Optimizing Sensor Calibration in Open Environments: A Bayesian Approach for Non-Specific Multisensory Systems
The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 305-324.

Air and water pollution present significant threats to public health, highlighting the need for precise environmental monitoring methods. Current solutions rely on multisensory systems with limited specificity. Their calibrations often struggle in real-world conditions, resulting in imprecise air and water quality measurements. This paper aim to address the challenge of calibrating non-specific multisensory systems deployed in open periodic environments. A data-driven calibration method is proposed within a Bayesian framework, which considers several sources of uncertainties that are often overlooked in sensor calibration.

The method combines a non-parametric approach, capturing correlations between pollutants and environmental variables, with a parametric method, that maximizes sensor-provided information. Unlike conventional sensor calibration, our method prioritizes the inclusion of input uncertainties and model errors during calibration, providing a comprehensive framework for robust sensor performance.

The theoretical foundations of the non-parametric approach are presented, and the coupling between non-parametric and parametric methods is detailed. The evaluation using synthetic data demonstrates the method’s efficiency and limitations. Then the approach is validated in an experimental use case where a sensor array based on carbon nanotube is calibrated for monitoring ozone and carbon monoxide in an outdoor deployment.

Published online:
DOI: 10.5802/smai-jcm.114
Classification: 65N35, 15A15
Keywords: Bayesian Framework, Multisensory Systems, Air and Water Pollution, Data-driven Calibration, Uncertainty quantification

Marine Dumon 1; Bérengère Lebental 1; Guillaume Perrin 1

1 Université Gustave Eiffel, COSYS, F-77454 Marne-la-Vallée, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2024__10__305_0,
     author = {Marine Dumon and B\'ereng\`ere Lebental and Guillaume Perrin},
     title = {Optimizing {Sensor} {Calibration} in {Open} {Environments:} {A} {Bayesian} {Approach} for {Non-Specific} {Multisensory} {Systems}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {305--324},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {10},
     year = {2024},
     doi = {10.5802/smai-jcm.114},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.114/}
}
TY  - JOUR
AU  - Marine Dumon
AU  - Bérengère Lebental
AU  - Guillaume Perrin
TI  - Optimizing Sensor Calibration in Open Environments: A Bayesian Approach for Non-Specific Multisensory Systems
JO  - The SMAI Journal of computational mathematics
PY  - 2024
SP  - 305
EP  - 324
VL  - 10
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.114/
DO  - 10.5802/smai-jcm.114
LA  - en
ID  - SMAI-JCM_2024__10__305_0
ER  - 
%0 Journal Article
%A Marine Dumon
%A Bérengère Lebental
%A Guillaume Perrin
%T Optimizing Sensor Calibration in Open Environments: A Bayesian Approach for Non-Specific Multisensory Systems
%J The SMAI Journal of computational mathematics
%D 2024
%P 305-324
%V 10
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.114/
%R 10.5802/smai-jcm.114
%G en
%F SMAI-JCM_2024__10__305_0
Marine Dumon; Bérengère Lebental; Guillaume Perrin. Optimizing Sensor Calibration in Open Environments: A Bayesian Approach for Non-Specific Multisensory Systems. The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 305-324. doi : 10.5802/smai-jcm.114. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.114/

[1] Moritz Berger; Christian Schott; Oliver Paul Bayesian Sensor Calibration, IEEE Sensors Journal, Volume 22 (2022) no. 20, pp. 19384-19399 | DOI

[2] Gookbin Cho; Sawsen Azzouzi; Gaël Zucchi; Bérengère Lebental Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water – A Review, Sensors, Volume 22 (2022) no. 1, 218 | DOI

[3] Council of the European Union European Parliament Directive 2008/50/EC of the European Parliament. The council of 21 may 2008 on ambient air quality, and cleaner air for europe, Official Journal of the European Union (2008)

[4] Atefeh Daemi; Yousef Alipouri; Biao Huang Identification of robust Gaussian Process Regression with noisy input using EM algorithm, Chemometr. Intell. Lab. Syst., Volume 191 (2019), pp. 1-11 | DOI

[5] Shivani Dhall; B. R. Mehta; A. K. Tyagi; Kapil Sood A review on environmental gas sensors: Materials and technologies, Sensors International, Volume 2 (2021), 100116 | DOI

[6] Tarn Duong; Arianna Cowling; Inge Koch; M. P. Wand Feature significance for multivariate kernel density estimation, Comput. Stat. Data Anal., Volume 52 (2008) no. 9, pp. 4225-4242 | DOI | Zbl

[7] Philip Erickson; Michael Cline; Nishith Tirpankar; Tom Henderson Gaussian processes for multi-sensor environmental monitoring, 2015 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), IEEE (2015), pp. 208-213 | DOI

[8] Maurizio Filippone; Guido Sanguinetti Approximate inference of the bandwidth in multivariate kernel density estimation, Comput. Stat. Data Anal., Volume 55 (2011) no. 12, pp. 3104-3122 | DOI | Zbl

[9] F. J. Kelly; J. C. Fussell Air pollution and public health: emerging hazards and improved understanding of risk, Environ. Geochem. Health, Volume 37 (2015), pp. 631-649 | DOI

[10] Simon Mak; V. Roshan Joseph Minimax designs using clustering, J. Comput. Graph. Stat., Volume 27 (2018) no. 1, pp. 166-178 | Zbl

[11] Andrew Mchutchon; Carl Rasmussen Gaussian Process Training with Input Noise, NIPS’11: Proceedings of the 24th International Conference on Neural Information Processing Systems (J. Shawe-Taylor; R. Zemel; P. Bartlett; F. Pereira; K. Q. Weinberger, eds.), Curran Associates, Inc. (2011), pp. 1341-1349

[12] Ali Mokhtari; Maryam Ghodrat; Pooya Javadpoor Langroodi; Azadeh Shahrian Wind speed sensor calibration in thermal power plant using Bayesian inference, Case Studies in Thermal Engineering, Volume 19 (2020), 100621 | DOI

[13] Mahendra Pal; Yodit Ayele; Angesom Hadush; Sumitra Panigrahi; Vijay Jadhav Public Health Hazards Due to Unsafe Drinking Water, Air and Water Borne Diseases, Volume 7 (2018)

[14] G. Perrin; C. Cannamela A repulsion-based method for the definition and the enrichment of opotimized space filling designs in constrained input spaces, J. SFdS, Volume 158 (2017) no. 1, pp. 37-67 | Zbl

[15] G. Perrin; C. Durantin Taking into account input uncertainties in the Bayesian calibration of time-consuming simulators, J. SFdS, Volume 160 (2019) no. 2, pp. 24-46 | Numdam | Zbl

[16] G. Perrin; C. Soize; N. Ouhbi Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints, Journal of Computational Statistics and Data Analysis, Volume 119 (2018), pp. 139-154 | DOI | Zbl

[17] Guillaume Perrin; Bérengère Lebental Uncertainty-Based Calibration Method for Environmental Sensors—Application to Chlorine and pH Monitoring With Carbon Nanotube Sensor Array, IEEE Sensors Journal, Volume 23 (2023) no. 5, pp. 5146-5155 | DOI

[18] Michael J. Pyrcz; Clayton V. Deutsch Transforming data to a gaussian distribution, Geostatistics Lessons (Jared Deutsch, ed.), R Core Team, 2018 (Retrieved from https://geostatisticslessons.com/lessons/normalscore)

[19] R. T. Rubinstein; D. P. Kroese Simulation and the Monte Carlo method, Springer Series in Statistics, John Wiley & Sons, 2008

[20] Thomas J. Santner; Brian J. Williams; William I. Notz The design and analysis of computer experiments, Springer Series in Statistics, Springer, 2003 | DOI

[21] Gustavo R. Taira; Adriano G. Leal; Alessandro S. Santos; Song W. Park Bayesian Neural Network-Based Calibration for Urban Air Quality Sensors, 32nd European Symposium on Computer Aided Process Engineering (Ludovic Montastruc; Stephane Negny, eds.) (Computer Aided Chemical Engineering), Volume 51, Elsevier, 2022, pp. 1549-1554 | DOI

[22] Georgi Tancev; Federico Grasso Toro Variational Bayesian calibration of low-cost gas sensor systems in air quality monitoring, Measurement: Sensors, Volume 19 (2022), 100365 | DOI

[23] R. Tibshirani Regression shrinkage and selection via the lasso, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 58 (1989) no. 1, pp. 267-288 | DOI | Zbl

[24] Alexandre B Tsybakov Introduction to nonparametric estimation, Springer Series in Statistics, Springer, 2009 | DOI

[25] Aad W Van der Vaart Asymptotic statistics, Cambridge University Press, 2000

[26] An Wang; Yuki Machida; Priyanka deSouza; Simone Mora; Tiffany Duhl; Neelakshi Hudda; John L. Durant; Fábio Duarte; Carlo Ratti Leveraging machine learning algorithms to advance low-cost air sensor calibration in stationary and mobile settings, Atmospheric Environment, Volume 301 (2023), 119692 | DOI

[27] Naomi Zimmerman; Albert Presto; Sriniwasa Kumar; Jason Gu; Aliaksei Hauryliuk; Ellis Robinson; Allen Robinson; Subramanian Ramachandran Closing the gap on lower cost air quality monitoring: machine learning calibration models to improve low-cost sensor performance, Atmospheric Measurement Techniques Discussions (2017), pp. 1-36 | DOI

[28] N. Zougab; S. Adjabi; C. C. Kokonendji Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation, Comput. Stat. Data Anal., Volume 75 (2014), pp. 28-38 | DOI | Zbl

Cited by Sources: