Second-order entropy satisfying BGK-FVS schemes for incompressible Navier-Stokes equations
; ; ; ;
The SMAI journal of computational mathematics, Volume 4 (2018) , pp. 1-56.

Kinetic BGK numerical schemes for the approximation of incompressible Navier-Stokes equations are derived via classical discrete velocity vector BGK approximations, but applied to an inviscid compressible gas dynamics system with small Mach number parameter, according to the approach of Carfora and Natalini (2008). As the Mach number, the grid size and the timestep tend to zero, the low Mach number limit and the time-space convergence of the scheme are achieved simultaneously, and the numerical viscosity tends to the physical viscosity of the Navier-Stokes system. The method is analyzed and formulated as an explicit finite volume/difference flux vector splitting (FVS) scheme over a Cartesian mesh. It is close in spirit to lattice Boltzmann schemes, but it has several advantages. The first is that the scheme is expressed only in terms of momentum and mass compressible variables. It is therefore very easy to implement, and several types of boundary conditions are straightforward to apply. The second advantage is that the scheme satisfies a discrete entropy inequality, under a CFL condition of parabolic type and a subcharacteristic stability condition involving a cell Reynolds number that ensures that diffusion dominates advection at the level of the grid size. This ensures the robustness of the method, with explicit uniform bounds on the approximate solution. Moreover the scheme is proved to be second-order accurate in space if the parameters are well chosen, this is the case in particular for the Lax-Friedrichs scheme with Mach number proportional to the grid size. The scheme falls then into the class of artificial compressibility methods, the novelty being its exceptionally good theoretical properties. We show the efficiency of the method in terms of accuracy and robustness on a variety of classical two-dimensional benchmark tests. The method is finally applied in three dimensions to compute the permeability of a porous medium defined by a complex idealized Kelvin-like cell. Relations between our scheme and compressible low Mach number schemes are discussed.

Published online: 2018-03-28
DOI: https://doi.org/10.5802/smai-jcm.28
Classification: 65M12,  65X68
Keywords: incompressible Navier-Stokes equations, vector BGK schemes, flux vector splitting, low Mach number limit, discrete entropy inequality, cell Reynolds number, lattice Boltzmann schemes
@article{SMAI-JCM_2018__4__1_0,
     author = {Fran\c cois Bouchut and Yann Jobic and Roberto Natalini and Ren\'e Occelli and Vincent Pavan},
     title = {Second-order entropy satisfying BGK-FVS schemes for incompressible Navier-Stokes equations},
     journal = {The SMAI journal of computational mathematics},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {4},
     year = {2018},
     pages = {1-56},
     doi = {10.5802/smai-jcm.28},
     language = {en},
     url={smai-jcm.centre-mersenne.org/item/SMAI-JCM_2018__4__1_0/}
}
Bouchut, François; Jobic, Yann; Natalini, Roberto; Occelli, René; Pavan, Vincent. Second-order entropy satisfying BGK-FVS schemes for incompressible Navier-Stokes equations. The SMAI journal of computational mathematics, Volume 4 (2018) , pp. 1-56. doi : 10.5802/smai-jcm.28. https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2018__4__1_0/

[1] T. Alazard Low Mach number limit of the full Navier-Stokes equations, Arch. Rat. Mech. Anal., Volume 180 (2006), pp. 1-73

[2] F. Alexander; H. Chen; S. Chen; G. Doolen A lattice Boltzmann model for compressible fluids, Phys. Rev. A, Volume 46 (1992), pp. 1967-1970

[3] D. Aregba-Driollet; R. Natalini Discrete kinetic schemes for multidimensional systems of conservation laws, SIAM J. Numer. Anal., Volume 37 (2000), pp. 1973-2004

[4] D. Aregba-Driollet; R. Natalini; S. Tang Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems, Math. Comput., Volume 73 (2004), pp. 63-94

[5] B.F. Armaly; F. Durst; J.C.F. Pereira; B. Schonung Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech., Volume 127 (1983), pp. 473-496

[6] P. Asinari; T. Ohwada; E. Chiavazzo; A.F. Di Rienzo Link-wise artificial compressibility method, J. Comput. Phys., Volume 231 (2012), pp. 5109-5143

[7] E. Audusse; M.-O. Bristeau; B. Perthame; J. Sainte-Marie A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation, ESAIM: Math. Modelling Numer. Anal., Volume 45 (2011), pp. 169-200

[8] C. Levermore B. Boghosian A cellular automaton for Burgers’s equation, Complex Systems, Volume 1 (1987), pp. 17-30

[9] C. Bardos; F. Golse; C.D. Levermore Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., Volume 63 (1991), pp. 323-344

[10] C. Bardos; F. Golse; C.D. Levermore Fluid dynamic limits of kinetic equations-II Convergence proofs for the Boltzmann-equation, Comm. Pure Appl. Math., Volume 46 (1993), pp. 667-753

[11] C. Bardos; F. Golse; C.D. Levermore The acoustic limit for the Boltzmann equation, Archive Rat. Mech. Anal., Volume 153 (2000), pp. 177-204

[12] J. Bernsdorf Simulation of complex flows and multi-physics with the lattice-Boltzmann method (2008), 114, 76 pages (Ph. D. Thesis)

[13] F. Berthelin; F. Bouchut Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics, Asymptotic analysis, Volume 31 (2002), pp. 153-176

[14] F. Berthelin; F. Bouchut Relaxation to isentropic gas dynamics for a BGK system with single kinetic entropy, Meth. and Appl. of Analysis, Volume 9 (2002), pp. 313-327

[15] F. Bouchut Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Stat. Phys., Volume 95 (1999), pp. 113-170

[16] F. Bouchut Entropy satisfying flux vector splittings and kinetic BGK models, Numer. Math., Volume 94 (2003), pp. 623-672

[17] F. Bouchut Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, Boston, Berlin, 2004

[18] F. Bouchut A reduced stability condition for nonlinear relaxation to conservation laws, J. Hyp. Diff. Eq., Volume 1 (2004), pp. 149-170

[19] F. Bouchut; H. Frid Finite difference schemes with cross derivatives correctors for multidimensional parabolic systems, J. Hyp. Diff. Eq., Volume 3 (2006), pp. 27-52

[20] F. Bouchut; F.R. Guarguaglini; R. Natalini Diffusive BGK approximations for nonlinear multidimensional parabolic equations, Indiana Univ. Math. J., Volume 49 (2000), pp. 723-749

[21] F. Bouchut; C. Klingenberg; K. Waagan A multiwave approximate Riemann solver for ideal MHD based on relaxation I - Theoretical framework, Numer. Math., Volume 108 (2007), pp. 7-42

[22] F. Boyer; P. Fabrie Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, Springer, New York, 2012

[23] Y. Brenier Résolution d’équations d’évolution quasilinéaires en dimension N d’espace à l’aide d’équations linéaires en dimension N+1, J. Diff. Eq., Volume 50 (1983), pp. 375-390

[24] Y. Brenier Averaged multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal., Volume 21 (1984), pp. 1013-1037

[25] D. Bresch; B. Desjardins; E. Grenier; C.-K. Lin Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case, Stud. Appl. Math., Volume 109 (2002), pp. 125-149

[26] D. Bresch; G. Métivier Anelastic limits for Euler-type systems, Appl. Math. Res. Express., Volume 2010 (2010), pp. 119-141

[27] M. Breuer; J. Bernsdorf; T. Zeiser; F. Durst Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume, Intern. J. Heat Fluid Flow, Volume 21 (2000), pp. 186-196

[28] C.-H. Bruneau; P. Fabrie New efficient boundary conditions for incompressible Navier-Stokes equations: a well-posedness result, Math. Model. Numer. Anal., Volume 30 (1996), pp. 815-840

[29] M. Carfora; R. Natalini A discrete kinetic approximation for the incompressible Navier-Stokes equations, ESAIM: Math. Modelling Numer. Anal., Volume 42 (2008), pp. 93-112

[30] C. Chalons; M. Girardin; S. Kokh An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes, Comm. Comput. Phys., Volume 20 (2016), pp. 188-233

[31] G.Q. Chen; C.D. Levermore; T.-P. Liu Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., Volume 47 (1994), pp. 787-830

[32] S. Chikatamarla; I. Karlin Lattices for the lattice Boltzmann method, Phys. Rev. E, Volume 79 (2009), 046701 pages

[33] D.S. Clague; B.D. Kandhai; R. Zhang; P.M.A. Sloot Hydraulic permeability of (un)bounded fibrous media using the lattice Boltzmann method, Phys. Rev. E, Volume 61 (2000), pp. 616-625

[34] F. Cordier; P. Degond; A. Kumbaro An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations, J. Comput. Phys., Volume 231 (2012), pp. 5685-5704

[35] H. Darcy Les fontaines publiques de la ville de Dijon, Dalmont, Paris, 1856

[36] P. Degond; M. Tang All speed scheme for the low Mach number limit of the isentropic Euler equations, Commun. Comput. Phys., Volume 10 (2011), pp. 1-31

[37] S. Dellacherie Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J. Comput. Phys., Volume 229 (2010), pp. 978-1016

[38] S. Dellacherie Construction and analysis of lattice Boltzmann methods applied to a 1D convection-diffusion equation, Acta Applicandae Mathematicae, Volume 131 (2014), pp. 69-140

[39] S. Dellacherie; P. Omnes On the Godunov scheme applied to the variable cross-section linear wave equation, Springer Proc. Math., Volume 4 (2011), pp. 313-321

[40] S.M. Deshpande Kinetic theory based new upwind methods for inviscid compressible flows (1986) (AIAA 24th Aerospace Science Meeting, Jan 6-9 1986, Nevada, USA, AIAA paper 86-0275)

[41] S.M. Deshpande On the Maxwellian distribution, symmetric form and entropy conservation for the Euler equations (1986) (NASA Langley Research Centre, Hampton, VA, 1986, NASA TP2613)

[42] D. d’Humieres Generalized lattice-Boltzmann equations, Rarefied Gas Dynamics: Theory and Simulations, vol. 159 of AIAA Progress in Astronautics and Astronautics, 1992, pp. 450-458

[43] D. d’Humieres; I. Ginzburg; M. Krafczyk; P. Lallemand; L.S. Luo Multiple-relaxation-time lattice Boltzmann models in three dimensions, Phil. Trans. Royal Soc. London series A-Math. Phys. Eng. Sci., Volume 360 (2002), pp. 437-451

[44] F. Dubois Décomposition de flux et discontinuité de contact stationnaire, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 847-850

[45] F. Dubois Equivalent partial differential equations of a lattice Boltzmann scheme, Computers Math. Applic., Volume 55 (2008), pp. 1441-1449

[46] B. Elton; C. Levermore; G. Rodrigue Convergence of convective-diffusive lattice Boltzmann methods, SIAM J. Numer. Anal., Volume 32 (1995), pp. 1327-1354

[47] E. Erturk Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions, Computers Fluids, Volume 37 (2008), pp. 633-655

[48] J. Gressier; P. Villedieu; J.-M. Moschetta Positivity of flux vector splitting schemes, J. Comput. Phys., Volume 155 (1999), pp. 199-220

[49] F.J. Higuera; J. Jimenez Boltzmann approach to lattice gas simulations, Europhys. Letters, Volume 9 (1989), pp. 663-668

[50] T. Inamuro; M. Yoshino; F. Ogino Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number, Phys. Fluids, Volume 9 (1997), 3535 pages

[51] S. Jin; L. Pareschi; G. Toscani Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations, SIAM J. Numer. Anal., Volume 35 (1998), pp. 2405-2439

[52] S. Jin; L. Pareschi; G. Toscani Uniformly accurate diffusive relaxation schemes for multiscale transport equations, SIAM J. Numer. Anal., Volume 38 (2000), pp. 913-936

[53] I.V. Karlin; A.N. Gorban; S. Succi; V. Boffi Maximum entropy principle for lattice kinetic equations, Phys. Rev. Lett., Volume 81 (1998), pp. 6-9

[54] S. Klainerman; A. Majda Compressible and incompressible fluids, Comm. Pure Appl. Math., Volume 35 (1982), pp. 629-651

[55] P. Kumar; F. Topin Micro-structural impact of different strut shapes and porosity on hydraulic properties of Kelvin-like metal foams, Transport in Porous Media, Volume 105 (2014), pp. 57-81

[56] P. Lallemand; L.-S. Luo Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Physical Review E, Volume 61 (2000), pp. 6546-6562

[57] X.-S. Li; C.-W. Gu An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour, J. Comput. Phys., Volume 227 (2008), pp. 5144-5159

[58] P.-L. Lions; N. Masmoudi Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., Volume 77 (1998), pp. 585-627

[59] J.C. Mandal; S.M. Deshpande Higher order accurate kinetic flux vector splitting method for Euler equations, Nonlinear Hyperbolic Equations – Theory, Computation Methods, and Applications (Notes on Numerical Fluid Mechanics Series 24), 1989, pp. 384-392

[60] B. Maury The respiratory system in equations, Modeling, Simulation and Applications 7, Springer, Milan, 2013

[61] G.R. McNamara; G. Zanetti Use of the Boltzmann-equation to simulate lattice-gas automata, Phys. Rev. Letters, Volume 61 (1988), pp. 2332-2335

[62] R. Mei; L.S. Luo; P. Lallemand; D. d’Humieres Consistent initial conditions for lattice Boltzmann simulations, Computers Fluids, Volume 35 (2006), pp. 855-862

[63] X. Nicolas; M. Medale; S. Glockner; S. Gounand Benchmark solution for a three-dimensional mixed-convection flow, part 1: reference solutions, Numer. Heat Transfer B-Fundamentals, Volume 60 (2011), pp. 325-345

[64] S. Noelle; G. Bispen; K.R. Arun; M. Lukacova-Medvidova; C.-D. Munz A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics, SIAM J. Sci. Comput., Volume 36 (2014), p. B989-B1024

[65] T. Ohwada; P. Asinari Artificial compressibility method revisited: Asymptotic numerical method for incompressible Navier-Stokes equations, J. Comput. Phys., Volume 229 (2010), pp. 1698-1723

[66] T. Ohwada; P. Asinari; D. Yabusaki Artificial compressibility method and lattice Boltzmann method: similarities and differences, Computers Math. Applic., Volume 61 (2011), pp. 3461-3474

[67] M.A. Ol’shanskii; V.M. Staroverov On simulation of outflow boundary conditions in finite difference calculations for incompressible fluid, Int. J. Numer. Meth. Fluids, Volume 33 (2000), pp. 499-534

[68] H. Paillére; C. Viozat; A. Kumbaro; I. Toumi Comparison of low Mach number models for natural convection problems, Heat and Mass Transfer, Volume 36 (2000), pp. 567-573

[69] T.C. Papanastasiou; N. Malamataris; K. Ellwood A new outflow boundary-condition, Int. J. Numer. Meth. Fluids, Volume 14 (1992), pp. 587-608

[70] B. Perthame Boltzmann type schemes for gas dynamics and the entropy property, SIAM J. Numer. Anal., Volume 27 (1990), pp. 1405-1421

[71] B. Perthame; E. Tadmor A kinetic-equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys., Volume 136 (1991), pp. 501-517

[72] A. Poux; S. Glockner; E. Ahusborde; M. Azaiez Open boundary conditions for the velocity-correction scheme of the Navier-Stokes equations, Computers Fluids, Volume 70 (2012), pp. 29-43

[73] D.I. Pullin Direct simulation methods for compressible inviscid ideal-gas flow, J. Comput. Phys., Volume 34 (1980), pp. 231-244

[74] R.D. Reitz One-dimensional compressible gas dynamics calculations using the Boltzmann equations, J. Comput. Phys., Volume 42 (1981), pp. 108-123

[75] P. Renard; A. Genty; F. Stauffer Laboratory determination of the full permeability tensor, J. Geophysical Res., Volume 106 (2001), pp. 26443-26452

[76] L. Saint-Raymond Hydrodynamic limits of the Boltzmann equation, Lecture Notes in Mathematics 1971, Springer, Berlin, 2009

[77] S. Schochet Fast singular limits of hyperbolic PDEs, J. Diff. Eq., Volume 114 (1994), pp. 476-512

[78] A. Shah; L. Yuan Flux-difference splitting-based upwind compact schemes for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, Volume 61 (2009), pp. 552-568

[79] A. Shah; L. Yuan; A. Khan Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations, Applied Math. Comput., Volume 215 (2010), pp. 3201-3213

[80] A. Sohankar; C. Norberg; L. Davidson Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition, Intern. J. Numer. Meth. Fluids, Volume 26 (1998), pp. 39-56

[81] S. Succi The lattice Boltzmann equation for fluid dynamics and beyond, Numerical Mathematics and Scientific Computation, Oxford Science Publications, the Clarendon Press, Oxford University Press, New York, 2001

[82] S. Succi; E. Foti; F. Higuera 3-dimensional flows in complex geometries with the lattice Boltzmann method, Europhys. Letters, Volume 10 (1989), pp. 433-438

[83] S. Succi; I.V. Karlin; H. Chen Role of the H theorem in lattice Boltzmann hydrodynamic simulations, Rev. Mod. Phys., Volume 74 (2002), pp. 1203-1220

[84] L. Talon; D. Bauer; N. Gland; S. Youssef; H. Auradou; I. Ginzburg Assessment of the two relaxation time lattice-Boltzmann scheme to simulate Stokes flow in porous media, Water Resources Res., Volume 48 (2012), W04526 pages

[85] E. Turkel Preconditioned methods for solving the incompressible and low speed compressible equations, J. Comput. Phys., Volume 72 (1987), pp. 277-298

[86] W.A. Yong; L.S. Luo Nonexistence of H theorem for some lattice Boltzmann models, J. Stat. Phys., Volume 121 (2005), pp. 91-103