOMS), Volume 43 (2017) no. 3, 24 pages | Article | MR: 3615280 | Zbl: 1396.65144

[18] P.-A. Raviart; J.-M. Thomas A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite Element Methods, Springer, 1977, pp. 292-315 | Article | Zbl: 0362.65089

[19] The Sage Developers SageMath, the Sage Mathematics Software System (Version 7.6) (2017) (http://www.sagemath.org)

[20] S. Zaglmayr High Order Finite Element Methods for Electromagnetic Field Computation (2006) (Ph. D. Thesis)

Cited by Sources: