Finite volume approximations of shear shallow water model on unstructured grids
The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 229-261.

We develop and implement a finite volume method based on an almost conservative approach for the hyperbolic non-conservative system of the shear shallow water model. This model is a generalization of the shallow water model to include the effects of shear, which are ignored in the standard shallow water model. The existing path conservative scheme is extended to unstructured grids composed of triangles or quadrilaterals with the solution stored at the cell centers. The high-resolution scheme is based on a local solution reconstruction idea for which a new set of variables based on a Cholesky decomposition of the Reynolds stress tensor (fluctuation of horizontal velocity) is developed, which is found to increase the robustness of the schemes by maintaining positive definiteness property. The scheme is applied to some test problems like 1D dam break, square dam break, roll waves, and radial hydraulic jump.

Published online:
DOI: 10.5802/smai-jcm.112
Classification: 65M08, 76M12
Keywords: shallow flow, shear flow, non-conservative system

Shashwat Tiwari 1; Boniface Nkonga 2; Praveen Chandrashekar 1; Sergey Gavrilyuk 3

1 Center for Applicable Mathematics, Tata Institute of Fundamental Research, Bangalore – 560065, India.
2 Université Côte d’Azur, INRIA, CNRS, LJAD, 06108 Nice Cedex 2, France.
3 Aix Marseille Univ., CNRS, IUSTI, Marseille.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2024__10__229_0,
     author = {Shashwat Tiwari and Boniface Nkonga and Praveen Chandrashekar and Sergey Gavrilyuk},
     title = {Finite volume approximations of shear shallow water model on unstructured grids},
     journal = {The SMAI Journal of computational mathematics},
     pages = {229--261},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {10},
     year = {2024},
     doi = {10.5802/smai-jcm.112},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.112/}
}
TY  - JOUR
AU  - Shashwat Tiwari
AU  - Boniface Nkonga
AU  - Praveen Chandrashekar
AU  - Sergey Gavrilyuk
TI  - Finite volume approximations of shear shallow water model on unstructured grids
JO  - The SMAI Journal of computational mathematics
PY  - 2024
SP  - 229
EP  - 261
VL  - 10
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.112/
DO  - 10.5802/smai-jcm.112
LA  - en
ID  - SMAI-JCM_2024__10__229_0
ER  - 
%0 Journal Article
%A Shashwat Tiwari
%A Boniface Nkonga
%A Praveen Chandrashekar
%A Sergey Gavrilyuk
%T Finite volume approximations of shear shallow water model on unstructured grids
%J The SMAI Journal of computational mathematics
%D 2024
%P 229-261
%V 10
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.112/
%R 10.5802/smai-jcm.112
%G en
%F SMAI-JCM_2024__10__229_0
Shashwat Tiwari; Boniface Nkonga; Praveen Chandrashekar; Sergey Gavrilyuk. Finite volume approximations of shear shallow water model on unstructured grids. The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 229-261. doi : 10.5802/smai-jcm.112. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.112/

[1] Rémi Abgrall; Smadar Karni A comment on the computation of non-conservative products, J. Comput. Phys., Volume 229 (2010) no. 8, pp. 2759-2763 (Accessed 2020-02-27) | DOI | Zbl

[2] Satish Balay; Shrirang Abhyankar; Mark F. Adams; Jed Brown; Peter Brune; Kris Buschelman; Lisandro Dalcin; Alp Dener; Victor Eijkhout; William D. Gropp; Dinesh Kaushik; Matthew G. Knepley; Dave A. May; Lois Curfman McInnes; Richard Tran Mills; Todd Munson; Karl Rupp; Patrick Sanan; Barry F. Smith; Stefano Zampini; Hong Zhang; Hong Zhang PETSc Users Manual (2018) no. ANL-95/11 - Revision 3.10 http://www.mcs.anl.gov/petsc (Technical report)

[3] Timothy J. Barth Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier–Stokes Equations, AGARD, Special Course on Unstructured Grid (1992), 19920018434 (Accessed 2022-07-25)

[4] Christophe Berthon Numerical approximations of the 10-moment Gaussian closure, Math. Comput., Volume 75 (2006) no. 256, pp. 1809-1831 http://www.ams.org/journal-getitem?pii=s0025-5718-06-01860-6 (Accessed 2019-03-22) | DOI | Zbl

[5] Ashish Bhole; Boniface Nkonga; Sergey Gavrilyuk; Kseniya Ivanova Fluctuation splitting Riemann solver for a non-conservative modeling of shear shallow water flow, J. Comput. Phys., Volume 392 (2019), pp. 205-226 https://linkinghub.elsevier.com/retrieve/pii/s0021999119302797 (Accessed 2019-07-09) | DOI | Zbl

[6] R. Brock The development of roll-waves trains in open channels, J. Hydraulics Division, Volume 95 (1969), pp. 1401-1428 | DOI

[7] R. Brock Periodic permanent roll waves, J. Hydraulics Division, Volume 96 (1970), pp. 2565-2580 | DOI

[8] John W. M. Bush; Jeffrey M. Aristoff; A. E. Hosoi An experimental investigation of the stability of the circular hydraulic jump, J. Fluid Mech., Volume 558 (2006), pp. 33-52 | DOI | Zbl

[9] Saray Busto; Michael Dumbser; Sergey Gavrilyuk; Kseniya Ivanova On Thermodynamically Compatible Finite Volume Methods and Path-Conservative ADER Discontinuous Galerkin Schemes for Turbulent Shallow Water Flows, J. Sci. Comput., Volume 88 (2021) no. 1, 28, 45 pages https://link.springer.com/10.1007/s10915-021-01521-z (Accessed 2021-08-17) | DOI | Zbl

[10] M. J. Castro; E. D. Fernández-Nieto; A. M. Ferreiro; J. A. García-Rodríguez; C. Parés High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems, J. Sci. Comput., Volume 39 (2009) no. 1, pp. 67-114 http://link.springer.com/10.1007/s10915-008-9250-4 (Accessed 2024-07-01 bibtex: Castro2009) | DOI | Zbl

[11] Christophe Chalons; Frédéric Coquel A new comment on the computation of non-conservative products using Roe-type path conservative schemes, J. Comput. Phys., Volume 335 (2017), pp. 592-604 https://linkinghub.elsevier.com/retrieve/pii/s0021999117300268 (Accessed 2024-07-01 bibtex: Chalons2017) | DOI | Zbl

[12] Praveen Chandrashekar; Boniface Nkonga; Asha Kumari Meena; Ashish Bhole A path conservative finite volume method for a shear shallow water model, J. Comput. Phys., Volume 413 (2020), 109457, 28 pages https://linkinghub.elsevier.com/retrieve/pii/s002199912030231x (Accessed 2020-07-08) | DOI | Zbl

[13] Gianni Dal Maso; Philippe G. Lefloch; Francois Murat Definition and weak stability of nonconservative products, J. Math. Pures Appl., Volume 74 (1995), pp. 483-548 | Zbl

[14] Thierry Foglizzo; Frédéric Masset; Jérôme Guilet; Gilles Durand Shallow Water Analogue of the Standing Accretion Shock Instability: Experimental Demonstration and a Two-Dimensional Model, Phys. Rev. Lett., Volume 108 (2012) no. 5, 051103 (Accessed 2021-06-28) | DOI

[15] Gerard Gallice; Agnes Chan; Raphael Loubere; Pierre-Henri Maire Entropy stable and positivity preserving Godunov-type schemes for multidimensional hyperbolic systems on unstructured grid, J. Comput. Phys., Volume 468 (2022), 111493, 33 pages | DOI | Zbl

[16] Sergey Gavrilyuk; Kseniya Ivanova; Nicolas Favrie Multi-dimensional shear shallow water flows: Problems and solutions, J. Comput. Phys., Volume 366 (2018), pp. 252-280 https://linkinghub.elsevier.com/retrieve/pii/s0021999118302250 (Accessed 2019-03-22) | DOI | Zbl

[17] Christophe Geuzaine; Jean-François Remacle Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., Volume 79 (2009) no. 11, pp. 1309-1331 (Accessed 2018-01-01) | DOI | Zbl

[18] Kseniya Ivanova; Sergey Gavrilyuk Structure of the hydraulic jump in convergent radial flows, J. Fluid Mech., Volume 860 (2019), pp. 441-464 https://www.cambridge.org/core/product/identifier/s0022112018009011/type/journal_article (Accessed 2021-06-28) | DOI | Zbl

[19] Peter Lax; Burton Wendroff Systems of conservation laws, Commun. Pure Appl. Math., Volume 13 (1960) no. 2, pp. 217-237 (Accessed 2021-08-09 bibtex: Lax1960) | DOI | Zbl

[20] C. David Levermore; William J. Morokoff The Gaussian Moment Closure for Gas Dynamics, SIAM J. Appl. Math., Volume 59 (1998) no. 1, pp. 72-96 (Accessed 2019-03-22) | DOI | Zbl

[21] Robert I. McLachlan; G. Reinout W. Quispel Splitting methods, Acta Numer., Volume 11 (2002), pp. 341-434 http://www.journals.cambridge.org/abstract_s0962492902000053 (Accessed 2018-09-15) | DOI | Zbl

[22] Boniface Nkonga; Praveen Chandrashekar Exact solution for Riemann problems of the shear shallow water model, ESAIM, Math. Model. Numer. Anal., Volume 56 (2022) no. 4, pp. 1115-1150 | DOI | Zbl

[23] Carlos Parés Numerical methods for nonconservative hyperbolic systems: a theoretical framework., SIAM J. Numer. Anal., Volume 44 (2006) no. 1, pp. 300-321 (Accessed 2019-03-24) | DOI | Zbl

[24] Gäel Richard; Sergey Gavrilyuk The classical hydraulic jump in a model of shear shallow-water flows, J. Fluid Mech., Volume 725 (2013), pp. 492-521 | DOI | Zbl

[25] Gilbert Strang On the Construction and Comparison of Difference Schemes, SIAM J. Numer. Anal., Volume 5 (1968) no. 3, pp. 506-517 (Accessed 2018-09-15) | DOI | Zbl

[26] Eitan Tadmor Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., Volume 12 (2003), pp. 451-512 http://www.journals.cambridge.org/abstract_s0962492902000156 (Accessed 2019-05-07) | DOI | Zbl

[27] Vladimir M. Teshukov Gas-dynamic analogy for vortex free-boundary flows, J. Appl. Mech. Tech. Phys., Volume 48 (2007) no. 3, pp. 303-309 http://link.springer.com/10.1007/s10808-007-0039-2 (Accessed 2019-03-22) | DOI

[28] Anshu Yadav; Harish Kumar; Praveen Chandrashekar; Deepak Bhoriya Entropy stable schemes for the shear shallow water model Equations, J. Sci. Comput., Volume 97 (2023) no. 3, 77, 36 pages | Zbl

Cited by Sources: