A nonconforming primal hybrid finite element method for the two-dimensional vector Laplacian
The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 85-106.

We introduce a nonconforming hybrid finite element method for the two-dimensional vector Laplacian, based on a primal variational principle for which conforming methods are known to be inconsistent. Consistency is ensured using penalty terms similar to those used to stabilize hybridizable discontinuous Galerkin (HDG) methods, with a carefully chosen penalty parameter due to Brenner, Li, and Sung [Math. Comp., 76 (2007), pp. 573–595]. Our method accommodates elements of arbitrarily high order and, like HDG methods, it may be implemented efficiently using static condensation. The lowest-order case recovers the P 1 -nonconforming method of Brenner, Cui, Li, and Sung [Numer. Math., 109 (2008), pp. 509–533], and we show that higher-order convergence is achieved under appropriate regularity assumptions. The analysis makes novel use of a family of weighted Sobolev spaces, due to Kondrat’ev, for domains admitting corner singularities.

Published online:
DOI: 10.5802/smai-jcm.107
Classification: 65N30, 65N15, 35Q60
Keywords: nonconforming finite element methods, hybridization, hydridizable discontinuous Galerkin methods, vector Laplacian, weighted Sobolev spaces

Mary Barker 1; Shuhao Cao 2; Ari Stern 3

1 Public Health Sciences Division, Fred Hutchinson Cancer Center
2 Division of Computing, Analytics, and Mathematics, University of Missouri–Kansas City
3 Department of Mathematics, Washington University in St. Louis
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2024__10__85_0,
     author = {Mary Barker and Shuhao Cao and Ari Stern},
     title = {A nonconforming primal hybrid finite element method for the two-dimensional vector {Laplacian}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {85--106},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {10},
     year = {2024},
     doi = {10.5802/smai-jcm.107},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.107/}
}
TY  - JOUR
AU  - Mary Barker
AU  - Shuhao Cao
AU  - Ari Stern
TI  - A nonconforming primal hybrid finite element method for the two-dimensional vector Laplacian
JO  - The SMAI Journal of computational mathematics
PY  - 2024
SP  - 85
EP  - 106
VL  - 10
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.107/
DO  - 10.5802/smai-jcm.107
LA  - en
ID  - SMAI-JCM_2024__10__85_0
ER  - 
%0 Journal Article
%A Mary Barker
%A Shuhao Cao
%A Ari Stern
%T A nonconforming primal hybrid finite element method for the two-dimensional vector Laplacian
%J The SMAI Journal of computational mathematics
%D 2024
%P 85-106
%V 10
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.107/
%R 10.5802/smai-jcm.107
%G en
%F SMAI-JCM_2024__10__85_0
Mary Barker; Shuhao Cao; Ari Stern. A nonconforming primal hybrid finite element method for the two-dimensional vector Laplacian. The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 85-106. doi : 10.5802/smai-jcm.107. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.107/

[1] Franck Assous; Patrick Ciarlet; Eric Sonnendrücker Resolution of the Maxwell equations in a domain with reentrant corners, RAIRO, Modélisation Math. Anal. Numér., Volume 32 (1998) no. 3, pp. 359-389 | DOI | Numdam | MR

[2] Douglas N. Arnold; Richard S. Falk; Ragnar Winther Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Am. Math. Soc., Volume 47 (2010) no. 2, pp. 281-354 | DOI | MR | Zbl

[3] Daniele Boffi; Franco Brezzi; Michel Fortin Mixed finite element methods and applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | DOI

[4] Susanne C. Brenner; Jintao Cui; Fengyan Li; Li-Yeng Sung A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem, Numer. Math., Volume 109 (2008) no. 4, pp. 509-533 | DOI | MR

[5] Susanne C. Brenner; Jintao Cui; Z. Nan; Li-Yeng Sung Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations, Math. Comput., Volume 81 (2012) no. 278, pp. 643-659 | DOI | MR | Zbl

[6] Daniele Boffi; Ricardo G. Durán; Lucia Gastaldi A remark on spurious eigenvalues in a square, Appl. Math. Lett., Volume 12 (1999) no. 3, pp. 107-114 | DOI | MR | Zbl

[7] Susanne C. Brenner; Joscha Gedicke; Li-Yeng Sung Hodge decomposition for two-dimensional time-harmonic Maxwell’s equation: impedance boundary condition, Math. Methods Appl. Sci., Volume 40 (2017) no. 2, pp. 370-390 | DOI | MR

[8] Susanne C. Brenner; Fengyan Li; Li-Yeng Sung A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations, Math. Comput., Volume 76 (2007) no. 258, pp. 573-595 | DOI | MR | Zbl

[9] Susanne C. Brenner; Fengyan Li; Li-Yeng Sung A locally divergence-free interior penalty method for two-dimensional curl-curl problems, SIAM J. Numer. Anal., Volume 46 (2008) no. 3, pp. 1190-1211 | DOI | MR | Zbl

[10] Susanne C. Brenner; Fengyan Li; Li-Yeng Sung A nonconforming penalty method for a two-dimensional curl-curl problem, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 4, pp. 651-668 | DOI | MR | Zbl

[11] Susanne C. Brenner; Fengyan Li; Li-Yeng Sung Nonconforming Maxwell eigensolvers, J. Sci. Comput., Volume 40 (2009) no. 1-3, pp. 51-85 | DOI | MR | Zbl

[12] Susanne C. Brenner; Li-Yeng Sung A quadratic nonconforming vector finite element for H( curl ;Ω)H( div ;Ω), Appl. Math. Lett., Volume 22 (2009) no. 6, pp. 892-896 | DOI | MR | Zbl

[13] Mikhail Sh. Birman; Mikhaĭl Z. Solomyak L 2 -theory of the Maxwell operator in arbitrary domains, Usp. Mat. Nauk, Volume 42 (1987) no. 6, pp. 61-76 | MR | Zbl

[14] Martin Costabel; Monique Dauge Singularities of electromagnetic fields in polyhedral domains, Arch. Ration. Mech. Anal., Volume 151 (2000) no. 3, pp. 221-276 | DOI | MR | Zbl

[15] Martin Costabel; Monique Dauge Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math., Volume 93 (2002) no. 2, pp. 239-277 | DOI | Zbl

[16] Bernardo Cockburn; Jayadeep Gopalakrishnan; Raytcho Lazarov Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., Volume 47 (2009) no. 2, pp. 1319-1365 | DOI | MR | Zbl

[17] Michel Crouzeix; Pierre-Arnaud Raviart Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Franc. Automat. Inform. Rech. Operat., Volume 7 (1973) no. R-3, pp. 33-76 | Numdam | MR

[18] Monique Dauge Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, 1341, Springer, 1988 | DOI

[19] Thomas H. Gibson; Lawrence Mitchell; David A. Ham; Colin J. Cotter Slate: extending Firedrake’s domain-specific abstraction to hybridized solvers for geoscience and beyond, Geosci. Model Dev., Volume 13 (2020) no. 2, pp. 735-761 | DOI

[20] Vivette Girault; Pierre-Arnaud Raviart Finite element methods for Navier–Stokes equations, Springer Series in Computational Mathematics, 5, Springer, 1986 | DOI

[21] Qingguo Hong; Yuwen Li; Jinchao Xu An extended Galerkin analysis in finite element exterior calculus, Math. Comput., Volume 91 (2022) no. 335, pp. 1077-1106 | MR | Zbl

[22] Qingguo Hong; Shuonan Wu; Jinchao Xu An extended Galerkin analysis for elliptic problems, Sci. China, Math., Volume 64 (2021) no. 9, pp. 2141-2158 | DOI | MR | Zbl

[23] Vladimir A. Kozlov; Vladimir G. Maz’ya; Jurgen Rossmann Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, 52, American Mathematical Society, 1997

[24] Vladimir A. Kondrat’ev Boundary value problems for elliptic equations in domains with conical or angular points, Tr. Mosk. Mat. O.-va, Volume 16 (1967), pp. 209-292 | MR

[25] Buyang Li; Zhimin Zhang A new approach for numerical simulation of the time-dependent Ginzburg–Landau equations, J. Comput. Phys., Volume 303 (2015), pp. 238-250 | MR | Zbl

[26] Buyang Li; Zhimin Zhang Mathematical and numerical analysis of the time-dependent Ginzburg–Landau equations in nonconvex polygons based on Hodge decomposition, Math. Comput., Volume 86 (2017) no. 306, pp. 1579-1608 | MR | Zbl

[27] Jean-Marie Mirebeau Nonconforming vector finite elements for H( curl ;Ω)H( div ;Ω), Appl. Math. Lett., Volume 25 (2012) no. 3, pp. 369-373 | DOI | MR | Zbl

[28] Peter Monk Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 2003 | DOI

[29] Sergey A. Nazarov; Boris A. Plamenevsky Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, 13, Walter de Gruyter, 1994 | DOI

[30] Florian Rathgeber; David A. Ham; Lawrence Mitchell; Michael Lange; Fabio Luporini; Andrew T. T. McRae; Gheorghe-Teodor Bercea; Graham R. Markall; Paul H. J. Kelly Firedrake: automating the finite element method by composing abstractions, ACM Trans. Math. Softw., Volume 43 (2017) no. 3, 24, 27 pages | Zbl

[31] Pierre-Arnaud Raviart; Jean-Marie Thomas Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comput., Volume 31 (1977), pp. 391-413 | DOI | Zbl

[32] Cornelia Schneider Beyond Sobolev and Besov: regularity of solutions of PDEs and their traces in function spaces, Lecture Notes in Mathematics, 2291, Springer, 2021

[33] Alfred H. Schatz An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comput., Volume 28 (1974), pp. 959-962 | DOI | MR | Zbl

Cited by Sources: