Exact discretization, tight frames and recovery via $D$-optimal designs
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 607-636

$D$-optimal designs originate in statistics literature as an approach for optimal experimental designs. In numerical analysis points and weights resulting from maximal determinants turned out to be useful for quadrature and interpolation. Also recently, two of the present authors and coauthors investigated a connection to the discretization problem for the uniform norm. Here we use this approach of maximizing the determinant of a certain Gramian matrix with respect to points and weights for the construction of tight frames and exact Marcinkiewicz–Zygmund inequalities in $L_2$. We present a direct and constructive approach resulting in a discrete measure with at most $N \le n^2+1$ atoms, which discretely and accurately subsamples the $L_2$-norm of complex-valued functions contained in a given $n$-dimensional subspace. This approach can as well be used for the reconstruction of functions from general RKHS in $L_2$ where one only has access to the most important eigenfunctions. We verifiably and deterministically construct points and weights for a weighted least squares recovery procedure and pay in the rate of convergence compared to earlier optimal, however probabilistic approaches. The general results apply to the $d$-sphere or multivariate trigonometric polynomials on $\mathbb{T}^d$ spectrally supported on arbitrary finite index sets $I \subset \mathbb{Z}^d$. They can be discretized using at most $|I|^2-|I|+1$ points and weights. Numerical experiments indicate the sharpness of this result. As a negative result we prove that, in general, it is not possible to control the number of points in a reconstructing lattice rule only in the cardinality $|I|$ without additional condition on the structure of $I$. We support our findings with numerical experiments.

Published online:
DOI: 10.5802/smai-jcm.136
Classification: 41A25, 65D32, 94A20
Keywords: Integral norm discretization, exact quadrature, sampling recovery, $D$-optimal designs

Felix Bartel 1; Lutz Kämmerer 2; Kateryna Pozharska 3; Martin Schäfer 2; Tino Ullrich 2

1 Mathematisch-Geographische Fakultät, KU Eichstätt-Ingolstadt, 85270 Eichstätt, Germany.
2 Faculty of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany.
3 Faculty of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany and Institute of Mathematics of NAS of Ukraine.
@article{SMAI-JCM_2025__11__607_0,
     author = {Felix Bartel and Lutz K\"ammerer and Kateryna Pozharska and Martin Sch\"afer and Tino Ullrich},
     title = {Exact discretization, tight frames and recovery via $D$-optimal designs},
     journal = {The SMAI Journal of computational mathematics},
     pages = {607--636},
     year = {2025},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     doi = {10.5802/smai-jcm.136},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.136/}
}
TY  - JOUR
AU  - Felix Bartel
AU  - Lutz Kämmerer
AU  - Kateryna Pozharska
AU  - Martin Schäfer
AU  - Tino Ullrich
TI  - Exact discretization, tight frames and recovery via $D$-optimal designs
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 607
EP  - 636
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.136/
DO  - 10.5802/smai-jcm.136
LA  - en
ID  - SMAI-JCM_2025__11__607_0
ER  - 
%0 Journal Article
%A Felix Bartel
%A Lutz Kämmerer
%A Kateryna Pozharska
%A Martin Schäfer
%A Tino Ullrich
%T Exact discretization, tight frames and recovery via $D$-optimal designs
%J The SMAI Journal of computational mathematics
%D 2025
%P 607-636
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.136/
%R 10.5802/smai-jcm.136
%G en
%F SMAI-JCM_2025__11__607_0
Felix Bartel; Lutz Kämmerer; Kateryna Pozharska; Martin Schäfer; Tino Ullrich. Exact discretization, tight frames and recovery via $D$-optimal designs. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 607-636. doi: 10.5802/smai-jcm.136

[1] Congpei An; Xiaojun Chen; Ian H. Sloan; Robert S. Womersley Well Conditioned Spherical Designs for Integration and Interpolation on the Two-Sphere, SIAM J. Numer. Anal., Volume 48 (2010) no. 6, pp. 2135-2157 | DOI | Zbl | MR

[2] Felix Bartel; Lutz Kämmerer; Daniel Potts; Tino Ullrich On the reconstruction of functions from values at subsampled quadrature points, Math. Comput., Volume 93 (2024) no. 346, pp. 785-809 | DOI | MR | Zbl

[3] Felix Bartel; Martin Schäfer; Tino Ullrich Constructive subsampling of finite frames with applications in optimal function recovery, Appl. Comput. Harmon. Anal., Volume 65 (2023), pp. 209-248 | DOI | MR | Zbl

[4] Joshua Batson; Daniel A. Spielman; Nikhil Srivastava Twice-Ramanujan sparsifiers, SIAM J. Comput., Volume 41 (2012) no. 6, pp. 1704-1721 | DOI | MR | Zbl

[5] Thomas Bloom; Norman Levenberg Transfinite diameter notions in N and integrals of Vandermonde determinants, Ark. Mat., Volume 48 (2010) no. 1, pp. 17-40 | DOI | Zbl | MR

[6] Andriy Bondarenko; Danylo Radchenko; Maryna Viazovska Optimal asymptotic bounds for spherical designs, Ann. Math., Volume 178 (2013) no. 2, pp. 443-452 (Accessed 2024-08-04) | DOI | Zbl

[7] Len Bos On optimal designs for a d-cube, Dolomites Res. Notes Approx., Volume 15 (2022) no. 4, pp. 20-34 | Zbl | MR

[8] Len Bos On Fekete points for a real simplex, Indag. Math., Volume 34 (2023) no. 2, pp. 274-293 (special issue on the occasion of Jaap Korevaar’s 100-th anniversary) | DOI | Zbl

[9] Len Bos; Federico Piazzon; Marco Vianello Near G-optimal Tchakaloff designs, Comput. Stat., Volume 35 (2020) no. 2, pp. 803-819 | MR | Zbl

[10] Glenn Byrenheid; Lutz Kämmerer; Tino Ullrich; Toni Volkmer Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness, Numer. Math., Volume 136 (2017) no. 4, pp. 993-1034 | DOI | MR | Zbl

[11] Jameson Cahill; Xuemei Chen A note on scalable frames, Conference proceedings of SampTA, Zenodo (2013), pp. 93-96 | DOI

[12] Peter G. Casazza; Xuemei Chen Frame scalings: A condition number approach, Linear Algebra Appl., Volume 523 (2017), pp. 152-168 | DOI | Zbl | MR

[13] Peter G. Casazza; Laura De Carli; Tin T. Tran Remarks on scalable frames, Oper. Matrices, Volume 17 (2023) no. 2, pp. 327-342 | DOI | Zbl | MR

[14] Peter G. Casazza; Matthew Fickus; Dustin G. Mixon Auto-tuning unit norm frames, Appl. Comput. Harmon. Anal., Volume 32 (2012) no. 1, pp. 1-15 | DOI | Zbl

[15] Peter G. Casazza; Jelena Kovačević Equal-norm tight frames with erasures, Adv. Comput. Math., Volume 18 (2003) no. 2/4, pp. 387-430 | DOI | MR | Zbl

[16] Fernando Cobos; Thomas Kühn; Winfried Sickel Optimal approximation of multivariate periodic Sobolev functions in the sup-norm, J. Funct. Anal., Volume 270 (2016) no. 11, pp. 4196-4212 | DOI | MR | Zbl

[17] Ronald Cools Constructing cubature formulae: the science behind the art, Acta numerica, 1997 (Acta Numerica), Volume 6, Cambridge University Press, 1997, pp. 1-54 | DOI | MR | Zbl

[18] Feng Dai; Andriy Prymak; Vladimir Temlyakov; Sergey Yu. Tikhonov Integral norm discretization and related problems, Russ. Math. Surv., Volume 74 (2019) no. 4, pp. 579-630 | DOI | Zbl

[19] Feng Dai; Yuan Xu Approximation Theory and Harmonic Analysis on Spheres and Balls, Springer Monographs in Mathematics, Springer, 2013 | DOI | Zbl | MR

[20] Philippe Delsarte; Jean-Marie Goethals; Johan J. Seidel Spherical codes and designs, Geom. Dedicata, Volume 6 (1977) no. 3, pp. 363-388 | DOI | Zbl | MR

[21] Michał Dereziński; Manfred K. Warmuth; Daniel Hsu Unbiased estimators for random design regression, J. Mach. Learn. Res., Volume 23 (2022), 167, 46 pages | MR | Zbl

[22] Holger Dette; William J. Studden The theory of canonical moments with applications in statistics, probability, and analysis, Wiley Series in Probability and Statistics, John Wiley & Sons, 1997, xx+327 pages | MR | Zbl

[23] Josef Dick; Frances Y. Kuo; Ian H. Sloan High-dimensional integration: the quasi-Monte Carlo way, Acta Numer., Volume 22 (2013), pp. 133-288 | DOI | MR | Zbl

[24] Matthieu Dolbeault; David Krieg; Mario Ullrich A sharp upper bound for sampling numbers in L 2 , Appl. Comput. Harmon. Anal., Volume 63 (2023), pp. 113-134 | MR | DOI | Zbl

[25] Dinh Dũng; Vladimir Temlyakov; Tino Ullrich Hyperbolic cross approximation, Advanced Courses in Mathematics – CRM Barcelona, Birkhäuser/Springer, 2018, xi+218 pages (edited and with a foreword by Sergey Tikhonov) | DOI | MR

[26] Frank Filbir; Ralf Hielscher; Thomas Jahn; Tino Ullrich Marcinkiewicz-Zygmund inequalities for scattered and random data on the q-sphere, Appl. Comput. Harmon. Anal., Volume 71 (2024), 101651, 18 pages | DOI | MR | Zbl

[27] Daniel Freeman; Dorsa Ghoreishi Discretizing L p norms and frame theory, J. Math. Anal. Appl., Volume 519 (2023) no. 2, 126846 | DOI | MR

[28] Daniel Freeman; Darrin Speegle The discretization problem for continuous frames, Adv. Math., Volume 345 (2019), pp. 784-813 | DOI | MR

[29] Manuel Gräf; Daniel Potts On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms, Numer. Math., Volume 119 (2011) no. 4, pp. 699-724 | MR | DOI

[30] Anne Greenbaum Iterative methods for solving linear systems, Frontiers in Applied Mathematics, 17, Society for Industrial and Applied Mathematics, 1997, xiv+220 pages | DOI | MR

[31] Karlheinz Gröchenig Sampling, Marcinkiewicz–Zygmund inequalities, approximation, and quadrature rules, J. Approx. Theory, Volume 257 (2020), 105455 | DOI | MR

[32] Lutz Kämmerer Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices, SIAM J. Numer. Anal., Volume 51 (2013), pp. 2773-2796 | MR | DOI

[33] Lutz Kämmerer Reconstructing Multivariate Trigonometric Polynomials from Samples Along Rank-1 Lattices, Approximation Theory XIV: San Antonio 2013 (Gregory E. Fasshauer; Larry L. Schumaker, eds.) (Springer Proceedings in Mathematics & Statistics), Springer (2014), pp. 255-271

[34] Lutz Kämmerer; Daniel Potts; Toni Volkmer Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank-1 lattice with generating vector of Korobov form, J. Complexity, Volume 31 (2015) no. 3, pp. 424-456 | MR | DOI

[35] Lutz Kämmerer; Tino Ullrich; Toni Volkmer Worst-case recovery guarantees for least squares approximation using random samples, Constr. Approx., Volume 54 (2021) no. 2, pp. 295-352 | DOI | MR

[36] Jack Kiefer; Jacob Wolfowitz The equivalence of two extremum problems, Can. J. Math., Volume 12 (1960), pp. 363-366 | DOI | MR

[37] Egor D. Kosov Remarks on sampling discretization of integral norms of functions, Tr. Mat. Inst. Steklova, Volume 319 (2022), pp. 202-212 | DOI | MR

[38] David Krieg; Kateryna Pozharska; Mario Ullrich; Tino Ullrich Sampling projections in the uniform norm (2024) | arXiv

[39] David Krieg; Mario Ullrich Function values are enough for L 2 -approximation, Found. Comput. Math., Volume 21 (2021) no. 4, pp. 1141-1151 | DOI | MR

[40] Frances Y. Kuo; Giovanni Migliorati; Fabio Nobile; Dirk Nuyens Function integration, reconstruction and approximation using rank-1 lattices, Math. Comput., Volume 90 (2021) no. 330, pp. 1861-1897 | MR | DOI

[41] Gitta Kutyniok; Kasso A. Okoudjou; Friedrich Philipp Scalable frames and convex geometry, Operator methods in wavelets, tilings, and frames. AMS special session on harmonic analysis of frames, wavelets, and tilings (Contemporary Mathematics), Volume 626, Springer, 2014, pp. 19-32

[42] J. Marcinkiewicz; A. Zygmund Sur les fonctions indépendantes, Fundam. Math., Volume 29 (1937) no. 1, pp. 60-90 | DOI

[43] Adam W. Marcus; Daniel A. Spielman; Nikhil Srivastava Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem, Ann. Math. (2), Volume 182 (2015) no. 1, pp. 327-350 | DOI | MR

[44] Giovanni Migliorati; Fabio Nobile Stable high-order randomized cubature formulae in arbitrary dimension, J. Approx. Theory, Volume 275 (2022), 105706 | MR | DOI

[45] Nicolas Nagel; Martin Schäfer; Tino Ullrich A new upper bound for sampling numbers, Found. Comput. Math., Volume 22 (2022) no. 2, pp. 445-468 | DOI | MR

[46] Shahaf Nitzan; Alexander Olevskii; Alexander Ulanovskii Exponential frames on unbounded sets, Proc. Am. Math. Soc., Volume 144 (2016) no. 1, pp. 109-118 | DOI | MR

[47] Erich Novak Quadrature and widths, J. Approx. Theory, Volume 47 (1986) no. 3, pp. 195-202 | MR | DOI

[48] Erich Novak; Henryk Woźniakowski Tractability of multivariate problems. Vol. 1: Linear information, EMS Tracts in Mathematics, 6, European Mathematical Society, 2008, xii+384 pages | DOI | MR

[49] Federico Piazzon; Alvise Sommariva; Marco Vianello Caratheodory-Tchakaloff subsampling, Dolomites Res. Notes Approx., Volume 10 (2017) no. 1, pp. 5-14 | MR

[50] Mihai Putinar A note on Tchakaloff’s theorem, Proc. Am. Math. Soc., Volume 125 (1997) no. 8, pp. 2409-2414 | DOI | MR

[51] Rolf Schneider Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and Its Applications, 151, Cambridge University Press, 2014, xxii+736 pages | MR

[52] Harold S. Shapiro Topics in approximation theory, Lecture Notes in Mathematics, 187, Springer, 1971, viii+275 pages (with appendices by Jan Boman and Torbjörn Hedberg) | DOI | MR

[53] Winfried Sickel; Tino Ullrich The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness, East J. Approx., Volume 13 (2007) no. 4, pp. 387-425 | MR

[54] Ian H. Sloan; James N. Lyness The Representation of Lattice Quadrature Rules as Multiple Sums, Math. Comput., Volume 52 (1989) no. 185, pp. 81-94 | MR | DOI

[55] Gábor Szegö Orthogonal Polynomials, American Mathematical Society, 1975 | MR

[56] Vladimir Tchakaloff Formules de cubatures mécaniques à coefficients non négatifs, Bull. Sci. Math. (2), Volume 81 (1957), pp. 123-134 | MR

[57] Vladimir Temlyakov The Marcinkiewicz-type discretization theorems for the hyperbolic cross polynomials, Jaen J. Approx., Volume 9 (2017) no. 1, pp. 37-63 | MR

[58] Joel A. Tropp User-friendly tail bounds for sums of random matrices, Found. Comput. Math., Volume 12 (2012) no. 4, pp. 389-434 | DOI | MR

[59] Grzegorz W. Wasilkowski; Henryk Woźniakowski On the power of standard information for weighted approximation, Found. Comput. Math., Volume 1 (2001) no. 4, pp. 417-434 | DOI | MR

[60] Robert S. Womersley Efficient Spherical Designs with Good Geometric Properties, Springer (2018), pp. 1243-1285 | DOI

Cited by Sources: