Deterministic particle method for Fokker–Planck equation with strong oscillations
The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 141-173.

The aim of this paper is to investigate a deterministic particle method for a model containing a Fokker–Planck collision operator in velocity and strong oscillations (characterized by a small parameter ε) induced by a space and velocity transport operator. First, we investigate the properties (collisional invariants and equilibrium) of the asymptotic model obtained when ε0. Second a numerical method is developed to approximate the solution of the multiscale Fokker–Planck model. To do so, a deterministic particle method (recently introduced for the Landau equation in Carrillo et al. 2020) is proposed for Fokker–Planck type operators. This particle method consists in reformulating the collision operator in an advective form and in regularizing the advection field in such a way that it conserves the geometric bracket structure. In the Fokker–Planck homogeneous case, the properties of the resulting method are analysed. In the non homogeneous case, the particle method is coupled with a uniformly accurate time discretization in ε that enables to capture numerically the solution of the asymptotic model. Numerous numerical results are displayed, illustrating the behavior of the method.

Published online:
DOI: 10.5802/smai-jcm.109
Classification: 65M25, 65M75, 35Q83
Keywords: Vlasov equation, Fokker–Planck collision operator, highly oscillatory systems, multiscale numerical schemes, Particle method.

Anaïs Crestetto 1; Nicolas Crouseilles 2; Damien Prel 1

1 Nantes Université, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, UMR 6629, F-44000 Nantes, France & Inria (MINGuS), France
2 Univ Rennes, Inria (MINGuS) & IRMAR UMR 6625 & ENS Rennes, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2024__10__141_0,
     author = {Ana{\"\i}s Crestetto and Nicolas Crouseilles and Damien Prel},
     title = {Deterministic particle method for {Fokker{\textendash}Planck} equation with strong oscillations},
     journal = {The SMAI Journal of computational mathematics},
     pages = {141--173},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {10},
     year = {2024},
     doi = {10.5802/smai-jcm.109},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.109/}
}
TY  - JOUR
AU  - Anaïs Crestetto
AU  - Nicolas Crouseilles
AU  - Damien Prel
TI  - Deterministic particle method for Fokker–Planck equation with strong oscillations
JO  - The SMAI Journal of computational mathematics
PY  - 2024
SP  - 141
EP  - 173
VL  - 10
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.109/
DO  - 10.5802/smai-jcm.109
LA  - en
ID  - SMAI-JCM_2024__10__141_0
ER  - 
%0 Journal Article
%A Anaïs Crestetto
%A Nicolas Crouseilles
%A Damien Prel
%T Deterministic particle method for Fokker–Planck equation with strong oscillations
%J The SMAI Journal of computational mathematics
%D 2024
%P 141-173
%V 10
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.109/
%R 10.5802/smai-jcm.109
%G en
%F SMAI-JCM_2024__10__141_0
Anaïs Crestetto; Nicolas Crouseilles; Damien Prel. Deterministic particle method for Fokker–Planck equation with strong oscillations. The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 141-173. doi : 10.5802/smai-jcm.109. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.109/

[1] Rafael Bailo; José A. Carrillo; Andrea Medaglia; Mattia Zanella Uncertainty Quantification for the Homogeneous Landau–Fokker–Planck Equation via Deterministic Particle Galerkin methods (2023) | arXiv

[2] Naoufel Ben Abdallah; Raymond El Hajj Diffusion and guiding center approximation for particle transport in strong magnetic fields, Kinet. Relat. Models, Volume 1 (2008) no. 3, pp. 331-354 | DOI | Zbl

[3] C. K. Birdsall; A. B. Langdon Plasma Physics via Computer Simulation, Series in Plasma Physics and Fluid Dynamics, Taylor & Francis, 2004 | DOI

[4] Thomas Blanc; Mihaï Bostan; Franck Boyer Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach, Discrete Contin. Dyn. Syst., Ser. A, Volume 37 (2017) no. 9, pp. 4637-4676 | DOI | Zbl

[5] Mihaï Bostan; Céline Caldini Queiros Finite Larmor radius approximation for collisional magnetic confinement. Part I: The linear Boltzmann equation, Quart. J., Volume LXXII (2014) no. 2, pp. 323-345 | DOI | Zbl

[6] Mihaï Bostan; Céline Caldini Queiros Finite Larmor radius approximation for collisional magnetic confinement. Part II: The Fokker–Planck–Landau equation, Quart. J., Volume LXXII (2014) no. 2, pp. 513-548 | Zbl

[7] Mihaï Bostan; Aurélie Finot Finite Larmor radius regime: Collisional setting and fluid models, Commun. Contemp. Math., Volume 22 (2020) no. 06, 1950047 | DOI | Zbl

[8] José A. Carrillo; Katy Craig; Francesco S. Patacchini A blob method for diffusion, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 2, 53 | Zbl

[9] José A. Carrillo; Jingwei Hu; Li Wang; Jeremy Wu A particle method for the homogeneous Landau equation, J. Comput. Phys.: X, Volume 7 (2020), 100066, 24 pages | DOI | Zbl

[10] Philippe Chartier; Nicolas Crouseilles; Mohammed Lemou; Florian Méhats Uniformly accurate numerical schemes for highly oscillatory Klein–Gordon and nonlinear Schrödinger equations, Numer. Math., Volume 129 (2015) no. 2, pp. 211-250 | DOI | Zbl

[11] Philippe Chartier; Nicolas Crouseilles; Mohammed Lemou; Florian Méhats; Xiaofei Zhao Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field, Math. Comput., Volume 88 (2019) no. 320, pp. 2697-2736 | DOI | Zbl

[12] Philippe Chartier; Nicolas Crouseilles; Mohammed Lemou; Florian Méhats; Xiaofei Zhao Uniformly Accurate Methods for Three Dimensional Vlasov Equations under Strong Magnetic Field with Varying Direction, SIAM J. Sci. Comput., Volume 42 (2020) no. 2, p. B520-B547 | DOI | Zbl

[13] Philippe Chartier; Nicolas Crouseilles; Xiaofei Zhao Numerical methods for the two-dimensional Vlasov–Poisson equation in the finite Larmor radius approximation regime, J. Comput. Phys., Volume 375 (2018), pp. 619-640 | DOI | Zbl

[14] Philippe Chartier; Mohammed Lemou; Florian Méhats; Xiaofei Zhao Derivative-free high-order uniformly accurate schemes for highly oscillatory systems, IMA J. Numer. Anal., Volume 42 (2021) no. 2, pp. 1623-1644 | DOI | Zbl

[15] Philippe Chartier; Ander Murua; Jesus Sanz-Serna High order averaging, formal series and numerical integrations I: B-series, FOCM, Volume 10 (2010) no. 6

[16] Philippe Chartier; Ander Murua; Jesus Sanz-Serna A formal series approach to averaging: exponentially small error estimates, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 9 | Zbl

[17] Anaïs Crestetto; Nicolas Crouseilles; Damien Prel Multiscale Numerical Schemes for the Collisional Vlasov Equation in the Finite Larmor Radius Approximation Regime, Multiscale Model. Simul., Volume 21 (2023) no. 3, pp. 1210-1236 | DOI | Zbl

[18] Nicolas Crouseilles; Mohammed Lemou; Florian Méhats Asymptotic Preserving schemes for highly oscillatory Vlasov–Poisson equations, J. Comput. Phys., Volume 248 (2013), pp. 287-308 | DOI | Zbl

[19] Nicolas Crouseilles; Mohammed Lemou; Florian Méhats; Xiaofei Zhao Uniformly accurate forward semi-Lagrangian methods for highly oscillatory Vlasov–Poisson equations, Multiscale Model. Simul., Volume 15 (2017) no. 2, pp. 723-744 | DOI | Zbl

[20] Nicolas Crouseilles; Mohammed Lemou; Florian Méhats; Xiaofei Zhao Uniformly accurate Particle-In-Cell method for the long time two-dimensional Vlasov–Poisson equation with strong magnetic field, J. Comput. Phys., Volume 346 (2017), pp. 172-190 | DOI | Zbl

[21] Pierre Degond; Sylvie Mas-Gallic The weighted particle method for convection-diffusion equations. I. The case of an isotropic viscosity, Math. Comput., Volume 93 (1989) no. 345, pp. 485-507 | Zbl

[22] Pierre Degond; Francisco-José Mustieles A Deterministic Approximation of Diffusion Equations Using Particles, SIAM J. Sci. Stat. Comput., Volume 11 (1990) no. 2, pp. 293-310 | DOI | Zbl

[23] Pierre Degond; Pierre-Arnaud Raviart The paraxial approximation of the Vlasov–Maxwell equations, Math. Models Methods Appl. Sci., Volume 3 (1993), pp. 513-562 | DOI

[24] Daniel H. E. Dubin; John A. Krommes; Carl Oberman; W. William Lee Nonlinear gyrokinetic equations, Phys. Fluids, Volume 26 (1983) no. 12, pp. 3524-3535 | DOI | Zbl

[25] Emmanuel Frénod; Francesco Salvarani; Eric Sonnendrücker Long time simulation of a beam in a periodic focusing channel via a two-scale pic-method, Math. Models Methods Appl. Sci., Volume 19 (2009) no. 02, pp. 175-197 | DOI | Zbl

[26] Emmanuel Frénod; Eric Sonnendrücker Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field, Math. Models Methods Appl. Sci., Volume 10 (2000) no. 4, pp. 539-553 | DOI

[27] Maxime Herda; Miguel Rodrigues Large-Time Behavior of Solutions to Vlasov–Poisson–Fokker–Planck Equations: From Evanescent Collisions to Diffusive Limit, J. Stat. Phys., Volume 170 (2018) no. 5, pp. 895-931 | DOI | Zbl

[28] Maxime Herda; Miguel Rodrigues Anisotropic Boltzmann–Gibbs dynamics of strongly magnetized Vlasov–Fokker–Planck equations, Kinet. Relat. Models, Volume 12 (2019) no. 3, pp. 593-636 | DOI | Zbl

[29] Eero Hirvijoki Structure-preserving marker-particle discretizations of Coulomb collisions for particle-in-cell codes, Plasma Phys. Control. Fusion, Volume 63 (2021) no. 4, 044003 | DOI

[30] Marlis Hochbruck; Alexander Ostermann Exponential integrators, Acta Numer., Volume 19 (2010), pp. 209-286 | DOI | Zbl

[31] Sandra Jeyakumar; Michael Kraus; Matthew Hole; David Pfefferlé A structure-preserving particle discretisation for the Lenard–Bernstein operator (2023) | arXiv

[32] G. Knorr; Hans Pécseli Asymptotic state of the finite-Larmor-radius guiding-centre plasma, J. Plasma Phys., Volume 41 (1989) no. 1, pp. 157-170 | DOI

[33] Michael Kraus; Eero Hirvijoki Metriplectic Integrators for the Landau Collision Operator, Phys. Plasmas, Volume 24 (2017) no. 10, 102311

[34] Michael Kraus; Tomasz M. Tyranowski Variational integrators for stochastic dissipative Hamiltonian systems (2020) | arXiv

[35] W. William Lee Gyrokinetic particle simulation model, J. Comput. Phys., Volume 72 (1987) no. 1, pp. 243-269 | DOI | Zbl

[36] Zhixin Lu; Guo Meng; Tomasz M. Tyranowski; Alex Chankin High-order stochastic integration schemes for the Rosenbluth–Trubnikov collision operator in particle simulations (2024) | arXiv

[37] Alexandre Mouton Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel, Kinet. Relat. Models, Volume 2 (2009) no. 2, pp. 251-274 | DOI | Zbl

[38] Eric Sonnendrücker Numerical Methods for the Vlasov–Maxwell equations, Lecture notes, 2015

[39] Tomasz M. Tyranowski Stochastic variational principles for the collisional Vlasov–Maxwell and Vlasov–Poisson equations, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 477 (2021) no. 2252 | DOI

[40] Filippo Zonta; Joseph V. Pusztay; Eero Hirvijoki Multispecies structure-preserving particle discretization of the Landau collision operator, Phys. Plasmas, Volume 29 (2022) no. 12, 123906 | DOI

Cited by Sources: