An Accurate SUPG-stabilized Continuous Galerkin Discretization for Anisotropic Heat Flux in Magnetic Confinement Fusion
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 473-496.

We present a novel spatial discretization for the anisotropic heat conduction equation, aimed at improved accuracy at the high levels of anisotropy seen in a magnetized plasma, for example, for magnetic confinement fusion. The new discretization is based on a mixed formulation, introducing a form of the directional derivative along the magnetic field as an auxiliary variable and discretizing both the temperature and auxiliary fields in a continuous Galerkin (CG) space. Both the temperature and auxiliary variable equations are stabilized using the streamline upwind Petrov–Galerkin (SUPG) method, ensuring a better representation of the directional derivatives and therefore an overall more accurate solution. This approach can be seen as the CG-based version of our previous work (Wimmer, Southworth, Gregory, Tang, 2024), where we considered a mixed discontinuous Galerkin (DG) spatial discretization including DG-upwind stabilization. We prove consistency of the novel discretization, and demonstrate its improved accuracy over existing CG-based methods in test cases relevant to magnetic confinement fusion. This includes a long-run tokamak equilibrium sustainment scenario, demonstrating a 35% and 32% spurious heat loss for existing primal and mixed CG-based formulations versus 4% for our novel SUPG-stabilized discretization.

Published online:
DOI: 10.5802/smai-jcm.131
Classification: 65M60, 80M10
Keywords: Anisotropic heat conduction, anisotropic diffusion, auxiliary operator, continuous Galerkin, SUPG

Golo A. Wimmer 1; Ben S. Southworth 1; Koki Sagiyama 2; Xian-Zhu Tang 1

1 Los Alamos National Laboratory
2 Imperial College London
@article{SMAI-JCM_2025__11__473_0,
     author = {Golo A. Wimmer and Ben S. Southworth and Koki Sagiyama and Xian-Zhu Tang},
     title = {An {Accurate} {SUPG-stabilized} {Continuous} {Galerkin} {Discretization} for {Anisotropic} {Heat} {Flux} in {Magnetic} {Confinement} {Fusion}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {473--496},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.131},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.131/}
}
TY  - JOUR
AU  - Golo A. Wimmer
AU  - Ben S. Southworth
AU  - Koki Sagiyama
AU  - Xian-Zhu Tang
TI  - An Accurate SUPG-stabilized Continuous Galerkin Discretization for Anisotropic Heat Flux in Magnetic Confinement Fusion
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 473
EP  - 496
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.131/
DO  - 10.5802/smai-jcm.131
LA  - en
ID  - SMAI-JCM_2025__11__473_0
ER  - 
%0 Journal Article
%A Golo A. Wimmer
%A Ben S. Southworth
%A Koki Sagiyama
%A Xian-Zhu Tang
%T An Accurate SUPG-stabilized Continuous Galerkin Discretization for Anisotropic Heat Flux in Magnetic Confinement Fusion
%J The SMAI Journal of computational mathematics
%D 2025
%P 473-496
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.131/
%R 10.5802/smai-jcm.131
%G en
%F SMAI-JCM_2025__11__473_0
Golo A. Wimmer; Ben S. Southworth; Koki Sagiyama; Xian-Zhu Tang. An Accurate SUPG-stabilized Continuous Galerkin Discretization for Anisotropic Heat Flux in Magnetic Confinement Fusion. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 473-496. doi : 10.5802/smai-jcm.131. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.131/

[1] P. R. Amestoy; I. S. Duff; J.-Y. L’Excellent Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Eng., Volume 184 (2000) no. 2-4, pp. 501-520 | DOI | Zbl

[2] S. Balay; S. Abhyankar; M. Adams; J. Brown; P. Brune; K. Buschelman; L. Dalcin; A. Dener; V. Eijkhout; W. Gropp et al. PETSc users manual, 2019

[3] A. R. Bell Non-Spitzer heat flow in a steadily ablating laser-produced plasma, Phys. Fluids, Volume 28 (1985) no. 6, pp. 2007-2014 | DOI

[4] D. Biskamp Nonlinear Magnetohydrodynamics, Cambridge Monographs on Plasma Physics, Cambridge University Press, 1993 | DOI | MR

[5] J. Bonilla; J. N. Shadid; X.-Z. Tang; M. M. Crockatt; P. Ohm; E. G. Phillips; R. P. Pawlowski; S. Conde; O. Beznosov On a fully-implicit VMS-stabilized FE formulation for low Mach number compressible resistive MHD with application to MCF, Comput. Methods Appl. Mech. Eng., Volume 417 (2023), 116359 | DOI | MR | Zbl

[6] S. I. Braginskii Transport processes in a plasma, Rev. Plasma Phys., Volume 1 (1965), 205

[7] J Breslau; N Ferraro; S Jardin Some properties of the M3D-C1 form of the three-dimensional magnetohydrodynamics equations, Phys. Plasmas, Volume 16 (2009) no. 9, 092503 | DOI

[8] A. N. Brooks; T. J. R. Hughes Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., Volume 32 (1982) no. 1-3, pp. 199-259 | DOI | MR | Zbl

[9] L. Chacón; D. A. Knoll; J. M. Finn An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys., Volume 178 (2002) no. 1, pp. 15-36 | DOI | Zbl

[10] A. S. Chamarthi; H. Nishikawa; K. Komurasaki First order hyperbolic approach for Anisotropic Diffusion equation, J. Comput. Phys., Volume 396 (2019), pp. 243-263 | DOI | MR | Zbl

[11] P. Degond; A. Lozinski; J. Narski; C. Negulescu An asymptotic-preserving method for highly anisotropic elliptic equations based on a micro–macro decomposition, J. Comput. Phys., Volume 231 (2012) no. 7, pp. 2724-2740 | DOI | MR | Zbl

[12] F. Deluzet; J. Narski A two field iterated asymptotic-preserving method for highly anisotropic elliptic equations, Multiscale Model. Simul., Volume 17 (2019) no. 1, pp. 434-459 | DOI | MR | Zbl

[13] B. D. Dudson et al. BOUT++: Recent and current developments, J. Plasma Phys., Volume 81 (2015) no. 1, 365810104 | DOI

[14] J. P. Freidberg Ideal Magnetohydrodynamics, Plenum Press, 1987 | DOI

[15] G. Giorgiani; H. Bufferand; F. Schwander; E. Serre; P. Tamain A high-order non field-aligned approach for the discretization of strongly anisotropic diffusion operators in magnetic fusion, Comput. Phys. Commun., Volume 254 (2020), 107375 | DOI | MR | Zbl

[16] D. Green; X. Hu; J. Lore; L. Mu; M. L. Stowell An efficient high-order numerical solver for diffusion equations with strong anisotropy, Comput. Phys. Commun., Volume 276 (2022), 108333 | DOI | MR | Zbl

[17] D. Green; X. Hu; J. Lore; L. Mu; M. L. Stowell An Efficient High-Order Solver for Diffusion Equations with Strong Anisotropy on Non-Anisotropy-Aligned Meshes, SIAM J. Sci. Comput., Volume 46 (2024) no. 2, p. S199-S222 | DOI | MR | Zbl

[18] S. Günter; K. Lackner; C. Tichmann Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas, J. Comput. Phys., Volume 226 (2007) no. 2, pp. 2306-2316 | DOI | Zbl

[19] S. Günter; Q. Yu; J. Krüger; K. Lackner Modelling of Heat Transport in Magnetised Plasmas Using Non-Aligned Coordinates, J. Comput. Phys., Volume 209 (2005) no. 1, pp. 354-370 | DOI | Zbl

[20] Z. Guo; X.-Z. Tang Parallel Heat Flux from Low to High Parallel Temperature along a Magnetic Field Line, Phys. Rev. Lett., Volume 108 (2012), 165005 | DOI

[21] D. A. Ham; P. H. J. Kelly; L. Mitchell; C. J. Cotter; R. C. Kirby; K. Sagiyama; N. Bouziani; S. Vorderwuelbecke; T. J. Gregory; J. Betteridge; D. R. Shapero; R. W. Nixon-Hill; C. J. Ward; P. E. Farrell; P. D. Brubeck; I. Marsden; T. H. Gibson; M. Homolya; T. Sun; A. T. T. McRae; F. Luporini; A. Gregory; M. Lange; S. W. Funke; F. Rathgeber; G.-T. Bercea; G. R. Markall Firedrake User Manual (2023) | DOI

[22] M. Held; M. Wiesenberger; A. Stegmeir Three discontinuous Galerkin schemes for the anisotropic heat conduction equation on non-aligned grids, Comput. Phys. Commun., Volume 199 (2016), pp. 29-39 | DOI | MR | Zbl

[23] M. Hoelzl et al. The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas, Nucl. Fusion, Volume 61 (2021) no. 6, 065001 | DOI

[24] S. Jardin Computational methods in plasma physics, CRC Press, 2010 | DOI | MR | Zbl

[25] S. Jin Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., Volume 21 (1999) no. 2, pp. 441-454 | DOI | MR | Zbl

[26] D. Kuzmin A guide to numerical methods for transport equations, 2010

[27] J. Li; Y. Zhang; X.-Z. Tang Staged cooling of a fusion-grade plasma in a tokamak thermal quench, Nucl. Fusion, Volume 63 (2023) no. 6, 066030 | DOI

[28] S. Liu; Q. Tang; X.-Z. Tang A Parallel Cut-Cell Algorithm for the Free-Boundary Grad–Shafranov Problem, SIAM J. Sci. Comput., Volume 43 (2021) no. 6, p. B1198-B1225 | DOI | MR | Zbl

[29] T. A. Manteuffel; S. Münzenmaier; J. Ruge; B. S. Southworth Nonsymmetric reduction-based algebraic multigrid, SIAM J. Sci. Comput., Volume 41 (2019) no. 5, p. S242-S268 | DOI | MR | Zbl

[30] T. A. Manteuffel; J. Ruge; B. S. Southworth Nonsymmetric algebraic multigrid based on local approximate ideal restriction (lAIR), SIAM J. Sci. Comput., Volume 40 (2018) no. 6, p. A4105-A4130 | DOI | MR | Zbl

[31] A. T. T. McRae; G.-T. Bercea; L. Mitchell; D. A. Ham; C. J. Cotter Automated generation and symbolic manipulation of tensor product finite elements, SIAM J. Sci. Comput., Volume 38 (2016) no. 5, p. S25-S47 | DOI | MR | Zbl

[32] J. Narski; M. Ottaviani Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction, Comput. Phys. Commun., Volume 185 (2014) no. 12, pp. 3189-3203 | DOI | Zbl

[33] W. Park; E. V. Belova; G. Y. Fu; X.-Z. Tang; H. R. Strauss; L. E. Sugiyama Plasma simulation studies using multilevel physics models, Phys. Plasmas, Volume 6 (1999) no. 5, pp. 1796-1803 | DOI

[34] D. A. Serino; Q. Tang; X.-Z. Tang; T. V. Kolev; K. Lipnikov An adaptive Newton-based free-boundary Grad-Shafranov solver (2024) | arXiv | Zbl

[35] B. S. Southworth; S. Walton; S. B. Roberts; H. Park Moment-based adaptive time integration for thermal radiation transport (2025) | arXiv | Zbl

[36] C. R. Sovinec et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements, J. Comput. Phys., Volume 195 (2004) no. 1, pp. 355-386 | DOI | Zbl

[37] T. Tezduyar Stabilization parameters and local length scales in SUPG and PSPG formulations, Proceedings of the Fifth World Congress on Computational Mechanics (2002) (paper no. 81508)

[38] C. J. Vogl; I. Joseph; M. Holec Mesh Refinement for Anisotropic Diffusion in Magnetized Plasmas (2022) | arXiv

[39] G. A. Wimmer; B. S. Southworth; T. J. Gregory; X.-Z. Tang A fast algebraic multigrid solver and accurate discretization for highly anisotropic heat flux I: open field lines, SIAM J. Sci. Comput., Volume 46 (2024) no. 3, p. A1821-A1849 | DOI | MR | Zbl

[40] G. A. Wimmer; B. S. Southworth; Q. Tang A structure-preserving discontinuous Galerkin scheme for the Cahn-Hilliard equation including time adaptivity, J. Comput. Phys., Volume 537 (2025), 114097 | DOI | MR

[41] C. Yang; F. Deluzet; J. Narski Preserving the accuracy of numerical methods discretizing anisotropic elliptic problems (2019) | arXiv | Zbl

[42] C. Yang; F. Deluzet; Jacek. Narski On the accuracy of numerical methods for the discretization of anisotropic elliptic problems, J. Comput. Phys., Volume 521 (2025), 113568, 22 pages | DOI | MR | Zbl

[43] Y. Zhang; J. Li; X.-Z. Tang Cooling flow regime of a plasma thermal quench, Europhys. Lett., Volume 141 (2023) no. 5, 54002 | DOI

Cited by Sources: