We present a novel spatial discretization for the anisotropic heat conduction equation, aimed at improved accuracy at the high levels of anisotropy seen in a magnetized plasma, for example, for magnetic confinement fusion. The new discretization is based on a mixed formulation, introducing a form of the directional derivative along the magnetic field as an auxiliary variable and discretizing both the temperature and auxiliary fields in a continuous Galerkin (CG) space. Both the temperature and auxiliary variable equations are stabilized using the streamline upwind Petrov–Galerkin (SUPG) method, ensuring a better representation of the directional derivatives and therefore an overall more accurate solution. This approach can be seen as the CG-based version of our previous work (Wimmer, Southworth, Gregory, Tang, 2024), where we considered a mixed discontinuous Galerkin (DG) spatial discretization including DG-upwind stabilization. We prove consistency of the novel discretization, and demonstrate its improved accuracy over existing CG-based methods in test cases relevant to magnetic confinement fusion. This includes a long-run tokamak equilibrium sustainment scenario, demonstrating a 35% and 32% spurious heat loss for existing primal and mixed CG-based formulations versus 4% for our novel SUPG-stabilized discretization.
Keywords: Anisotropic heat conduction, anisotropic diffusion, auxiliary operator, continuous Galerkin, SUPG
Golo A. Wimmer 1; Ben S. Southworth 1; Koki Sagiyama 2; Xian-Zhu Tang 1
@article{SMAI-JCM_2025__11__473_0, author = {Golo A. Wimmer and Ben S. Southworth and Koki Sagiyama and Xian-Zhu Tang}, title = {An {Accurate} {SUPG-stabilized} {Continuous} {Galerkin} {Discretization} for {Anisotropic} {Heat} {Flux} in {Magnetic} {Confinement} {Fusion}}, journal = {The SMAI Journal of computational mathematics}, pages = {473--496}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, year = {2025}, doi = {10.5802/smai-jcm.131}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.131/} }
TY - JOUR AU - Golo A. Wimmer AU - Ben S. Southworth AU - Koki Sagiyama AU - Xian-Zhu Tang TI - An Accurate SUPG-stabilized Continuous Galerkin Discretization for Anisotropic Heat Flux in Magnetic Confinement Fusion JO - The SMAI Journal of computational mathematics PY - 2025 SP - 473 EP - 496 VL - 11 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.131/ DO - 10.5802/smai-jcm.131 LA - en ID - SMAI-JCM_2025__11__473_0 ER -
%0 Journal Article %A Golo A. Wimmer %A Ben S. Southworth %A Koki Sagiyama %A Xian-Zhu Tang %T An Accurate SUPG-stabilized Continuous Galerkin Discretization for Anisotropic Heat Flux in Magnetic Confinement Fusion %J The SMAI Journal of computational mathematics %D 2025 %P 473-496 %V 11 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.131/ %R 10.5802/smai-jcm.131 %G en %F SMAI-JCM_2025__11__473_0
Golo A. Wimmer; Ben S. Southworth; Koki Sagiyama; Xian-Zhu Tang. An Accurate SUPG-stabilized Continuous Galerkin Discretization for Anisotropic Heat Flux in Magnetic Confinement Fusion. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 473-496. doi : 10.5802/smai-jcm.131. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.131/
[1] Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Eng., Volume 184 (2000) no. 2-4, pp. 501-520 | DOI | Zbl
[2] et al. PETSc users manual, 2019
[3] Non-Spitzer heat flow in a steadily ablating laser-produced plasma, Phys. Fluids, Volume 28 (1985) no. 6, pp. 2007-2014 | DOI
[4] Nonlinear Magnetohydrodynamics, Cambridge Monographs on Plasma Physics, Cambridge University Press, 1993 | DOI | MR
[5] On a fully-implicit VMS-stabilized FE formulation for low Mach number compressible resistive MHD with application to MCF, Comput. Methods Appl. Mech. Eng., Volume 417 (2023), 116359 | DOI | MR | Zbl
[6] Transport processes in a plasma, Rev. Plasma Phys., Volume 1 (1965), 205
[7] Some properties of the M3D-C1 form of the three-dimensional magnetohydrodynamics equations, Phys. Plasmas, Volume 16 (2009) no. 9, 092503 | DOI
[8] Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., Volume 32 (1982) no. 1-3, pp. 199-259 | DOI | MR | Zbl
[9] An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys., Volume 178 (2002) no. 1, pp. 15-36 | DOI | Zbl
[10] First order hyperbolic approach for Anisotropic Diffusion equation, J. Comput. Phys., Volume 396 (2019), pp. 243-263 | DOI | MR | Zbl
[11] An asymptotic-preserving method for highly anisotropic elliptic equations based on a micro–macro decomposition, J. Comput. Phys., Volume 231 (2012) no. 7, pp. 2724-2740 | DOI | MR | Zbl
[12] A two field iterated asymptotic-preserving method for highly anisotropic elliptic equations, Multiscale Model. Simul., Volume 17 (2019) no. 1, pp. 434-459 | DOI | MR | Zbl
[13] et al. BOUT++: Recent and current developments, J. Plasma Phys., Volume 81 (2015) no. 1, 365810104 | DOI
[14] Ideal Magnetohydrodynamics, Plenum Press, 1987 | DOI
[15] A high-order non field-aligned approach for the discretization of strongly anisotropic diffusion operators in magnetic fusion, Comput. Phys. Commun., Volume 254 (2020), 107375 | DOI | MR | Zbl
[16] An efficient high-order numerical solver for diffusion equations with strong anisotropy, Comput. Phys. Commun., Volume 276 (2022), 108333 | DOI | MR | Zbl
[17] An Efficient High-Order Solver for Diffusion Equations with Strong Anisotropy on Non-Anisotropy-Aligned Meshes, SIAM J. Sci. Comput., Volume 46 (2024) no. 2, p. S199-S222 | DOI | MR | Zbl
[18] Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas, J. Comput. Phys., Volume 226 (2007) no. 2, pp. 2306-2316 | DOI | Zbl
[19] Modelling of Heat Transport in Magnetised Plasmas Using Non-Aligned Coordinates, J. Comput. Phys., Volume 209 (2005) no. 1, pp. 354-370 | DOI | Zbl
[20] Parallel Heat Flux from Low to High Parallel Temperature along a Magnetic Field Line, Phys. Rev. Lett., Volume 108 (2012), 165005 | DOI
[21] Firedrake User Manual (2023) | DOI
[22] Three discontinuous Galerkin schemes for the anisotropic heat conduction equation on non-aligned grids, Comput. Phys. Commun., Volume 199 (2016), pp. 29-39 | DOI | MR | Zbl
[23] et al. The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas, Nucl. Fusion, Volume 61 (2021) no. 6, 065001 | DOI
[24] Computational methods in plasma physics, CRC Press, 2010 | DOI | MR | Zbl
[25] Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., Volume 21 (1999) no. 2, pp. 441-454 | DOI | MR | Zbl
[26] A guide to numerical methods for transport equations, 2010
[27] Staged cooling of a fusion-grade plasma in a tokamak thermal quench, Nucl. Fusion, Volume 63 (2023) no. 6, 066030 | DOI
[28] A Parallel Cut-Cell Algorithm for the Free-Boundary Grad–Shafranov Problem, SIAM J. Sci. Comput., Volume 43 (2021) no. 6, p. B1198-B1225 | DOI | MR | Zbl
[29] Nonsymmetric reduction-based algebraic multigrid, SIAM J. Sci. Comput., Volume 41 (2019) no. 5, p. S242-S268 | DOI | MR | Zbl
[30] Nonsymmetric algebraic multigrid based on local approximate ideal restriction (lAIR), SIAM J. Sci. Comput., Volume 40 (2018) no. 6, p. A4105-A4130 | DOI | MR | Zbl
[31] Automated generation and symbolic manipulation of tensor product finite elements, SIAM J. Sci. Comput., Volume 38 (2016) no. 5, p. S25-S47 | DOI | MR | Zbl
[32] Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction, Comput. Phys. Commun., Volume 185 (2014) no. 12, pp. 3189-3203 | DOI | Zbl
[33] Plasma simulation studies using multilevel physics models, Phys. Plasmas, Volume 6 (1999) no. 5, pp. 1796-1803 | DOI
[34] An adaptive Newton-based free-boundary Grad-Shafranov solver (2024) | arXiv | Zbl
[35] Moment-based adaptive time integration for thermal radiation transport (2025) | arXiv | Zbl
[36] et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements, J. Comput. Phys., Volume 195 (2004) no. 1, pp. 355-386 | DOI | Zbl
[37] Stabilization parameters and local length scales in SUPG and PSPG formulations, Proceedings of the Fifth World Congress on Computational Mechanics (2002) (paper no. 81508)
[38] Mesh Refinement for Anisotropic Diffusion in Magnetized Plasmas (2022) | arXiv
[39] A fast algebraic multigrid solver and accurate discretization for highly anisotropic heat flux I: open field lines, SIAM J. Sci. Comput., Volume 46 (2024) no. 3, p. A1821-A1849 | DOI | MR | Zbl
[40] A structure-preserving discontinuous Galerkin scheme for the Cahn-Hilliard equation including time adaptivity, J. Comput. Phys., Volume 537 (2025), 114097 | DOI | MR
[41] Preserving the accuracy of numerical methods discretizing anisotropic elliptic problems (2019) | arXiv | Zbl
[42] On the accuracy of numerical methods for the discretization of anisotropic elliptic problems, J. Comput. Phys., Volume 521 (2025), 113568, 22 pages | DOI | MR | Zbl
[43] Cooling flow regime of a plasma thermal quench, Europhys. Lett., Volume 141 (2023) no. 5, 54002 | DOI
Cited by Sources: