This paper considers the numerical integration of semilinear evolution PDEs using the high order linearly implicit methods developped in [21] in the ODE setting. These methods use a collocation Runge–Kutta method as a basis, and additional variables that are updated explicitly and make the implicit part of the collocation Runge–Kutta method only linearly implicit. In this paper, we introduce several notions of stability for the underlying Runge–Kutta methods as well as for the explicit step on the additional variables necessary to fit the context of evolution PDE. We prove a main theorem about the high order of convergence of these linearly implicit methods in this PDE setting, using the stability hypotheses introduced before. We use nonlinear Schrödinger equations and heat equations as main examples but our results extend beyond these two classes of evolution PDEs. We illustrate our main result numerically in dimensions 1 and 2, and we compare the efficiency of the linearly implicit methods with other methods from the literature. We also illustrate numerically the necessity of the stability conditions of our main result.
Keywords: numerical analysis, high order methods, linearly implicit methods, collocation methods, Runge–Kutta methods, NLS equation, heat equation
Guillaume Dujardin 1; Ingrid Lacroix-Violet 2
@article{SMAI-JCM_2024__10__325_0, author = {Guillaume Dujardin and Ingrid Lacroix-Violet}, title = {High order~linearly implicit methods for semilinear evolution {PDEs}}, journal = {The SMAI Journal of computational mathematics}, pages = {325--354}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {10}, year = {2024}, doi = {10.5802/smai-jcm.111}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.111/} }
TY - JOUR AU - Guillaume Dujardin AU - Ingrid Lacroix-Violet TI - High order linearly implicit methods for semilinear evolution PDEs JO - The SMAI Journal of computational mathematics PY - 2024 SP - 325 EP - 354 VL - 10 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.111/ DO - 10.5802/smai-jcm.111 LA - en ID - SMAI-JCM_2024__10__325_0 ER -
%0 Journal Article %A Guillaume Dujardin %A Ingrid Lacroix-Violet %T High order linearly implicit methods for semilinear evolution PDEs %J The SMAI Journal of computational mathematics %D 2024 %P 325-354 %V 10 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.111/ %R 10.5802/smai-jcm.111 %G en %F SMAI-JCM_2024__10__325_0
Guillaume Dujardin; Ingrid Lacroix-Violet. High order linearly implicit methods for semilinear evolution PDEs. The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 325-354. doi : 10.5802/smai-jcm.111. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.111/
[1] Linearly Implicit Methods for Nonlinear Parabolic Equations, Math. Comput., Volume 73 (2004) no. 246, pp. 613-635 http://www.jstor.org/stable/4099792 | DOI | Zbl
[2] On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation, ESAIM, Math. Model. Numer. Anal., Volume 25 (1991) no. 6, pp. 643-670 | DOI | Numdam | MR | Zbl
[3] A posteriori error estimates for the Crank–Nicolson method for parabolic equations, Math. Comput., Volume 75 (2006) no. 254, pp. 511-531 | DOI | MR | Zbl
[4] Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation, Numerical Mathematics and Scientific Computation, Oxford University Press, 2007 | DOI
[5] Algebra properties for Sobolev spaces – Applications to semilinear PDE’s on manifolds, J. Anal. Math., Volume 118 (2012) no. 2, pp. 509-544 | DOI | Zbl
[6] A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., Volume 42 (2004) no. 3, pp. 934-952 | DOI | MR | Zbl
[7] Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation, SIAM J. Numer. Anal., Volume 40 (2002) no. 1, pp. 26-40 | arXiv | DOI | Zbl
[8] An asymptotic preserving scheme based on a new formulation for NLS in the semiclassical limit, Multiscale Model. Simul., Volume 11 (2013) no. 4, pp. 1228-1260 http://hal.archives-ouvertes.fr/docs/00/75/20/11/pdf/ap.pdf | DOI | MR | Zbl
[9] Energy-preserving methods for nonlinear Schrödinger equations, IMA J. Numer. Anal., Volume 41 (2020) no. 1, pp. 618-653 | arXiv | DOI | Zbl
[10] High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose–Einstein condensates, SIAM J. Numer. Anal., Volume 55 (2017) no. 3, pp. 1387-1411 | DOI | MR | Zbl
[11] A study of -convergence of Runge–Kutta methods, Computing, Volume 36 (1986) no. 1-2, pp. 17-34 | DOI | MR | Zbl
[12] Linearly implicit Runge–Kutta methods for advection-reaction-diffusion equations, Appl. Numer. Math., Volume 37 (2001) no. 4, pp. 535-549 | DOI | Zbl
[13] Splitting methods with complex times for parabolic equations, BIT, Volume 49 (2009), pp. 487-508 | DOI | Zbl
[14] Multiple Scalar Auxiliary Variable (MSAV) Approach and its Application to the Phase-Field Vesicle Membrane Model, SIAM J. Sci. Comput., Volume 40 (2018) no. 6, p. A3982-A4006 | DOI | Zbl
[15] Étude de la stabilité des méthodes de Runge–Kutta appliquées aux équations paraboliques, Publications des séminaires de mathématiques et informatique de Rennes, Volume S4 (1974) no. 3, pp. 1-6 http://eudml.org/doc/274743 | Numdam
[16] Méthodes de Runge–Kutta (1980) (Unpublished lecture notes, Université de Rennes)
[17] Finite-difference solutions of a nonlinear Schrödinger equation, J. Comput. Phys., Volume 44 (1981) no. 2, pp. 277-288 | DOI | MR | Zbl
[18] Convergence of a Splitting Method of High Order for Reaction-Diffusion Systems, Math. Comput., Volume 70 (2001) no. 236, pp. 1481-1501 http://www.jstor.org/stable/2698737 | DOI | Zbl
[19] Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: singular perturbation and order reduction, Numer. Math., Volume 97 (2004), pp. 667-698 | DOI | Zbl
[20] Exponential Runge–Kutta methods for the Schrödinger equation, Appl. Numer. Math., Volume 59 (2009) no. 8, pp. 1839-1857 | DOI | Zbl
[21] High order linearly implicit methods for evolution equations, ESAIM, Math. Model. Numer. Anal., Volume 56 (2022) no. 3, pp. 743-766 | DOI | Zbl
[22] - and - stability of Runge–Kutta collocation methods, Appl. Numer. Math., Volume 202 (2024), pp. 158-172 | DOI | Zbl
[23] The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation, IMA J. Numer. Anal., Volume 20 (2000) no. 2, pp. 235-261 | DOI | Zbl
[24] Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, 2011 | DOI
[25] Constructive characterization of -stable approximations to and its connection with algebraically stable Runge–Kutta methods, Numer. Math., Volume 39 (1982) no. 2, pp. 247-258 | DOI | MR | Zbl
[26] Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer, 2002 | DOI
[27] Exponential Runge–Kutta methods for parabolic problems, Appl. Numer. Math., Volume 53 (2005) no. 2, pp. 323-339 Tenth Seminar on Numerical Solution of Differential and Differntial-Algebraic Euqations (NUMDIFF-10) | DOI | Zbl
[28] Exponential integrators, Acta Numer., Volume 19 (2010), pp. 209-286 | DOI | Zbl
[29] Fourth order time-stepping for low dispersion Korteweg–de Vries and nonlinear Schrödinger equations, Electron. Trans. Numer. Anal., Volume 29 (2007), pp. 116-135 http://eudml.org/doc/117659 | Zbl
[30] Numerical Approximation of PDEs (2011-2012) (https://www.ljll.math.upmc.fr/ledret/M1ApproxPDE.html)
[31] On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations, Math. Comput., Volume 77 (2008) no. 264, pp. 2141-2153 | DOI | MR | Zbl
[32] Linearly implicit time discretization of non-linear parabolic equations, IMA J. Numer. Anal., Volume 15 (1995) no. 4, pp. 555-583 | DOI
[33] Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, 2003 | DOI
[34] Convergence and Error Analysis for the Scalar Auxiliary Variable (SAV) Schemes to Gradient Flows, SIAM J. Numer. Anal., Volume 56 (2018) no. 5, pp. 2895-2912 | DOI | Zbl
[35] Split-Step Methods for the Solution of the Nonlinear Schrodinger Equation, SIAM J. Numer. Anal., Volume 23 (1986) no. 3, pp. 485-507 | DOI | Zbl
Cited by Sources: