Weighted least-squares approximation with determinantal point processes and generalized volume sampling
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 1-36.

We consider the problem of approximating a function from $L^2$ by an element of a given $m$-dimensional space $V_m$, associated with some feature map $\varphi $, using evaluations of the function at random points $x_1, \dots ,x_n$. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features $\varphi (x_i)$. We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples $n = O(m\log (m))$, that means that the expected $L^2$ error is bounded by a constant times the best approximation error in $L^2$. Also, further assuming that the function is in some normed vector space $H$ continuously embedded in $L^2$, we further prove that the approximation error in $L^2$ is almost surely bounded by the best approximation error measured in the $H$-norm. This includes the cases of functions from $L^\infty $ or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.

Published online:
DOI: 10.5802/smai-jcm.117
Keywords: Weighted least-squares, Optimal sampling, Determinantal point process, Volume sampling

Anthony Nouy 1; Bertrand Michel 1

1 Nantes Université, Centrale Nantes, Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2025__11__1_0,
     author = {Anthony Nouy and Bertrand Michel},
     title = {Weighted least-squares approximation with determinantal point processes and generalized volume sampling},
     journal = {The SMAI Journal of computational mathematics},
     pages = {1--36},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.117},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.117/}
}
TY  - JOUR
AU  - Anthony Nouy
AU  - Bertrand Michel
TI  - Weighted least-squares approximation with determinantal point processes and generalized volume sampling
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 1
EP  - 36
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.117/
DO  - 10.5802/smai-jcm.117
LA  - en
ID  - SMAI-JCM_2025__11__1_0
ER  - 
%0 Journal Article
%A Anthony Nouy
%A Bertrand Michel
%T Weighted least-squares approximation with determinantal point processes and generalized volume sampling
%J The SMAI Journal of computational mathematics
%D 2025
%P 1-36
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.117/
%R 10.5802/smai-jcm.117
%G en
%F SMAI-JCM_2025__11__1_0
Anthony Nouy; Bertrand Michel. Weighted least-squares approximation with determinantal point processes and generalized volume sampling. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 1-36. doi : 10.5802/smai-jcm.117. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.117/

[1] Haim Avron; Christos Boutsidis Faster subset selection for matrices and applications, SIAM J. Matrix Anal. Appl., Volume 34 (2013) no. 4, pp. 1464-1499 | DOI | MR | Zbl

[2] Felix Bartel; Martin Schäfer; Tino Ullrich Constructive subsampling of finite frames with applications in optimal function recovery, Appl. Comput. Harmon. Anal., Volume 65 (2023), pp. 209-248 | DOI | MR | Zbl

[3] Simon Barthelmé; Nicolas Tremblay; Pierre-Olivier Amblard A Faster Sampler for Discrete Determinantal Point Processes, Proceedings of the 26th International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research), Volume 206, PMLR, 2023, pp. 5582-5592 https://proceedings.mlr.press/v206/barthelme23a.html

[4] Ayoub Belhadji; Rémi Bardenet; Pierre Chainais Kernel interpolation with continuous volume sampling, Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research), Volume 119, PMLR, 2020, pp. 725-735 https://proceedings.mlr.press/v119/belhadji20a.html

[5] Ayoub Belhadji; Rémi Bardenet; Pierre Chainais Signal reconstruction using determinantal sampling (2023) | arXiv

[6] Alain Berlinet; Christine Thomas-Agnan Reproducing kernel Hilbert spaces in probability and statistics, Springer, 2011 | MR

[7] Peter Binev; Albert Cohen; Wolfgang Dahmen; Ronald DeVore; Guergana Petrova; Przemyslaw Wojtaszczyk Convergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal., Volume 43 (2011) no. 3, pp. 1457-1472 | DOI | MR | Zbl

[8] L. Bos; S. De Marchi; A. Sommariva; M. Vianello Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra, SIAM J. Numer. Anal., Volume 48 (2010) no. 5, pp. 1984-1999 | DOI | MR | Zbl

[9] Albert Cohen; Giovanni Migliorati Optimal weighted least-squares methods, SMAI J. Comput. Math., Volume 3 (2017), pp. 181-203 | DOI | Numdam | MR | Zbl

[10] Michał Dereziński; Manfred K. Warmuth; Daniel Hsu Unbiased estimators for random design regression, J. Mach. Learn. Theory, Volume 23 (2022) no. 1, pp. 7539-7584

[11] Amit Deshpande; Luis Rademacher; Santosh S Vempala; Grant Wang Matrix approximation and projective clustering via volume sampling, Theory Comput., Volume 2 (2006) no. 1, pp. 225-247 | DOI | MR

[12] Matthieu Dolbeault; Moulay Abdellah Chkifa Randomized Least-Squares with Minimal Oversampling and Interpolation in General Spaces, SIAM J. Numer. Anal., Volume 62 (2024) no. 4, pp. 1515-1538 | DOI | MR

[13] Matthieu Dolbeault; Albert Cohen Optimal pointwise sampling for L2 approximation, J. Complexity, Volume 68 (2022), 101602, 12 pages | MR

[14] Matthieu Dolbeault; David Krieg; Mario Ullrich A sharp upper bound for sampling numbers in L2, Appl. Comput. Harmon. Anal., Volume 63 (2023), pp. 113-134 | DOI | MR

[15] Alexander Fonarev; Alexander Mikhalev; Pavel Serdyukov; Gleb Gusev; Ivan Oseledets Efficient rectangular maximal-volume algorithm for rating elicitation in collaborative filtering, 2016 IEEE 16th International Conference on Data Mining (ICDM), IEEE (2016), pp. 141-150 | DOI

[16] Sergei A. Goreinov; Eugene E. Tyrtyshnikov The maximal-volume concept in approximation by low-rank matrices, Structured matrices in mathematics, computer science, and engineering I (Contemporary Mathematics), Volume 280, American Mathematical Society, 2001, pp. 47-52 | Zbl

[17] Cécile Haberstich; Anthony Nouy; Guillaume Perrin Boosted optimal weighted least-squares, Math. Comput., Volume 91 (2022) no. 335, pp. 1281-1315 | MR | Zbl

[18] Toni Karvonen; Simo Särkkä; Ken’ichiro Tanaka Kernel-based interpolation at approximate Fekete points, Numer. Algorithms, Volume 87 (2021) no. 1, pp. 445-468 | DOI | MR | Zbl

[19] Boris Kashin; Egor Kosov; Irina Limonova; Vladimir Temlyakov Sampling discretization and related problems, J. Complexity, Volume 71 (2022), 101653, 55 pages | DOI | MR | Zbl

[20] David Krieg; Kateryna Pozharska; Mario Ullrich; Tino Ullrich Sampling projections in the uniform norm (2024) | arXiv

[21] Frédéric Lavancier; Jesper Møller; Ege Rubak Determinantal point process models and statistical inference, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 77 (2015) no. 4, pp. 853-877 | DOI | MR | Zbl

[22] Yvon Maday; Ngoc Cuong Nguyen; Anthony T. Patera; S. H. Pau A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Anal., Volume 8 (2008), pp. 383-404 | DOI | MR | Zbl

[23] Adam W. Marcus; Daniel A. Spielman; Nikhil Srivastava Interlacing families II: Mixed characteristic polynomials and the Kadison–Singer problem, Ann. Math., Volume 182 (2015) no. 1, pp. 327-350 | DOI | Zbl

[24] Shahaf Nitzan; Alexander Olevskii; Alexander Ulanovskii Exponential frames on unbounded sets, Proc. Am. Math. Soc., Volume 144 (2016) no. 1, pp. 109-118 | DOI | MR | Zbl

[25] Arnaud Poinas; Rémi Bardenet On proportional volume sampling for experimental design in general spaces, Stat. Comput., Volume 33 (2022) no. 1, 29, 22 pages | DOI | MR | Zbl

[26] Kateryna Pozharska; Tino Ullrich A Note on Sampling Recovery of Multivariate Functions in the Uniform Norm, SIAM J. Numer. Anal., Volume 60 (2022) no. 3, pp. 1363-1384 | DOI | MR

[27] Friedrich Pukelsheim Optimal design of experiments, Classics in Applied Mathematics, 50, Society for Industrial and Applied Mathematics, 2006, xxix+454 pages | DOI | MR | Zbl

[28] Mathias Sonnleitner; Mario Ullrich On the power of iid information for linear approximation (2023) | arXiv

[29] Joel A. Tropp User-friendly tail bounds for sums of random matrices, Found. Comput. Math., Volume 12 (2012) no. 4, pp. 389-434 | DOI | MR | Zbl

[30] Joel A. Tropp An introduction to matrix concentration inequalities, Found. Trends Mach. Learn., Volume 8 (2015) no. 1-2, pp. 1-230 | DOI

[31] Philipp Trunschke; Anthony Nouy Almost-sure quasi-optimal approximation in reproducing kernel Hilbert spaces (2024) | arXiv

Cited by Sources: