A robust, discrete-gradient descent procedure for optimisation with time-dependent PDE and norm constraints
The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 1-28.

Many physical questions in fluid dynamics can be recast in terms of norm constrained optimisation problems; which in-turn, can be further recast as unconstrained problems on spherical manifolds. Due to the nonlinearities of the governing PDEs, and the computational cost of performing optimal control on such systems, improving the numerical convergence of the optimisation procedure is crucial. Borrowing tools from the optimisation on manifolds community we outline a numerically consistent, discrete formulation of the direct-adjoint looping method accompanied by gradient descent and line-search algorithms with global convergence guarantees. We numerically demonstrate the robustness of this formulation on three example problems of relevance in fluid dynamics and provide an accompanying library SphereManOpt.

Published online:
DOI: 10.5802/smai-jcm.104
Classification: 65N35, 15A15
Keywords: optimal control, adjoint-based methods, optimisation on manifolds
Paul M. Mannix 1; Calum S. Skene 2; Didier Auroux 1; Florence Marcotte 1

1 Université Côte d’Azur, Inria, CNRS, LJAD, France
2 Department of Applied Mathematics, University of Leeds, West Yorkshire, UK
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2024__10__1_0,
     author = {Paul M. Mannix and Calum S. Skene and Didier Auroux and Florence Marcotte},
     title = {A robust, discrete-gradient descent procedure for optimisation with time-dependent {PDE} and norm constraints},
     journal = {The SMAI Journal of computational mathematics},
     pages = {1--28},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {10},
     year = {2024},
     doi = {10.5802/smai-jcm.104},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.104/}
}
TY  - JOUR
AU  - Paul M. Mannix
AU  - Calum S. Skene
AU  - Didier Auroux
AU  - Florence Marcotte
TI  - A robust, discrete-gradient descent procedure for optimisation with time-dependent PDE and norm constraints
JO  - The SMAI Journal of computational mathematics
PY  - 2024
SP  - 1
EP  - 28
VL  - 10
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.104/
DO  - 10.5802/smai-jcm.104
LA  - en
ID  - SMAI-JCM_2024__10__1_0
ER  - 
%0 Journal Article
%A Paul M. Mannix
%A Calum S. Skene
%A Didier Auroux
%A Florence Marcotte
%T A robust, discrete-gradient descent procedure for optimisation with time-dependent PDE and norm constraints
%J The SMAI Journal of computational mathematics
%D 2024
%P 1-28
%V 10
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.104/
%R 10.5802/smai-jcm.104
%G en
%F SMAI-JCM_2024__10__1_0
Paul M. Mannix; Calum S. Skene; Didier Auroux; Florence Marcotte. A robust, discrete-gradient descent procedure for optimisation with time-dependent PDE and norm constraints. The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 1-28. doi : 10.5802/smai-jcm.104. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.104/

[1] Pierre-Antoine Absil; Robert Mahony; Rodolphe Sepulchre Optimization algorithms on matrix manifolds, Princeton University Press, 2009

[2] Uri M. Ascher; Steven J. Ruuth; Raymond J. Spiteri Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., Volume 25 (1997), pp. 151-167 | DOI | MR | Zbl

[3] Uri M. Ascher; Steven J. Ruuth; Brian T. R. Wetton Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., Volume 32 (1995), pp. 797-823 | DOI | MR | Zbl

[4] Didier Auroux; Jacques Blum Data assimilation methods for an oceanographic problem, Multidisciplinary methods for analysis optimization and control of complex systems (Mathematics in Industry), Volume 6, Springer, 2005, pp. 180-194 | DOI | Zbl

[5] Jens Berg; Jan Nordström On the impact of boundary conditions on dual consistent finite difference discretizations, J. Comput. Phys., Volume 236 (2013), pp. 41-55 | DOI | MR | Zbl

[6] Nicolas Boumal An introduction to optimization on smooth manifolds (2022) (https://www.nicolasboumal.net/book, to appear with Cambridge University Press)

[7] Nicolas Boumal; Bamdev Mishra; Pierre-Antoine Absil; Rodolphe Sepulchre Manopt, a Matlab Toolbox for Optimization on Manifolds, J. Mach. Learn. Res., Volume 15 (2014) no. 42, pp. 1455-1459 | Zbl

[8] Keaton J. Burns; Geoffrey M. Vasil; Jeffrey S. Oishi; Daniel Lecoanet; Benjamin P. Brown Dedalus: A flexible framework for numerical simulations with spectral methods, Phys. Rev. Res., Volume 2 (2020), 023068 | DOI

[9] Thierry Dauxois; Thomas Peacock; Peter Bauer; Colm P. Caulfield; Claudia Cenedese; Catherine Gorlé; George Haller; Greg N. Ivey; Paul F. Linden; Eckart Meiburg et al. Confronting grand challenges in environmental fluid mechanics, Phys. Rev. Fluids, Volume 6 (2021) no. 2, 020501

[10] Miguel Fosas De Pando; Denis Sipp; Peter J. Schmid Efficient evaluation of the direct and adjoint linearized dynamics from compressible flow solvers, J. Comput. Phys., Volume 231 (2012) no. 23, pp. 7739-7755 | DOI | MR | Zbl

[11] S. C. Douglas; S. Amari; S. Y. Kung Gradient adaptation under unit-norm constraints, Ninth IEEE Signal Processing Workshop on Statistical Signal and Array Processing (Cat. No.98TH8381), IEEE, 1998 | DOI

[12] Maximilian F. Eggl; Peter J. Schmid A gradient-based framework for maximizing mixing in binary fluids, J. Comput. Phys., Volume 368 (2018), pp. 131-153 | DOI | MR | Zbl

[13] Patrick E. Farrell; David A. Ham; Simon W. Funke; Marie E. Rognes Automated derivation of the adjoint of high-level transient finite element programs, SIAM J. Sci. Comput., Volume 35 (2013) no. 4, p. C369-C393 | DOI | MR | Zbl

[14] Alexandru Fikl; Vincent Le Chenadec; Taraneh Sayadi Control and optimization of interfacial flows using adjoint-based techniques, Fluids, Volume 5 (2020) no. 3, p. 156 | DOI

[15] Alexandru Fikl; Vincent Le Chenadec; Taraneh Sayadi; Peter J. Schmid A comprehensive study of adjoint-based optimization of non-linear systems with application to Burgers’ equation, 46th AIAA Fluid Dynamics Conference (2016), p. 3805

[16] Dimitry P. G. Foures; Colm P. Caulfield; Peter J. Schmid Localization of flow structures using-norm optimization, J. Fluid Mech., Volume 729 (2013), pp. 672-701 | DOI | MR | Zbl

[17] Dimitry P. G. Foures; Colm P. Caulfield; Peter J. Schmid Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number, J. Fluid Mech., Volume 748 (2014), pp. 241-277 | DOI | Zbl

[18] Michael Franco; Per-Olof Persson; Will Pazner; Matthew J. Zahr An adjoint method using fully implicit runge-kutta schemes for optimization of flow problems, AIAA Scitech 2019 Forum, 2019 | DOI

[19] Andreas Griewank; Andrea Walther Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Trans. Math. Softw., Volume 26 (2000) no. 1, pp. 19-45 | DOI | Zbl

[20] William W. Hager Runge–Kutta methods in optimal control and the transformed adjoint system, Numer. Math., Volume 87 (2000), pp. 247-282 | DOI | MR | Zbl

[21] William W. Hager; Hongchao Zhang A survey of nonlinear conjugate gradient methods, Pac. J. Optim., Volume 2 (2006) no. 1, pp. 35-58 | MR | Zbl

[22] Ralf Hartmann Adjoint consistency analysis of discontinuous Galerkin discretizations, SIAM J. Numer. Anal., Volume 45 (2007) no. 6, pp. 2671-2696 | DOI | MR | Zbl

[23] Laurent Hascoët; Valérie Pascual The Tapenade Automatic Differentiation tool: Principles, Model, and Specification, ACM Trans. Math. Softw., Volume 39 (2013) no. 3, 20, 43 pages | DOI | MR | Zbl

[24] Conor Heffernan; Colm P. Caulfield Robust and efficient identification of optimal mixing perturbations using proxy multiscale measures, Philos. Trans. R. Soc. Lond., Ser. A, Volume 380 (2022) no. 2225, 26, 20210026, 17 pages | MR | Zbl

[25] Michael Hinze; René Pinnau; Michael Ulbrich; Stefan Ulbrich Optimization with PDE constraints, 23, Springer, 2008

[26] Steven G. Johnson The NLopt nonlinear-optimization package, http://github.com/stevengj/nlopt, 2014

[27] Matthew P. Juniper; R. I. Sujith Sensitivity and nonlinearity of thermoacoustic oscillations, Annu. Rev. Fluid Mech., Volume 50 (2018), pp. 661-689 | DOI | MR | Zbl

[28] Rich R. Kerswell Nonlinear Nonmodal Stability Theory, Annu. Rev. Fluid Mech., Volume 50 (2018), pp. 319-345 | DOI | MR | Zbl

[29] E. Knobloch Spatial Localization in Dissipative Systems, Ann. Rev. Cond. Matter Phys., Volume 6 (2015) no. 1, pp. 325-359 | DOI

[30] Ali Kord; Jesse Capecelatro Optimal perturbations for controlling the growth of a Rayleigh–Taylor instability, J. Fluid Mech., Volume 876 (2019), pp. 150-185 | DOI | MR | Zbl

[31] Dieter Kraft et al. A software package for sequential quadratic programming, DFVLR Forschungsber, 28, DFVLR Obersfaffeuhofen, 1988, 33 pages

[32] Joseph Larmor 17. How Could a Rotating Body such as the Sun Become a Magnet?, Reports of the British Association, Volume 87 (1919), pp. 159-160

[33] Daniel Lecoanet; Rich R. Kerswell Connection between nonlinear energy optimization and instantons, Phys. Rev. E, Volume 97 (2018), 012212 | DOI

[34] Dmitriy Leykekhman Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control problems, J. Sci. Comput., Volume 53 (2012) no. 3, pp. 483-511 | DOI | MR | Zbl

[35] David G. Luenberger Introduction to linear and nonlinear programming, Addison-wesley Reading, 1973, xii+356 pages

[36] Paul M. Mannix; Calum S. Skene; Didier Auroux; Florence Marcotte mannixp/SphereManOpt: Initial Release, https://zenodo.org/record/7271474, 2022 | DOI

[37] Florence Marcotte; Colm P. Caulfield Optimal mixing in two-dimensional stratified plane Poiseuille flow at finite Péclet and Richardson numbers, J. Fluid Mech., Volume 853 (2018), pp. 359-385 | DOI | Zbl

[38] George Mathew; Igor Mezić; Linda Petzold A multiscale measure for mixing, Physica D, Volume 211 (2005) no. 1-2, pp. 23-46 | DOI | MR | Zbl

[39] Bruno Maugars; Sébastien Bourasseau; Cédric Content; Bertrand Michel; Bérenger Berthoul; Jorge Nunez Ramirez; Pascal Raud; Laurent Hascoët Algorithmic Differentiation for an efficient CFD solver, ECCOMAS 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022)

[40] Sebastian K. Mitusch; Simon W. Funke; Jørgen S. Dokken dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake, J. Open Source Softw., Volume 4 (2019) no. 38, p. 1292 | DOI

[41] Jorge J. Moré; David J. Thuente Line search algorithms with guaranteed sufficient decrease, ACM Trans. Math. Softw., Volume 20 (1994) no. 3, pp. 286-307 | DOI | MR | Zbl

[42] Mu Mu; W. Duan; Q. Wang; R. Zhang An extension of conditional nonlinear optimal perturbation approach and its applications, Nonlinear Process. Geophys., Volume 17 (2010) no. 2, pp. 211-220 | DOI

[43] Jens-Dominik Müller; P. Cusdin On the performance of discrete adjoint CFD codes using automatic differentiation, Int. J. Numer. Methods Fluids, Volume 47 (2005) no. 8-9, pp. 939-945 | DOI | Zbl

[44] Uwe Naumann The art of differentiating computer programs: an introduction to algorithmic differentiation, Society for Industrial and Applied Mathematics, 2011 | DOI

[45] Eric J. Nielsen; Boris Diskin Discrete adjoint-based design for unsteady turbulent flows on dynamic overset unstructured grids, AIAA J., Volume 51 (2013) no. 6, pp. 1355-1373 | DOI

[46] Chris C. T. Pringle; Rich R. Kerswell Using nonlinear transient growth to construct the minimal seed for shear flow turbulence, Phys. Rev. Lett., Volume 105 (2010) | DOI

[47] Adrian Sandu On the properties of Runge–Kutta discrete adjoints, Computational Science – ICCS 2006 (Lecture Notes in Computer Science), Volume 3994, 2006, pp. 550-557 | DOI | Zbl

[48] Hiroyuki Sato Riemannian Optimization and Its Applications, Springer, 2021 | DOI

[49] Hiroyuki Sato Riemannian conjugate gradient methods: General framework and specific algorithms with convergence analyses, SIAM J. Optim., Volume 32 (2022) no. 4, pp. 2690-2717 | DOI | MR | Zbl

[50] Hiroyuki Sato Riemannian optimization on unit sphere with p-norm and its applications (2022) (https://arxiv.org/abs/2202.11597)

[51] Peter J. Schmid; Miguel Fosas de Pando; Nigel Peake Stability analysis for n-periodic arrays of fluid systems, Phys. Rev. Fluids, Volume 2 (2017) no. 11, 113902 | DOI | Zbl

[52] Calum S. Skene; Chi-An Yeh; Peter J. Schmid; Kunihiko Taira Sparsifying the resolvent forcing mode via gradient-based optimisation, J. Fluid Mech., Volume 944 (2022), A52, 24 pages | DOI | MR | Zbl

[53] A. D. Terwisscha van Scheltinga; H. A. Dijkstra Conditional nonlinear optimal perturbations of the double-gyre ocean circulation, Nonlinear Process. Geophys., Volume 15 (2008) no. 5, pp. 727-734 | DOI

[54] Jean-Luc Thiffeault Using multiscale norms to quantify mixing and transport, Nonlinearity, Volume 25 (2012) no. 2, p. R1-R44 | DOI | MR | Zbl

[55] James Townsend; Niklas Koep; Sebastian Weichwald Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation, J. Mach. Learn. Res., Volume 17 (2016) no. 137, pp. 1-5 | MR | Zbl

[56] Jean Utke; Laurent Hascoet; Patrick Heimbach; Chris Hill; Paul Hovland; Uwe Naumann Toward adjoinable MPI, 2009 IEEE International Symposium on Parallel & Distributed Processing, IEEE (2009), pp. 1-8

[57] Ramanathan Vishnampet; Daniel J. Bodony; Jonathan B. Freund A practical discrete-adjoint method for high-fidelity compressible turbulence simulations, J. Comput. Phys., Volume 285 (2015), pp. 173-192 | DOI | MR | Zbl

[58] Ashley P. Willis Optimization of the magnetic dynamo, Phys. Rev. Lett., Volume 109 (2012), 251101 | DOI

[59] Stephen Wright; Jorge Nocedal Numerical optimization, Springer Series in Operations Research and Financial Engineering, 35, Springer, 1999

[60] Matthew J. Zahr; Per-Olof Persson An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems, J. Comput. Phys., Volume 326 (2016), pp. 516-543 | DOI | MR | Zbl

[61] Hong Zhang; Emil M. Constantinescu; Barry F. Smith PETSc TSAdjoint: A Discrete Adjoint ODE Solver for First-Order and Second-Order Sensitivity Analysis, SIAM J. Sci. Comput., Volume 44 (2022) no. 1, p. C1-C24 | DOI | MR | Zbl

Cited by Sources: