High-order adaptive multi-domain time integration scheme for microscale lithium-ion batteries simulations
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 369-404.

We investigate the modeling and simulation of ionic transport and charge conservation in lithium-ion batteries (LIBs) at the microscale. It is a multiphysics problem that involves a wide range of time scales. The associated computational challenges motivate the investigation of numerical techniques that can decouple the time integration of the governing equations in the liquid electrolyte and the solid phase (active materials and current collectors). First, it is shown that semi-discretization in space of the non-dimensionalized governing equations leads to a system of index-1 semi-explicit differential algebraic equations (DAEs). Then, a new generation of strategies for multi-domain integration is presented, enabling high-order adaptive coupling of both domains in time, with efficient and potentially different domain integrators. They reach a high level of flexibility for real applications, beyond the limitations of multirate methods. A simple 1D LIB half-cell code is implemented as a demonstrator of the new strategy for the simulation of different modes of cell operation. The integration of the decoupled subsystems is performed with high-order accurate implicit nonlinear solvers. The accuracy of the space discretization is assessed by comparing the numerical results to the analytical solutions. Then, temporal convergence studies demonstrate the accuracy of the new multi-domain coupling approach. Finally, the accuracy and computational efficiency of the adaptive coupling strategy are discussed in the light of the conditioning of the decoupled subproblems compared to the one of the fully-coupled problem. This new approach will constitute a key ingredient for the high-fidelity 3D LIB simulations based on actual electrode microstructures.

Published online:
DOI: 10.5802/smai-jcm.128
Classification: 65M22, 65M12, 65L80, 65Y99, 65Z05
Keywords: Lithium-ion batteries, High-order time integration methods, Adaptive multi-domain integration scheme

Ali Asad 1; Romain de Loubens 2; Laurent François 3; Marc Massot 4

1 CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France and TotalEnergies OneTech, 3 Boulevard Thomas Gobert, 91120 Palaiseau Cedex, France
2 TotalEnergies OneTech, 3 Boulevard Thomas Gobert, 91120 Palaiseau Cedex, France
3 ONERA, DMPE, 6 Chemin de la Vauve aux Granges, 91120 Palaiseau Cedex, France
4 CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France
@article{SMAI-JCM_2025__11__369_0,
     author = {Ali Asad and Romain de Loubens and Laurent Fran\c{c}ois and Marc Massot},
     title = {High-order adaptive multi-domain time integration scheme for microscale lithium-ion batteries simulations},
     journal = {The SMAI Journal of computational mathematics},
     pages = {369--404},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.128},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.128/}
}
TY  - JOUR
AU  - Ali Asad
AU  - Romain de Loubens
AU  - Laurent François
AU  - Marc Massot
TI  - High-order adaptive multi-domain time integration scheme for microscale lithium-ion batteries simulations
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 369
EP  - 404
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.128/
DO  - 10.5802/smai-jcm.128
LA  - en
ID  - SMAI-JCM_2025__11__369_0
ER  - 
%0 Journal Article
%A Ali Asad
%A Romain de Loubens
%A Laurent François
%A Marc Massot
%T High-order adaptive multi-domain time integration scheme for microscale lithium-ion batteries simulations
%J The SMAI Journal of computational mathematics
%D 2025
%P 369-404
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.128/
%R 10.5802/smai-jcm.128
%G en
%F SMAI-JCM_2025__11__369_0
Ali Asad; Romain de Loubens; Laurent François; Marc Massot. High-order adaptive multi-domain time integration scheme for microscale lithium-ion batteries simulations. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 369-404. doi : 10.5802/smai-jcm.128. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.128/

[1] Jeffery M. Allen; Justin Chang; Francois L. E. Usseglio-Viretta; Peter Graf; Kandler Smith A Segregated Approach for Modeling the Electrochemistry in the 3-D Microstructure of Li-Ion Batteries and Its Acceleration Using Block Preconditioners, J. Sci. Comput., Volume 86 (2021) no. 3, 42 | MR | Zbl

[2] Harikesh Arunachalam; Simona Onori; Ilenia Battiato On Veracity of Macroscopic Lithium-Ion Battery Models, J. Electrochem. Soc., Volume 162 (2015) no. 10, A1940

[3] Ali Asad LIB1d_md, https://github.com/hpc-maths/LIB1d_md, 2025

[4] Uri M. Ascher; Linda R. Petzold Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Society for Industrial and Applied Mathematics, 1998 | DOI | MR

[5] Alexander Bartlett; James Marcicki; Simona Onori; Giorgio Rizzoni; Xiao Guang Yang; Ted Miller Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery, IEEE Trans. Control Sys. Technol., Volume 24 (2015) no. 2, pp. 384-399

[6] Christopher Batchelor-McAuley; Enno Kätelhön; Edward O. Barnes; Richard G. Compton; Eduardo Laborda; Angela Molina Recent Advances in Voltammetry, ChemistryOpen, Volume 4 (2015) no. 3, pp. 224-260 | DOI

[7] Adrien M. Bizeray; David A. Howey; Charles W. Monroe Resolving a discrepancy in diffusion potentials, with a case study for Li-ion batteries, J. Electrochem. Soc., Volume 163 (2016) no. 8, E223

[8] Allan F. Bower; Pradeep R. Guduru; Vijay A. Sethuraman A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell, J. Mech. Phys. Solids, Volume 59 (2011) no. 4, pp. 804-828 | DOI | MR | Zbl

[9] Kathryn E. Brenan; Stephen L. Campbell; Linda R. Petzold Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Society for Industrial and Applied Mathematics, 1995 | MR | Zbl

[10] Fabian G. Castelli; Willy Dörfler The numerical study of a microscale model for lithium-ion batteries, Comput. Math. Appl., Volume 77 (2019) no. 6, pp. 1527-1540 | DOI | MR | Zbl

[11] COMSOL Battery Design Module, 2010

[12] Emil M. Constantinescu Implicit extensions of an explicit multirate Runge–Kutta scheme, Appl. Math. Lett., Volume 128 (2022), 107871 | DOI | MR | Zbl

[13] Emil M. Constantinescu; Adrian Sandu Extrapolated Multirate Methods for Differential Equations with Multiple Time Scales, J. Sci. Comput., Volume 56 (2013), pp. 28-44 | DOI | MR | Zbl

[14] Domenico Di Domenico; Anna Stefanopoulou; Giovanni Fiengo Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended Kalman filter, J. Dyn. Syst. Meas. Control, Volume 132 (2010) no. 6, 061302, 11 pages | DOI

[15] Marc Doyle; John Newman The use of mathematical modeling in the design of lithium/polymer battery systems, Electrochim. Acta, Volume 40 (1995) no. 13, pp. 2191-2196 | DOI

[16] Max Duarte; Marc Massot; Stéphane Descombes; Christian Tenaud; Thierry Dumont; Violaine Louvet; Frédérique Laurent New Resolution Strategy for Multiscale Reaction Waves using Time Operator Splitting, Space Adaptive Multiresolution, and Dedicated High Order Implicit/Explicit Time Integrators, SIAM J. Sci. Comput., Volume 34 (2012) no. 1, p. A76-A104 | DOI | MR | Zbl

[17] Robert Eymard; Thierry Gallouët; Raphaèle Herbin Finite volume methods, Solution of Equation in n (Part 3), Techniques of Scientific Computing (Part 3) (Handbook of Numerical Analysis), Volume 7, Elsevier, 2000, pp. 713-1018 | DOI | Zbl

[18] Rui Fang; Philipp Farah; Alexander Popp; Wolfgang A. Wall A monolithic, mortar-based interface coupling and solution scheme for finite element simulations of lithium-ion cells, Int. J. Numer. Methods Eng., Volume 114 (2018) no. 13, pp. 1411-1437 | DOI | MR | Zbl

[19] Rui Fang; Martin Kronbichler; Maximilian Wurzer; Wolfgang A. Wall Parallel, physics-oriented, monolithic solvers for three-dimensional, coupled finite element models of lithium-ion cells, Comput. Methods Appl. Mech. Eng., Volume 350 (2019), pp. 803-835 | DOI | MR | Zbl

[20] Mohammad Farkhondeh; Charles Delacourt Mathematical modeling of commercial LiFePO4 electrodes based on variable solid-state diffusivity, J. Electrochem. Soc., Volume 159 (2011) no. 2, A177

[21] Mark E. Ferraro; Bradley L. Trembacki; Victor E. Brunini; David R. Noble; Scott A. Roberts Electrode Mesoscale as a Collection of Particles: Coupled Electrochemical and Mechanical Analysis of NMC Cathodes, J. Electrochem. Soc., Volume 167 (2020) no. 1, 013543

[22] Laurent François Multiphysical modelling and simulation of the ignition transient of complete solid rocket motors, Ph. D. Thesis, Institut polytechnique de Paris (2022) (https://theses.hal.science/tel-03670668)

[23] Laurent François Rhapsopy, https://github.com/hpc-maths/Rhapsopy, 2023

[24] Laurent François; Joël Dupays; Dmitry Davidenko; Marc Massot High-order adaptive time discretisation of one-dimensional low-Mach reacting flows: A case study of solid propellant combustion, J. Comput. Appl. Math., Volume 443 (2024), 115758 | MR | Zbl

[25] Laurent François; Marc Massot Multistep interface coupling for high-order adaptive black-box multiphysics simulations, 10th edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS 2023) (2023) | DOI

[26] Fraunhofer Institute for Industrial Mathematics ITWM BESTmicro Battery and Electrochemistry Simulation Tool - Fraunhofer ITWM, 2018

[27] Thomas F. Fuller; Marc Doyle; John Newman Simulation and Optimization of the Dual Lithium Ion Insertion Cell, J. Electrochem. Soc., Volume 141 (1994) no. 1, 1

[28] C. William Gear Automatic Multirate Methods For Ordinary Differential Equations., Inf Process 80, Proc of IFIP Congr 80, Oct 6-9 1980, Tokyo, Japan, North-Holland (1980), pp. 717-722 | Zbl

[29] Graham M. Goldin; Andrew M. Colclasure; Andreas H. Wiedemann; Robert J. Kee Three-dimensional particle-resolved models of Li-ion batteries to assist the evaluation of empirical parameters in one-dimensional models, Electrochim. Acta, Volume 64 (2012), pp. 118-129 | DOI

[30] Michael Günther; Anne Kværnø; Peter Rentrop Multirate Partitioned Runge-Kutta Methods, BIT, Volume 41 (2001) no. 3, pp. 504-514 | DOI | Zbl

[31] Ernst Hairer; Gerhard Wanner Solving Ordinary Differential Equations II, Springer, 1996 | DOI | MR | Zbl

[32] Simon Hein; Timo Danner; Arnulf Latz An electrochemical model of lithium plating and stripping in lithium ion batteries, ACS Appl. Energy Mater., Volume 3 (2020) no. 9, pp. 8519-8531 | DOI

[33] Tobias Hutzenlaub; Simon Thiele; Nils Paust; Robert Spotnitz; Roland Zengerle; Christian Walchshofer Three-dimensional electrochemical Li-ion battery modelling featuring a focused ion-beam/scanning electron microscopy based three-phase reconstruction of a LiCoO2 cathode, Electrochim. Acta, Volume 115 (2014), pp. 131-139

[34] Oleg Iliev; Marina A. Nikiforova; Yuri V. Semenov; Petr E. Zakharov Splitting algorithm for numerical simulation of Li-ion battery electrochemical processes, AIP Conf. Proc., Volume 1907 (2017) no. 1, 030019 | DOI

[35] Oleg Iliev; Petr E. Zakharov Domain splitting algorithms for the Li-ion battery simulation, IOP Conf. Ser.: Mater. Sci. Eng., Volume 158 (2016) no. 1, 012099

[36] Shinhoo Kang; Alp Dener; Aidan Hamilton; Hong Zhang; Emil M. Constantinescu; Robert L. Jacob Multirate partitioned Runge–Kutta methods for coupled Navier–Stokes equations, Comput. Fluids, Volume 264 (2023), 105964 | DOI | MR | Zbl

[37] Ali Ghorbani Kashkooli; Siamak Farhad; Dong Un Lee; Kun Feng; Shawn Litster; Siddharth Komini Babu; Likun Zhu; Zhongwei Chen Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography, J. Power Sources, Volume 307 (2016), pp. 496-509 | DOI

[38] Anne Kværnø Singly Diagonally Implicit Runge–Kutta Methods with an Explicit First Stage, BIT Numer. Math., Volume 44 (2004) no. 3, pp. 489-502 | DOI | Zbl

[39] Arnulf Latz; Jochen Zausch Thermodynamic consistent transport theory of Li-ion batteries, J. Power Sources, Volume 196 (2011) no. 6, pp. 3296-3302 | DOI

[40] Arnulf Latz; Jochen Zausch Multiscale modeling of lithium ion batteries: thermal aspects, Beilstein J. Nanotechnol., Volume 6 (2015) no. 1, pp. 987-1007 | DOI

[41] Gregory B. Less; Jung H. Seo; Sangwoo Han; Ann M. Sastry; Jochen Zausch; Arnulf Latz; Sebastian Schmidt; Christian Wieser; Dirk Kehrwald; Stefan Fell Micro-Scale Modeling of Li-Ion Batteries: Parameterization and Validation, J. Electrochem. Soc., Volume 159 (2012) no. 6, A697

[42] Bor Y. Liaw; Ganesan Nagasubramanian; Rudolph G. Jungst; Daniel H. Doughty Modeling of lithium ion cells–A simple equivalent-circuit model approach, Solid State Ion., Volume 175 (2004) no. 1–4, pp. 835-839

[43] John J. Loffeld; Andy Nonaka; Daniel R. Reynolds; David J. Gardner; Carol S. Woodward Performance of explicit and IMEX MRI multirate methods on complex reactive flow problems within modern parallel adaptive structured grid frameworks, Int. J. High Perform. Comput. Appl., Volume 0 (2024), pp. 1-19

[44] Romain de Loubens Analytical solution of a Li-ion half-cell problem in 1D (2022) (Internal Report)

[45] Weijie Mai; Francois L. E. Usseglio-Viretta; Andrew M. Colclasure; Kandler Smith Enabling fast charging of lithium-ion batteries through secondary-/dual- pore network: Part II - numerical model, Electrochim. Acta, Volume 341 (2020), 136013

[46] Simon Müller; Jens Eller; Martin Ebner; Chris Burns; Jeff Dahn; Vanessa Wood Quantifying inhomogeneity of lithium ion battery electrodes and its influence on electrochemical performance, J. Electrochem. Soc., Volume 165 (2018) no. 2, A339

[47] Ajay Muralidharan; Mangesh I. Chaudhari; Lawrence R. Pratt; Susan B. Rempe Molecular Dynamics of Lithium Ion Transport in a Model Solid Electrolyte Interphase, Sci. Rep., Volume 8 (2018) no. 1, 10736

[48] John Newman; Nitash P. Balsara Electrochemical systems, John Wiley & Sons, 2021

[49] Peter Popov; Yavor Vutov; Svetozar Margenov; Oleg Iliev Finite Volume Discretization of Equations Describing Nonlinear Diffusion in Li-Ion Batteries, Numerical Methods and Applications (Ivan Dimov; Stefka Dimova; Natalia Kolkovska, eds.) (Lecture Notes in Computer Science), Springer (2011), pp. 338-346 | DOI | Zbl

[50] Steven Psaltis; Troy Farrell Comparing charge transport predictions for a ternary electrolyte using the Maxwell-Stefan and Nernst-Planck equations, J. Electrochem. Soc., Volume 158 (2011) no. 1, p. A33-A42 | DOI

[51] Ehsan Kabiri Rahani; Vivek B. Shenoy Role of Plastic Deformation of Binder on Stress Evolution during Charging and Discharging in Lithium-Ion Battery Negative Electrodes, J. Electrochem. Soc., Volume 160 (2013) no. 8, A1153

[52] Giles W. Richardson; Guy Denuault; Colin P. Please Multiscale modelling and analysis of lithium-ion battery charge and discharge, J. Eng. Math., Volume 72 (2012), pp. 41-72 | DOI | MR | Zbl

[53] Giles W. Richardson; Jamie M. Foster; Rahifa Ranom; Colin P. Please; Angel M. Ramos Charge transport modelling of Lithium-ion batteries, Eur. J. Appl. Math., Volume 33 (2022) no. 6, pp. 983-1031 | DOI | MR | Zbl

[54] Scott A. Roberts; Victor E. Brunini; Kevin N. Long; Anne M. Grillet A Framework for Three-Dimensional Mesoscale Modeling of Anisotropic Swelling and Mechanical Deformation in Lithium-Ion Electrodes, J. Electrochem. Soc., Volume 161 (2014) no. 11, F3052

[55] Steven Roberts; John J. Loffeld; Arash Sarshar; Carol S. Woodward; Adrian Sandu Implicit multirate GARK methods, J. Sci. Comput., Volume 87 (2021) no. 4, pp. 1-32 | MR | Zbl

[56] Falco Schneider; Jochen Zausch; Jan Lammel; Heiko Andrä An efficient semi-implicit solver for solid electrolyte interphase growth in Li-ion batteries, Appl. Math. Modelling, Volume 109 (2022), pp. 741-759 | DOI | MR | Zbl

[57] Siemens Digital Industries Software Simcenter STAR-CCM+, version 2021.1, 2021

[58] Fabian Single; Birger Horstmann; Arnulf Latz Dynamics and morphology of solid electrolyte interphase (SEI), Phys. Chem. Chem. Phys., Volume 18 (2016) no. 27, pp. 17810-17814 | DOI

[59] Madeleine Smith; R. Edwin García; Quinn C. Horn The Effect of Microstructure on the Galvanostatic Discharge of Graphite Anode Electrodes in LiCoO2-Based Rocking-Chair Rechargeable Batteries, J. Electrochem. Soc., Volume 156 (2009) no. 11, A896

[60] Martyna Soszyńska; Thomas Richter Adaptive time-step control for a monolithic multirate scheme coupling the heat and wave equation, BIT Numer. Math., Volume 61 (2021), pp. 1367-1396 | DOI | MR | Zbl

[61] Robert Spotnitz; Boris Kaludercic; Samir Muzaferija; Milovan Peric; Gaetan Damblanc; Steve Hartridge Geometry-resolved electro-chemistry model of Li-ion batteries, SAE Int. J. Altern. Powertrains, Volume 1 (2012) no. 1, pp. 160-168 | DOI

[62] Kenji Takizawa; Tayfun E. Tezduyar Multiscale space–time fluid–structure interaction techniques, Comput. Mech., Volume 48 (2011) no. 3, pp. 247-267 | DOI | Zbl

[63] Tayfun E. Tezduyar; Sunil Sathe Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques, Int. J. Numer. Methods Fluids, Volume 54 (2007) no. 6–8, pp. 855-900 | DOI | MR | Zbl

[64] Roberta C. Vieira; Evaristo C. Biscaia Direct methods for consistent initialization of DAE systems, Comput. Chem. Eng., Volume 25 (2001) no. 9–10, pp. 1299-1311 | DOI

[65] Nansi Xue; Wenbo Du; Joaquim R. R. A. Martins; Wei Shyy Lithium-Ion Batteries: Thermomechanics, Performance, and Design Optimization, Encyclopedia of Aerospace Engineering, John Wiley & Sons, 2016, pp. 1-17

[66] Yi Zeng; Martin Z. Bazant Phase separation dynamics in isotropic ion-intercalation particles, SIAM J. Appl. Math., Volume 74 (2014) no. 4, pp. 980-1004 | DOI | MR | Zbl

[67] Shiquan Zhang; Oleg Iliev; Sebastian Schmidt; Jochen Zausch Comparison of Two Approaches for Treatment of the Interface Conditions in FV Discretization of Pore Scale Models for Li-Ion Batteries, Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems (Jürgen Fuhrmann; Mario Ohlberger; Christian Rohde, eds.) (Springer Proceedings in Mathematics & Statistics), Springer (2014), pp. 731-738 | DOI | Zbl

Cited by Sources: