We study unique continuation over an interface using a stabilized unfitted finite element method tailored to the conditional stability of the problem. The interface is approximated using an isoparametric transformation of the background mesh and the corresponding geometrical error is included in our error analysis. To counter possible destabilizing effects caused by non-conformity of the discretization and cope with the interface conditions, we introduce adapted regularization terms. This allows to derive error estimates based on conditional stability. The necessity and effectiveness of the regularization is illustrated in numerical experiments. We also explore numerically the effect of the heterogeneity in the coefficients on the ability to reconstruct the solution outside the data domain. For Helmholtz equations we find that a jump in the flux impacts the stability of the problem significantly less than the size of the wavenumber.
Keywords: unfitted finite element method, unique continuation, interface problems, isoparametric finite element method, geometry errors, conditional Hölder stability
Erik Burman 1; Janosch Preuss 1

@article{SMAI-JCM_2025__11__165_0, author = {Erik Burman and Janosch Preuss}, title = {Unique continuation for an elliptic interface problem using unfitted isoparametric finite elements}, journal = {The SMAI Journal of computational mathematics}, pages = {165--202}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, year = {2025}, doi = {10.5802/smai-jcm.122}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.122/} }
TY - JOUR AU - Erik Burman AU - Janosch Preuss TI - Unique continuation for an elliptic interface problem using unfitted isoparametric finite elements JO - The SMAI Journal of computational mathematics PY - 2025 SP - 165 EP - 202 VL - 11 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.122/ DO - 10.5802/smai-jcm.122 LA - en ID - SMAI-JCM_2025__11__165_0 ER -
%0 Journal Article %A Erik Burman %A Janosch Preuss %T Unique continuation for an elliptic interface problem using unfitted isoparametric finite elements %J The SMAI Journal of computational mathematics %D 2025 %P 165-202 %V 11 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.122/ %R 10.5802/smai-jcm.122 %G en %F SMAI-JCM_2025__11__165_0
Erik Burman; Janosch Preuss. Unique continuation for an elliptic interface problem using unfitted isoparametric finite elements. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 165-202. doi : 10.5802/smai-jcm.122. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.122/
[1] The stability for the Cauchy problem for elliptic equations, Inverse Probl., Volume 25 (2009) no. 12, 123004, 47 pages | DOI | MR | Zbl
[2] A data scalable augmented Lagrangian KKT preconditioner for large-scale inverse problems, SIAM J. Sci. Comput., Volume 39 (2017) no. 5, p. A2365-A2393 | DOI | MR | Zbl
[3] Optimal Finite-Element Interpolation on Curved Domains, SIAM J. Numer. Anal., Volume 26 (1989) no. 5, pp. 1212-1240 | DOI | MR | Zbl
[4] Fictitious domain method with boundary value correction using penalty-free Nitsche method, J. Numer. Math., Volume 26 (2018) no. 2, pp. 77-95 | DOI | MR | Zbl
[5] Data assimilation finite element method for the linearized Navier–Stokes equations in the low Reynolds regime, Inverse Probl., Volume 36 (2020) no. 8, 085003, 22 pages | DOI | MR | Zbl
[6] Stabilized Finite Element Methods for Nonsymmetric, Noncoercive, and Ill-Posed Problems. Part I: Elliptic Equations, SIAM J. Sci. Comput., Volume 35 (2013) no. 6, p. A2752-A2780 | DOI | MR | Zbl
[7] CutFEM: discretizing geometry and partial differential equations, Int. J. Numer. Methods Eng., Volume 104 (2015) no. 7, pp. 472-501 | DOI | MR | Zbl
[8] A Hybridized High-Order Method for Unique Continuation Subject to the Helmholtz Equation, SIAM J. Numer. Anal., Volume 59 (2021) no. 5, pp. 2368-2392 | DOI | MR | Zbl
[9] An Unfitted Hybrid High-Order Method for Elliptic Interface Problems, SIAM J. Numer. Anal., Volume 56 (2018) no. 3, pp. 1525-1546 | DOI | MR | Zbl
[10] Space time stabilized finite element methods for a unique continuation problem subject to the wave equation, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021), p. S969-S991 | DOI | MR | Zbl
[11] Spacetime finite element methods for control problems subject to the wave equation, ESAIM, Control Optim. Calc. Var., Volume 29 (2023), 41, 40 pages | DOI | MR | Zbl
[12] Robust flux error estimation of an unfitted Nitsche method for high-contrast interface problems, IMA J. Numer. Anal., Volume 38 (2017) no. 2, pp. 646-668 | DOI | MR | Zbl
[13] A cut finite element method with boundary value correction, Math. Comput., Volume 87 (2018) no. 310, pp. 633-657 | DOI | MR | Zbl
[14] Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization, Inverse Probl., Volume 34 (2018) no. 3, 035004 | DOI | MR | Zbl
[15] Unique continuation for the Helmholtz equation using stabilized finite element methods, J. Math. Pures Appl., Volume 129 (2019), pp. 1-22 | DOI | MR | Zbl
[16] A stabilized finite element method for inverse problems subject to the convection–diffusion equation. I: diffusion-dominated regime, Numer. Math., Volume 144 (2020) no. 3, pp. 451-477 | DOI | MR | Zbl
[17] A stabilized finite element method for inverse problems subject to the convection–diffusion equation. II: convection-dominated regime, Numer. Math., Volume 150 (2022) no. 3, pp. 769-801 | DOI | MR | Zbl
[18] Reproduction material: Unique continuation for an elliptic interface problem using unfitted isoparametric finite elements (v2) | DOI
[19] Unique continuation for the Lamé system using stabilized finite element methods, GEM. Int. J. Geomath., Volume 14 (2023) no. 1, 9, 36 pages | DOI | MR | Zbl
[20] A Domain Decomposition Method Based on Weighted Interior Penalties for Advection‐Diffusion‐Reaction Problems, SIAM J. Numer. Anal., Volume 44 (2006) no. 4, pp. 1612-1638 | DOI | MR | Zbl
[21] Propagation of smallness for an elliptic PDE with piecewise Lipschitz coefficients, J. Differ. Equations, Volume 268 (2020) no. 12, pp. 7609-7628 | DOI | MR | Zbl
[22] An adaptive high-order unfitted finite element method for elliptic interface problems, Numer. Math., Volume 149 (2021) no. 3, pp. 507-548 | DOI | MR | Zbl
[23] Least squares solvers for ill-posed PDEs that are conditionally stable, ESAIM, Math. Model. Numer. Anal., Volume 57 (2023) no. 4, pp. 2227-2255 | DOI | MR | Zbl
[24] On Discontinuous Galerkin Methods for Elliptic Problems with Discontinuous Coefficients, Comput. Methods Appl. Math., Volume 3 (2003) no. 1, pp. 76-85 | DOI | MR | Zbl
[25] A numerical solution of a Cauchy problem for an elliptic equation by Krylov subspaces, Inverse Probl., Volume 25 (2009) no. 6, 065002, 22 pages | MR | Zbl
[26] A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity, IMA J. Numer. Anal., Volume 29 (2009) no. 2, pp. 235-256 | DOI | MR | Zbl
[27] Real analysis: modern techniques and their applications, Pure and Applied Mathematics, John Wiley & Sons, 1999 | MR
[28] A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods, Jpn. J. Appl. Math., Volume 7 (1990), pp. 1-76 | DOI | Zbl
[29] Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces, SIAM J. Numer. Anal., Volume 56 (2018) no. 1, pp. 228-255 | DOI | MR | Zbl
[30] An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Eng., Volume 191 (2002) no. 47-48, pp. 5537-5552 | DOI | MR | Zbl
[31] High order unfitted finite element methods on level set domains using isoparametric mappings, Comput. Methods Appl. Mech. Eng., Volume 300 (2016), pp. 716-733 | DOI | MR | Zbl
[32] A Higher Order Isoparametric Fictitious Domain Method for Level Set Domains, Geometrically Unfitted Finite Element Methods and Applications (Stéphane P. A. Bordas; Erik Burman; Mats Larson; Maxim A. Olshanskii, eds.), Springer, 2017, pp. 65-92 | DOI | Zbl
[33] ngsxfem: Add-on to NGSolve for geometrically unfitted finite element discretizations, J. Open Source Softw., Volume 6 (2021) no. 64, 3237 | DOI
[34] Analysis of a high order unfitted finite element method for an elliptic interface problem, IMA J. Numer. Anal., Volume 38 (2018) no. 3, pp. 1351-1387 | DOI | MR | Zbl
[35] -estimates for a high order unfitted finite element method for elliptic interface problems, J. Numer. Math., Volume 27 (2019) no. 2, pp. 85-99 | DOI | Zbl
[36] High-order Unfitted Discretizations for Partial Differential Equations Coupled with Geometric Flow, Ph. D. Thesis, University of Göttingen (2023) | DOI
[37] Robust preconditioners for PDE-constrained optimization with limited observations, BIT, Volume 57 (2017), pp. 405-431 | DOI | MR | Zbl
[38] An Unfitted Discontinuous Galerkin Method Applied to Elliptic Interface Problems, SIAM J. Numer. Anal., Volume 50 (2012) no. 6, pp. 3134-3162 | DOI | MR | Zbl
[39] Estimates on the generalization error of physics-informed neural networks for approximating PDEs, IMA J. Numer. Anal., Volume 43 (2023) no. 1, pp. 1-43 | DOI | MR | Zbl
[40] Unique continuation problems and stabilised finite element methods, Ph. D. Thesis, University College London (2020) https://discovery.ucl.ac.uk/id/eprint/10113065
[41] Analysis of an extended pressure finite element space for two-phase incompressible flows, Comput. Vis. Sci., Volume 11 (2008) no. 4, pp. 293-305 | DOI | Zbl
[42] Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques, Commun. Partial Differ. Equations, Volume 16 (1991) no. 4-5, pp. 789-800 | DOI | MR
[43] NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., Volume 1 (1997) no. 1, pp. 41-52 | DOI | Zbl
[44] C++11 Implementation of Finite Elements in NGSolve (2014) https://www.asc.tuwien.ac.at/%7eschoeberl/wiki/publications/ngs-cpp11.pdf (Technical report)
[45] Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30, Princeton University Press, 1971 | DOI | MR
[46] An Unfitted -Interface Penalty Finite Element Method for Elliptic Interface Problems, J. Comput. Math., Volume 37 (2018) no. 3, pp. 316-339 | DOI | MR | Zbl
[47] High-order extended finite element methods for solving interface problems, Comput. Methods Appl. Mech. Eng., Volume 364 (2020), 112964, 21 pages | DOI | MR | Zbl
[48] An unfitted interface penalty method for the numerical approximation of contrast problems, Appl. Numer. Math., Volume 61 (2011) no. 10, pp. 1059-1076 | DOI | MR | Zbl
Cited by Sources: