Data-inspired modeling of accidents in traffic flow networks
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 261-287.

We consider hyperbolic partial differential equations (PDEs) for a dynamic description of the traffic behavior in road networks. These equations are coupled to a Hawkes process that models traffic accidents taking into account their self-excitation property which means that accidents are more likely in areas in which another accident just occurred. We discuss how both model components interact and influence each other. A data analysis reveals the self-excitation property of accidents and determines further parameters. Numerical simulations using risk measures underline and conclude the discussion of traffic accident effects in our model.

Published online:
DOI: 10.5802/smai-jcm.125
Classification: 35R60, 90B20, 65M06
Keywords: traffic flow network model, random accidents, Hawkes process, numerical simulations

Simone Göttlich 1; Thomas Schillinger 1

1 University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany
@article{SMAI-JCM_2025__11__261_0,
     author = {Simone G\"ottlich and Thomas Schillinger},
     title = {Data-inspired modeling of accidents in traffic flow networks},
     journal = {The SMAI Journal of computational mathematics},
     pages = {261--287},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.125},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.125/}
}
TY  - JOUR
AU  - Simone Göttlich
AU  - Thomas Schillinger
TI  - Data-inspired modeling of accidents in traffic flow networks
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 261
EP  - 287
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.125/
DO  - 10.5802/smai-jcm.125
LA  - en
ID  - SMAI-JCM_2025__11__261_0
ER  - 
%0 Journal Article
%A Simone Göttlich
%A Thomas Schillinger
%T Data-inspired modeling of accidents in traffic flow networks
%J The SMAI Journal of computational mathematics
%D 2025
%P 261-287
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.125/
%R 10.5802/smai-jcm.125
%G en
%F SMAI-JCM_2025__11__261_0
Simone Göttlich; Thomas Schillinger. Data-inspired modeling of accidents in traffic flow networks. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 261-287. doi : 10.5802/smai-jcm.125. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.125/

[1] Pierfrancesco Alaimo Di Loro; Marco Mingione; Paolo Fantozzi Semi-parametric Spatio-Temporal Hawkes Process for Modelling Road Accidents in Rome, J. Agric. Biol. Environ. Stat., Volume 30 (2025), pp. 8-38 | MR

[2] Søren Asmussen Applied Probability and Queues, Stochastic Modelling and Applied Probability, 51, Springer, 2003 | MR | Zbl

[3] Søren Asmussen; Peter W. Glynn Stochastic Simulation, Stochastic Modelling and Applied Probability, 57, Springer, 2007

[4] Emmanuel Bacry; Iacopo Mastromatteo; Jean-François Muzy Hawkes Processes in Finance, Market Microstructure and Liquidity, Volume 01 (2015) no. 01, pp. 155-205

[5] Yuanda Chen Thinning Algorithms for Simulating Point Processes, 2016 (Florida State University, Tallahassee, FL)

[6] Yuanda Chen Modelling Limit Order Book Dynamics Using Hawkes Processes, Ph. D. Thesis, Florida State University, Tallahassee, FL (2017)

[7] Daryl J. Daley; David Vere-Jones An introduction to the theory of point processes. 1: Elementary theory and methods, Probability and Its Applications, Springer, 2005 | MR

[8] Eymen Errais; Kay Giesecke; Lisa R. Goldberg Affine Point Processes and Portfolio Credit Risk, SIAM J. Financial Math., Volume 1 (2010) no. 1, pp. 642-665 | DOI | MR | Zbl

[9] Jan Friedrich; Simone Göttlich; Maximilian Osztfalk Network models for nonlocal traffic flow, ESAIM, Math. Model. Numer. Anal., Volume 56 (2022) no. 1, pp. 213-235 | DOI | MR | Zbl

[10] Mauro Garavello; Ke Han; Benedetto Piccoli Models for vehicular traffic on networks, AIMS Series on Applied Mathematics, 9, American Institute of Mathematical Sciences, 2016 | MR

[11] Mauro Garavello; Benedetto Piccoli Traffic flow on networks : conservation law models, AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences, 2006 | MR

[12] Michele Garetto; Emilio Leonardi; Giovanni Luca Torrisi A time-modulated Hawkes process to model the spread of COVID-19 and the impact of countermeasures, Annu. Rev. Control, Volume 51 (2021), pp. 551-563 | DOI | MR

[13] Hans-Otto Georgii Stochastik : Einführung in die Wahrscheinlichkeitstheorie und Statistik, de Gruyter Lehrbuch, Walter de Gruyter, 2009 | DOI | MR

[14] Simone Göttlich; Stephan Knapp Modeling random traffic accidents by conservation laws, Math. Biosci. Eng., Volume 17 (2020), pp. 1677-1701 | DOI | MR | Zbl

[15] Simone Göttlich; Thomas Schillinger Microscopic and macroscopic traffic flow models including random accidents, Commun. Math. Sci., Volume 19 (2021) no. 6, pp. 1579-1609 | DOI | MR

[16] Simone Göttlich; Thomas Schillinger; Andrea Tosin Probabilistic modelling of car traffic accidents (2024) | arXiv

[17] Alan G. Hawkes Spectra of Some Self-Exciting and Mutually Exciting Point Processes, Biometrika, Volume 58 (1971) no. 1, pp. 83-90 | DOI | MR | Zbl

[18] Lin Jin; Saurabh Amin Analysis of a Stochastic Switched Model of Freeway Traffic Incidents, IEEE Trans. Autom. Control, Volume 64 (2019) no. 3, pp. 1093-1108 | DOI | MR | Zbl

[19] Kieran Kalair; Colm Connaughton; Pierfrancesco Alaimo Di Loro A non-parametric Hawkes process model of primary and secondary accidents on a UK smart motorway, J. R. Stat. Soc., Ser. C, Appl. Stat., Volume 70 (2020), pp. 1-18

[20] Jaimyoung Kwon; Michael Mauch; Pravin Varaiya Components of Congestion: Delay from Incidents, Special Events, Lane Closures, Weather, Potential Ramp Metering Gain, and Excess Demand, Transportation Research Record: Journal of the Transportation Research Board, Volume 30 (2006), pp. 84-91 | DOI

[21] Patrick J. Laub; Young Lee; Thomas Taimre The Elements of Hawkes Processes, Springer, 2022 | MR

[22] Khanh Giang Le; Pei Liu; Liang-Tay Lin Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam, Geo-spatial Inf. Sci., Volume 23 (2020) no. 2, pp. 153-164

[23] Jean-Patrick Lebacque Intersection Modeling, Application to Macroscopic Network Traffic Flow Models and Traffic Management, Traffic and Granular Flow ’03 (Serge P. Hoogendoorn; Stefan Luding; Piet H. L. Bovy; Michael Schreckenberg; Dietrich E. Wolf, eds.), Springer (2005), pp. 261-278 | DOI | Zbl

[24] Zhongping Li; Lirong Cui; Jianhui Chen Traffic accident modelling via self-exciting point processes, Reliability Engineering & System Safety, Volume 180 (2018), pp. 312-320

[25] Michael J. Lighthill; Gerald B. Whitham On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads, Proc. R. Soc. Lond., Ser. A, Volume 229 (1955) no. 1178, pp. 317-345 | MR | Zbl

[26] Kar Wai Lim; W. Wang; H. Nguyen; Y. Lee; C. Cai; F. Chen Traffic flow modelling with point processes, Proceedings of the 23rd World Congress on Intelligent Transport Systems (2016), pp. 1-12

[27] George Mohler; M. Short; P. Brantingham; F. Schoenberg; George Tita Self-Exciting Point Process Modeling of Crime, J. Am. Stat. Assoc., Volume 106 (2011), pp. 100-108 | DOI | MR | Zbl

[28] Sobhan Moosavi; Mohammad Samavatian; Srinivasan Parthasarathy; Rajiv Ramnath A Countrywide Traffic Accident Dataset (2019) | arXiv

[29] Elena Mora Villazán A Bayesian Network Approach for Probabilistic Safety Analysis of Traffic networks, Ph. D. Thesis, University of Cantabria, Spain (2017) http://hdl.handle.net/10902/13112

[30] Salissou Moutari; Michael Herty A Lagrangian approach for modeling road collisions using second-order models of traffic flow, Commun. Math. Sci., Volume 12 (2014), pp. 1239-1256 | DOI | MR | Zbl

[31] Salissou Moutari; Michael Herty; Andreas Klein; Markus Oeser; Bernhard Steinauer; Veronika Schleper Modeling road traffic accidents using macroscopic second-order models of traffic flow, IMA J. Appl. Math., Volume 78 (2013), pp. 1087-1108 | DOI | MR | Zbl

[32] Yosihiko Ogata On Lewis’ simulation method for point processes, IEEE Trans. Inf. Theory, Volume 27 (1981) no. 1, pp. 23-31 | DOI | Zbl

[33] Yosihiko Ogata Seismicity Analysis through Point-process Modeling: A Review, Pure Appl. Geophys., Volume 155 (1999), pp. 471-507 | DOI

[34] Jack Reilly; Samitha Samaranayake; Maria Laura Delle Monache; Walid Krichene; Paola Goatin; Alexandre Bayen Adjoint-Based Optimization on a Network of Discretized Scalar Conservation Laws with Applications to Coordinated Ramp Metering, J. Optim. Theory Appl., Volume 167 (2015), pp. 733-760 | DOI | MR | Zbl

[35] Paul I. Richards Shock Waves on the Highway, Oper. Res., Volume 4 (1956) no. 1, pp. 42-51 | DOI | MR | Zbl

[36] Tibor Sipos Spatial Statistical Analysis of the Traffic Accidents, Periodica Polytechnica Transportation Engineering, Volume 45 (2017) no. 2, pp. 101-105 | DOI

[37] Anatoliy Swishchuk; Rudi Zagst; Gabriela Zeller Hawkes processes in insurance: Risk model, application to empirical data and optimal investment, Insur. Math. Econ., Volume 101 (2021), pp. 107-124 (Behavioral Insurance: Mathematics and Economics) | DOI | MR | Zbl

[38] Martin Treiber; Arne Kesting Traffic flow dynamics. Data, models and simulation, Springer, 2013 | DOI | MR

[39] Jeroen Verheugd; Paulo R de Oliveira da Costa; Reza Refaei Afshar; Yingqian Zhang; Sjoerd Boersma Predicting Water Pipe Failures with a Recurrent Neural Hawkes Process Model, 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE (2020), pp. 2628-2633 | DOI

[40] Xin Zou; Wen Yue A Bayesian Network Approach to Causation Analysis of Road Accidents Using Netica, J. Adv. Transp., Volume 2017 (2017), 2525481, 18 pages | DOI

Cited by Sources: