A posteriori error estimates for nonconforming discretizations of singularly perturbed biharmonic operators
The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 355-372.

For the pure biharmonic equation and a biharmonic singular perturbation problem, a residual-based error estimator is introduced which applies to many existing nonconforming finite elements. The error estimator involves the local best-approximation error of the finite element function by piecewise polynomial functions of the degree determining the expected approximation order, which need not coincide with the maximal polynomial degree of the element, for example if bubble functions are used. The error estimator is shown to be reliable and locally efficient up to this polynomial best-approximation error and oscillations of the right-hand side.

Published online:
DOI: 10.5802/smai-jcm.115
Classification: 65N15, 65N30
Keywords: nonconforming finite element, singular perturbation, biharmonic, a posteriori error estimation

Dietmar Gallistl 1; Shudan Tian 2

1 Friedrich-Schiller-Universität Jena, Institut für Mathematik, Ernst-Abbe-Platz 2, 07743 Jena, Germany
2 School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2024__10__355_0,
     author = {Dietmar Gallistl and Shudan Tian},
     title = {A posteriori error estimates for nonconforming discretizations of singularly perturbed biharmonic operators},
     journal = {The SMAI Journal of computational mathematics},
     pages = {355--372},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {10},
     year = {2024},
     doi = {10.5802/smai-jcm.115},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.115/}
}
TY  - JOUR
AU  - Dietmar Gallistl
AU  - Shudan Tian
TI  - A posteriori error estimates for nonconforming discretizations of singularly perturbed biharmonic operators
JO  - The SMAI Journal of computational mathematics
PY  - 2024
SP  - 355
EP  - 372
VL  - 10
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.115/
DO  - 10.5802/smai-jcm.115
LA  - en
ID  - SMAI-JCM_2024__10__355_0
ER  - 
%0 Journal Article
%A Dietmar Gallistl
%A Shudan Tian
%T A posteriori error estimates for nonconforming discretizations of singularly perturbed biharmonic operators
%J The SMAI Journal of computational mathematics
%D 2024
%P 355-372
%V 10
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.115/
%R 10.5802/smai-jcm.115
%G en
%F SMAI-JCM_2024__10__355_0
Dietmar Gallistl; Shudan Tian. A posteriori error estimates for nonconforming discretizations of singularly perturbed biharmonic operators. The SMAI Journal of computational mathematics, Volume 10 (2024), pp. 355-372. doi : 10.5802/smai-jcm.115. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.115/

[1] L. Beirão da Veiga; J. Niiranen; R. Stenberg A posteriori error estimates for the Morley plate bending element, Numer. Math., Volume 106 (2007) no. 2, pp. 165-179 | DOI | Zbl

[2] H. Blum; R. Rannacher On mixed finite element methods in plate bending analysis, Comput. Mech., Volume 6 (1990) no. 3, pp. 221-236 | DOI | Zbl

[3] S. C. Brenner; T. Gudi; L. Y. Sung An a posteriori error estimator for a quadratic C 0 -interior penalty method for the biharmonic problem, IMA J. Numer. Anal., Volume 30 (2010) no. 3, pp. 777-798 | DOI | Zbl

[4] S. C. Brenner; M. Neilan A C 0 interior penalty method for a fourth order elliptic singular perturbation problem., SIAM J. Numer. Anal., Volume 49 (2011) no. 2, pp. 869-892 | DOI | Zbl

[5] S. C. Brenner; L. Y. Sung C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., Volume 22 (2005), pp. 83-118 | DOI | Zbl

[6] C. Carstensen; D. Gallistl; J. Hu A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles, Numer. Math., Volume 124 (2013) no. 2, pp. 309-335 | DOI | Zbl

[7] H. Chen; S. Chen; Z. Qiao C 0 -nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem, Numer. Math., Volume 124 (2013) no. 1, pp. 99-119 | DOI | MR | Zbl

[8] P. G. Ciarlet The finite element method for elliptic problems, Classics in Applied Mathematics, 40, Society for Industrial and Applied Mathematics, 2002 (reprint of the 1978 original) | DOI

[9] W. Dörfler A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., Volume 33 (1996) no. 3, pp. 1106-1124 | DOI | Zbl

[10] J. Douglas; T. Dupont; P. Percell; R. Scott A family of C 1 finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems, RAIRO, Anal. Numér., Volume 13 (1979) no. 3, pp. 227-255 | DOI | Numdam | Zbl

[11] A. Ern; J. L. Guermond Finite elements I—Approximation and interpolation, Texts in Applied Mathematics, 72, Springer, 2021 | DOI

[12] D. Gallistl; S. Tian Continuous finite elements satisfying a strong discrete Miranda–Talenti identity, IMA J. Numer. Anal. (2024), drae049 | DOI

[13] B. R. Gao; S. Zhang; M. Wang A note on the nonconforming finite elements for elliptic problems, J. Comput. Math., Volume 29 (2011) no. 2, pp. 215-226 | DOI | MR | Zbl

[14] E. H. Georgoulis; P. Houston; J. Virtanen An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems, IMA J. Numer. Anal., Volume 31 (2011) no. 1, pp. 281-298 | DOI | Zbl

[15] P. Grisvard Singularities in boundary value problems, Recherches en Mathématiques Appliquées, 22, Masson, 1992

[16] J. Guzmán; D. Leykekhman; M. Neilan A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem, Calcolo, Volume 49 (2012) no. 2, pp. 95-125 | DOI | MR | Zbl

[17] J. Guzmán; A. Lischke; M. Neilan Exact sequences on Worsey–Farin splits, Math. Comput., Volume 91 (2022) no. 338, pp. 2571-2608 | Zbl

[18] J. Hu; Z. C. Shi A new a posteriori error estimate for the Morley element, Numer. Math., Volume 112 (2009) no. 1, pp. 25-40 | DOI | Zbl

[19] J. Hu; S. D. Tian; S. Zhang A family of 3D H 2 -nonconforming tetrahedral finite elements for the biharmonic equation, Sci. China, Math., Volume 63 (2020) no. 8, pp. 1505-1522 | DOI | MR | Zbl

[20] J. Hu; S. Zhang An error analysis method SPP-BEAM and a construction guideline of nonconforming finite elements for fourth order elliptic problems, J. Comput. Math., Volume 38 (2020) no. 1, pp. 195-222 | DOI | MR | Zbl

[21] P. Lascaux; P. Lesaint Some nonconforming finite elements for the plate bending problem, Rev. Franc. Automat. Inform. Rech. Operat., Volume 9 (1975) no. R1, pp. 9-53 | Numdam | Zbl

[22] H. L. Li; P. B. Ming; Z. C. Shi The quadratic Specht triangle, J. Comput. Math., Volume 38 (2020) no. 1, pp. 103-124 | DOI | MR | Zbl

[23] L. S. Morley The Triangular Equilibrium Element in the Solution of Plate Bending Problems, Aeronaut. Q., Volume 19 (1968), pp. 149-169 | DOI

[24] T. Nilssen; X. Tai; R. Winther A robust nonconforming H 2 -element, Math. Comput., Volume 70 (2001) no. 234, pp. 489-505 | DOI | Zbl

[25] P. Percell On cubic and quartic Clough-Tocher finite elements, SIAM J. Numer. Anal., Volume 13 (1976) no. 1, pp. 100-103 | DOI | MR | Zbl

[26] Z. C. Shi On the convergence of the incomplete biquadratic nonconforming plate element, Math. Numer. Sin., Volume 8 (1986) no. 1, pp. 53-62 | Zbl

[27] Z. C. Shi; S. Chen; H. Huang Plate elements with high accuracy, Collection of papers on geometry, analysis and mathematical physics, World Scientific, 1997, pp. 155-164 | DOI | Zbl

[28] Z. C. Shi; M. Wang Finite Element Methods, Science Press, 2013

[29] B. Specht Modified shape functions for the three-node plate bending element passing the patch test, Int. J. Numer. Methods Eng., Volume 26 (1988) no. 3, pp. 705-715 | DOI | Zbl

[30] R. Verfürth Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation, Numer. Math., Volume 78 (1998) no. 3, pp. 479-493 | DOI | Zbl

[31] R. Verfürth A posteriori error estimation techniques for finite element methods, Oxford University Press, 2013 | DOI

[32] M. Wang; X. Meng A robust finite element method for a 3-D elliptic singular perturbation problem, J. Comput. Mah., Volume 25 (2007) no. 6, pp. 631-644 | Zbl

[33] M. Wang; Z. C. Shi; J. Xu A new class of Zienkiewicz-type non-conforming element in any dimensions, Numer. Math., Volume 106 (2007) no. 2, pp. 335-347 | DOI | Zbl

[34] M. Wang; Z. C. Shi; J. C. Xu Some n-rectangle nonconforming elements for fourth order elliptic equations, J. Comput. Math., Volume 25 (2007) no. 4, pp. 408-420 | Zbl

[35] M. Wang; J. C. Xu Minimal finite element spaces for 2m-th-order partial differential equations in R n , Math. Comput., Volume 82 (2013) no. 281, pp. 25-43 | DOI | MR | Zbl

[36] M. Wang; J. C. Xu; Y. Hu Modified Morley element method for a fourth order elliptic singular perturbation problem, J. Comput. Math., Volume 24 (2006) no. 2, pp. 113-120 | MR | Zbl

[37] M. Wang; P. Zu; S. Zhang High accuracy nonconforming finite elements for fourth order problems, Sci. China, Math., Volume 55 (2012) no. 10, pp. 2183-2192 | DOI | MR | Zbl

[38] A. J. Worsey; G. Farin An n-dimensional Clough-Tocher interpolant, Computing, Volume 3 (1987), pp. 99-110 | Zbl

[39] S. Zhang; M. Wang A posteriori estimator of nonconforming finite element method for fourth order elliptic perturbation problems, J. Comput. Math., Volume 26 (2008) no. 4, pp. 554-577 | Zbl

Cited by Sources: