In this paper we study the convergence of a fully discrete Crank–Nicolson Galerkin scheme for the initial value problem associated with the fractional Korteweg-de Vries (KdV) equation, which involves the fractional Laplacian and non-linear convection terms. Our proof relies on the Kato type local smoothing effect to estimate the localized -norm of the approximated solution, where . We demonstrate that the scheme converges strongly in to a weak solution of the fractional KdV equation provided the initial data in . Assuming the initial data is sufficiently regular, we obtain the rate of convergence for the numerical scheme. Finally, the theoretical convergence rates are justified numerically through various numerical illustrations.
DOI: 10.5802/smai-jcm.108
Keywords: Fractional Korteweg-de Vries equation, fractional Laplacian, Galerkin method, rate of convergence, $L^2$ initial data
Mukul Dwivedi 1; Tanmay Sarkar 1
@article{SMAI-JCM_2024__10__107_0, author = {Mukul Dwivedi and Tanmay Sarkar}, title = {Stability and {Convergence} analysis of a {Crank{\textendash}Nicolson} {Galerkin} scheme for the fractional {Korteweg-de} {Vries} equation}, journal = {The SMAI Journal of computational mathematics}, pages = {107--139}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {10}, year = {2024}, doi = {10.5802/smai-jcm.108}, mrnumber = {4758579}, zbl = {1543.35201}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.108/} }
TY - JOUR AU - Mukul Dwivedi AU - Tanmay Sarkar TI - Stability and Convergence analysis of a Crank–Nicolson Galerkin scheme for the fractional Korteweg-de Vries equation JO - The SMAI Journal of computational mathematics PY - 2024 SP - 107 EP - 139 VL - 10 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.108/ DO - 10.5802/smai-jcm.108 LA - en ID - SMAI-JCM_2024__10__107_0 ER -
%0 Journal Article %A Mukul Dwivedi %A Tanmay Sarkar %T Stability and Convergence analysis of a Crank–Nicolson Galerkin scheme for the fractional Korteweg-de Vries equation %J The SMAI Journal of computational mathematics %D 2024 %P 107-139 %V 10 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.108/ %R 10.5802/smai-jcm.108 %G en %F SMAI-JCM_2024__10__107_0
Mukul Dwivedi; Tanmay Sarkar. Stability and Convergence analysis of a Crank–Nicolson Galerkin scheme for the fractional Korteweg-de Vries equation. The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 107-139. doi : 10.5802/smai-jcm.108. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.108/
[1] Nonlocal models for nonlinear, dispersive waves, Physica D, Volume 40 (1989) no. 3, pp. 360-392 | DOI | MR | Zbl
[2] Local elliptic regularity for the Dirichlet fractional Laplacian, Adv. Nonlinear Stud., Volume 17 (2017) no. 2, pp. 387-409 | DOI | MR | Zbl
[3] The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, 2002 | DOI
[4] Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | DOI | MR | Zbl
[5] Operator splitting for the Benjamin–Ono equation, J. Differ. Equations, Volume 259 (2015) no. 11, pp. 6694-6717 | DOI | MR | Zbl
[6] Convergence of finite difference schemes for the Benjamin–Ono equation, Numer. Math., Volume 134 (2016) no. 2, pp. 249-274 | DOI | MR | Zbl
[7] Convergence of a higher order scheme for the Korteweg–de Vries equation, SIAM J. Numer. Anal., Volume 53 (2015) no. 4, pp. 1963-1983 | DOI | MR | Zbl
[8] A note on the convergence of a Crank–Nicolson scheme for the KdV equation, Int. J. Numer. Anal. Model., Volume 13 (2016) no. 5, pp. 657-675 | MR | Zbl
[9] Operator splitting for the fractional Korteweg–de Vries equation, Numer. Methods Partial Differ. Equations, Volume 37 (2021) no. 6, pp. 3000-3022 | DOI | MR | Zbl
[10] The IVP for the dispersion generalized Benjamin–Ono equation in weighted Sobolev spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) no. 5, pp. 763-790 | DOI | Numdam | MR | Zbl
[11] Convergence rates of a fully discrete Galerkin scheme for the Benjamin–Ono equation, XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications (Christian Klingenberg; Michael Westdickenberg, eds.) (Springer Proceedings in Mathematics & Statistics), Volume 236, Springer (2016), pp. 589-601 | MR | Zbl
[12] Convergent Crank–Nicolson Galerkin Scheme for the Benjamin–Ono Equation, Masters thesis, NTNU Norwegian University of Science and Technology (2016)
[13] A convergent Crank–Nicolson Galerkin scheme for the Benjamin–Ono equation, Discrete Contin. Dyn. Syst., Volume 38 (2018) no. 3, pp. 1243-1268 | DOI | MR | Zbl
[14] Commutator expansions and smoothing properties of generalized Benjamin–Ono equations, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 51 (1989) no. 2, pp. 221-229 | Numdam | MR
[15] Smoothing properties and existence of solutions for the generalized Benjamin–Ono equation, J. Differ. Equations, Volume 93 (1991) no. 1, pp. 150-212 | DOI | MR
[16] Fourier methods for fractional-order operators (2022) | arXiv
[17] A para-differential renormalization technique for nonlinear dispersive equations, Commun. Partial Differ. Equations, Volume 35 (2010) no. 10, pp. 1827-1875 | DOI | MR | Zbl
[18] Operator Splitting Methods for Generalized Korteweg–de Vries Equations, J. Comput. Phys., Volume 153 (1999) no. 1, pp. 203-222 | DOI | MR | Zbl
[19] Convergence of a fully discrete finite difference scheme for the Korteweg–de Vries equation, IMA J. Numer. Anal., Volume 35 (2015) no. 3, pp. 1047-1077 | DOI | MR | Zbl
[20] Global well-posedness of the Benjamin–Ono equation in low-regularity spaces, J. Am. Math. Soc., Volume 20 (2007) no. 3, pp. 753-798 | DOI | MR | Zbl
[21] On the Cauchy problem for the (generalized) Korteweg–de Vries equation, Adv. Math., Suppl. Stud., Volume 8 (1983), pp. 93-128 | MR | Zbl
[22] Well-Posedness of the Initial Value Problem for the Korteweg–de Vries Equation, J. Am. Math. Soc., Volume 4 (1991) no. 2, pp. 323-347 | DOI | MR | Zbl
[23] KdV is wellposed in , Ann. Math., Volume 190 (2019) no. 1, pp. 249-305 | Zbl
[24] A numerical approach to blow-up issues for dispersive perturbations of Burgers’ equation, Phys. D: Nonlinear Phenom., Volume 295 (2015), pp. 46-65 | DOI | MR | Zbl
[25] Multilevel Monte Carlo finite difference methods for fractional conservation laws with random data, SIAM/ASA J. Uncertain. Quantif., Volume 9 (2021) no. 1, pp. 65-105 | DOI | MR | Zbl
[26] On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. (5), Volume 39 (1895) no. 240, pp. 422-443 | DOI | MR
[27] Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., Volume 20 (2017) no. 1, pp. 7-51 | DOI | MR | Zbl
[28] Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, SIAM J. Math. Anal., Volume 46 (2014) no. 2, pp. 1505-1537 | DOI | MR | Zbl
[29] Introduction to Nonlinear Dispersive Equations, Universitext, Springer, 2014 | MR
[30] The Cauchy problem for the Benjamin–Ono equation in revisited, Anal. PDE, Volume 5 (2012) no. 2, pp. 365-395 | DOI | MR | Zbl
[31] On well-posedness for some dispersive perturbations of Burgers’ equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 7, pp. 1719-1756 | Numdam | MR | Zbl
[32] Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press Inc., 1999 | MR
[33] Numerical approximation of partial differential equations, Springer Series in Computational Mathematics, 23, Springer, 2008 | MR
[34] On the Korteweg–de Vries equation: existence and uniqueness, J. Math. Anal. Appl., Volume 29 (1970) no. 3, pp. 569-579 | DOI | MR | Zbl
[35] On the stability of the L projection in fractional Sobolev spaces, Numer. Math., Volume 88 (2001) no. 2, pp. 367-379 | DOI | MR | Zbl
[36] Global well-posedness of the Benjamin–Ono equation in , J. Hyperbolic Differ. Equ., Volume 1 (2004) no. 1, pp. 27-49 | MR | Zbl
[37] A numerical method for the Benjamin–Ono equation, BIT, Volume 38 (1998), pp. 597-611 | DOI | MR | Zbl
Cited by Sources: