We consider a two-phase Darcy flow in a heterogeneous porous medium while taking into account the effects of temperature. The set of governing equations consists of the usual equations derived from the mass conservation of both fluids along with the Darcy–Muskat, the capillary pressure laws, and the energy balance equation. The problem is written in terms of the fractional flow formulation, i.e. the saturation of one phase, the nonisothermal global pressure and the temperature are primary unknowns. The spatial and temporal discretizations are carried out applying a vertex-centered finite volume scheme and the implicit Euler scheme, respectively, resulting in the final system of fully coupled nonlinear equations. Under some realistic assumptions on the data, we establish a sufficient condition on the mesh to demonstrate the discrete maximum principle for saturation and temperature. Various a priori estimates are derived that yield an existence result for discrete solutions. Based on preliminary estimates and compactness arguments, we prove the convergence of the numerical scheme to a weak solution of the continuous model. The open source platform DuMu has been used to implement the resulting algorithm. Two numerical experiments are presented to illustrate the effectiveness and the robustness of the scheme.
Keywords: Nonlinear degenerate system, Finite volume, Two-phase flow, Nonisothermal, Heterogeneous porous media, DuMu$^X$.
Brahim Amaziane 1; Mustapha El Ossmani 2; El Houssaine Quenjel 3; Youssef Zahraoui 4
@article{SMAI-JCM_2024__10__263_0, author = {Brahim Amaziane and Mustapha El Ossmani and El Houssaine Quenjel and Youssef Zahraoui}, title = {Convergence of a {CVFE} finite volume scheme for nonisothermal immiscible incompressible two-phase flow in porous media}, journal = {The SMAI Journal of computational mathematics}, pages = {263--304}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {10}, year = {2024}, doi = {10.5802/smai-jcm.113}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.113/} }
TY - JOUR AU - Brahim Amaziane AU - Mustapha El Ossmani AU - El Houssaine Quenjel AU - Youssef Zahraoui TI - Convergence of a CVFE finite volume scheme for nonisothermal immiscible incompressible two-phase flow in porous media JO - The SMAI Journal of computational mathematics PY - 2024 SP - 263 EP - 304 VL - 10 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.113/ DO - 10.5802/smai-jcm.113 LA - en ID - SMAI-JCM_2024__10__263_0 ER -
%0 Journal Article %A Brahim Amaziane %A Mustapha El Ossmani %A El Houssaine Quenjel %A Youssef Zahraoui %T Convergence of a CVFE finite volume scheme for nonisothermal immiscible incompressible two-phase flow in porous media %J The SMAI Journal of computational mathematics %D 2024 %P 263-304 %V 10 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.113/ %R 10.5802/smai-jcm.113 %G en %F SMAI-JCM_2024__10__263_0
Brahim Amaziane; Mustapha El Ossmani; El Houssaine Quenjel; Youssef Zahraoui. Convergence of a CVFE finite volume scheme for nonisothermal immiscible incompressible two-phase flow in porous media. The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 263-304. doi : 10.5802/smai-jcm.113. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.113/
[1] Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 17-18, pp. 1007-1012 | DOI | Numdam
[2] Convergence of nonlinear finite volume schemes for two-phase porous media flow on general meshes, IMA J. Numer. Anal., Volume 42 (2022) no. 1, pp. 515-568 | DOI | Zbl
[3] Numerical simulation of a thermal-hydraulic-chemical multiphase flow model for CO2 sequestration in saline aquifers, Math. Geosci., Volume 56 (2024), pp. 541-572 | DOI
[4] Quasilinear elliptic-parabolic differential equations, Math. Z., Volume 183 (1983), pp. 311-341 | Zbl
[5] Convergence of a TPFA finite volume scheme for nonisothermal immiscible compressible two-phase flow in porous medias, Comput. Math. Appl., Volume 165 (2024), pp. 118-149 | DOI | Zbl
[6] An existence result for nonisothermal immiscible incompressible 2-phase flow in heterogeneous porous media, Math. Methods Appl. Sci., Volume 40 (2017) no. 18, pp. 7510-7539 | DOI | Zbl
[7] Convergence of a finite volume scheme for immiscible compressible two-phase flow in porous media by the concept of the global pressure, J. Comput. Appl. Math., Volume 399 (2022), 113728, 26 pages | DOI | Zbl
[8] Analysis of a finite volume method for a cross-diffusion model in population dynamics, Math. Models Methods Appl. Sci., Volume 21 (2011) no. 2, pp. 307-344 | DOI | Zbl
[9] Finite element methods respecting the discrete maximum principle for convection-diffusion equations, SIAM Rev., Volume 66 (2024) no. 1, pp. 3-88 | DOI | Zbl
[10] Combined face based and nodal based discretizations on hybrid meshes for non-isothermal two-phase Darcy flow problems, ESAIM, Math. Model. Numer. Anal., Volume 53 (2019) no. 4, pp. 1125-1156 | DOI | Zbl
[11] Analysis of non-isothermal multiphase flows in porous media, Math. Methods Appl. Sci., Volume 45 (2022) no. 16, pp. 9653-9677 | DOI | Zbl
[12] Weak solutions of coupled variable-density flows and heat transfer in porous media, Nonlinear Anal., Theory Methods Appl., Volume 221 (2022), 112973, 27 pages | DOI | Zbl
[13] Boundary value problems of nonisothermal two-phase filtration in porous media, Free boundary problems in fluid flow with applications (Montreal, PQ, 1990) (Pitman Research Notes in Mathematics Series), Volume 282, Longman Scientific & Technical, 1993, pp. 166-178 | Zbl
[14] Total velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure, IMA J. Numer. Anal., Volume 42 (2022) no. 2, pp. 1231-1272 | DOI | Zbl
[15] Error estimates for the gradient discretisation method on degenerate parabolic equations of porous medium type, Di Pietro, D. A., Formaggia, L., Masson, R. (eds) Polyhedral Methods in Geosciences (SEMA SIMAI Springer Series), Volume 27, Springer, 2021, pp. 37-72 | DOI | Zbl
[16] An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comput., Volume 83 (2014) no. 285, pp. 153-188 | DOI | Zbl
[17] Convergence of an MPFA finite volume scheme for a two-phase porous media flow model with dynamic capillarity, IMA J. Numer. Anal., Volume 39 (2019) no. 1, pp. 512-544 | Zbl
[18] Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Math. Models Methods Appl. Sci., Volume 24 (2014) no. 8, pp. 1575-1619 | DOI | Zbl
[19] Partial Differential Equations, Second edition, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010
[20] Multi-physics modeling of non-isothermal compositional flow on adaptive grids, Comput. Methods Appl. Mech. Eng., Volume 292 (2015), pp. 16-34 | DOI | Zbl
[21] Positive control volume finite element scheme for degenerate compressible two-phase flow in anisotropic porous media, Comput. Geosci., Volume 23 (2019) no. 1, pp. 55-79 | DOI | Zbl
[22] Positivity-preserving finite volume scheme for compressible two-phase flows in anisotropic porous media: the densities are depending on the physical pressures, J. Comput. Phys., Volume 407 (2020), 109233, 29 pages | DOI | Zbl
[23] A hybrid-dimensional discrete fracture model for non-isothermal two-phase flow in fractured porous media, GEM Int. J. Geomath., Volume 10 (2019) no. 1, 5, 25 pages | Zbl
[24] Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems, Springer, 1997 | DOI
[25] DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling, Comput. Math. Appl., Volume 81 (2021) no. 1, pp. 423-443 | DOI | Zbl
[26] Nonobtuse local tetrahedral refinements towards a polygonalface/interface, Appl. Math. Lett., Volume 24 (2011) no. 6, pp. 817-821 | DOI | Zbl
[27] Newton-type methods for the mixed finite element discretization of some degenerate parabolic equations, Numerical Mathematics and Advanced Applications, Springer (2006), pp. 1192-1200 | DOI | Zbl
[28] Monotone nonlinear finite-volume method for nonisothermal two-phase two-component flow in porous media, Int. J. Numer. Methods Fluids, Volume 84 (2017) no. 6, pp. 352-381 | DOI
[29] Monotone nonlinear finite-volume method for challenging grids, Comput. Geosci., Volume 22 (2018) no. 2, pp. 565-586 | DOI | Zbl
[30] Viscosity-temperature correlation for liquids, Tribol. Lett., Volume 22 (2006) no. 1, pp. 67-78 | DOI
[31] Thermal behavior of unconsolidated oil sands, SPE J., Volume 14 (1974), pp. 513-521 | DOI
Cited by Sources: