In this paper, we present two new nodal finite volume schemes for the $P_N$ model on arbitrary polygonal meshes in 2D. We show that these schemes are well-defined, conservative and stable, finally we prove their convergence. We also present some numerical results.
Keywords: nodal solver, $P_N$ approximation, transport equation, hyperbolic
Christophe Buet 1; Stéphane Del Pino 1; Victor Fournet 2

@article{SMAI-JCM_2025__11__39_0, author = {Christophe Buet and St\'ephane Del Pino and Victor Fournet}, title = {Construction, analysis and implementation of two nodal finite volume schemes for the $P_N$ model for particle transport {in~2D}}, journal = {The SMAI Journal of computational mathematics}, pages = {39--84}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, year = {2025}, doi = {10.5802/smai-jcm.119}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.119/} }
TY - JOUR AU - Christophe Buet AU - Stéphane Del Pino AU - Victor Fournet TI - Construction, analysis and implementation of two nodal finite volume schemes for the $P_N$ model for particle transport in 2D JO - The SMAI Journal of computational mathematics PY - 2025 SP - 39 EP - 84 VL - 11 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.119/ DO - 10.5802/smai-jcm.119 LA - en ID - SMAI-JCM_2025__11__39_0 ER -
%0 Journal Article %A Christophe Buet %A Stéphane Del Pino %A Victor Fournet %T Construction, analysis and implementation of two nodal finite volume schemes for the $P_N$ model for particle transport in 2D %J The SMAI Journal of computational mathematics %D 2025 %P 39-84 %V 11 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.119/ %R 10.5802/smai-jcm.119 %G en %F SMAI-JCM_2025__11__39_0
Christophe Buet; Stéphane Del Pino; Victor Fournet. Construction, analysis and implementation of two nodal finite volume schemes for the $P_N$ model for particle transport in 2D. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 39-84. doi : 10.5802/smai-jcm.119. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.119/
[1] Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes, Numer. Math., Volume 122 (2012), pp. 227-278 | DOI | MR
[2] Approximation Properties of Vectorial Exponential Functions, Commun. Appl. Math. Comput., Volume 6 (2023), pp. 1801-1831 | DOI | MR | Zbl
[3] Stable Boundary Conditions and Discretization for Equations, J. Comput. Math., Volume 40 (2022) no. 6, pp. 977-1003 | DOI | MR | Zbl
[4] Computing Methods in Reactor Physics, Gordon and Breach, 1968, 171 pages
[5] A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., Volume 228 (2009) no. 14, pp. 5160-5183 | DOI | MR | Zbl
[6] Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems, Arch. Ration. Mech. Anal., Volume 178 (2005) no. 3, pp. 327-372 | DOI | MR | Zbl
[7] A mixed variational framework for the radiative transfer equation, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 3, 1150014, 30 pages | DOI | MR | Zbl
[8] A class of Galerkin schemes for time-dependent radiative transfer, SIAM J. Numer. Anal., Volume 54 (2016) no. 6, pp. 3577-3599 | DOI | MR | Zbl
[9] Finite elements I: Approximation and interpolation, Texts in Applied Mathematics, 72, Springer, 2021 | DOI | MR
[10] Finite volume methods, Solution of equations in (Part 3) (Handbook of Numerical Analysis), Volume 7, Elsevier, 2000, pp. 713-1018
[11] On the eigenstructure of spherical harmonic equations for radiative transport, Comput. Math. Appl., Volume 72 (2016) no. 2, pp. 264-270 https://www.sciencedirect.com/science/article/pii/s0898122115002850 (The Proceedings of ICMMES 2014) | DOI | MR | Zbl
[12] Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, 1996 | DOI | MR
[13] Une méthode de volumes finis pour les équations elliptiques du second ordre, C. R. Math., Volume 326 (1998) no. 12, pp. 1433-1436 | DOI | Zbl
[14] A discretization of the multigroup radiative transfer equation on general meshes, J. Comput. Phys., Volume 313 (2016), pp. 549-582 | DOI | MR | Zbl
[15] Radiative equilibrium of a gaseous sphere surrounding an absolutely black sphere, Izv. An. SSSR Ser. Geophys., Volume 2 (1951), pp. 69-93
[16] A cell-centered Lagrangian scheme for two dimensional compressible flow problems, SIAM J. Sci. Comput., Volume 29 (2007) no. 4, pp. 1781-1824 | DOI | MR | Zbl
[17] General moment system for plasma physics based on minimum entropy principle, Kinet. Relat. Models, Volume 8 (2015) no. 3, pp. 533-558 | DOI | MR
[18] Sur la structure mathématique et l’approximation numérique de l’hydrodynamique lagrangienne bidimensionnelle, Ph. D. Thesis, Université de Bordeaux I (2007) Thèse de doctorat dirigée par C.-H. Bruneau et B. Després. https://oskar-bordeaux.fr/handle/20.500.12278/25073, 1 vol. (164 p.)
[19] Foundations of Radiation Hydrodynamics, Oxford University Press, 1984 | MR
[20] Asymptotic-preserving and well-balanced schemes for transport models using Trefftz discontinuous Galerkin method, Ph. D. Thesis, Mathématiques Appliquées, Sorbonne Université (2018) (Thèse de doctorat dirigée par B. Després et C. Buet. http://www.theses.fr/2018SORUS556)
[21] Asymptotic derivation and numerical investigation of time-dependent simplified Pn equations, J. Comput. Phys., Volume 238 (2013), pp. 315-336 | DOI | MR | Zbl
[22] Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes, J. Phys. A. Math. Theor., Volume 40 (2007) no. 7, pp. 1597-1610 semanticscholar.org/paper/d471c95ae5fcb840827ede748db1272995be3afd | DOI | MR | Zbl
[23] The equations of radiation hydrodynamics, International Series of Monographs in Natural Philosophy, Pergamon Press, 1973
[24] STARMAP. A second order staggered grid method for spherical harmonics moment equations of radiative transfer, ACM Trans. Math. Softw., Volume 41 (2015) no. 1, 4, 28 pages | DOI | MR
[25] Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 1999 | DOI | MR
[26] Mixed-hybrid discretization methods for the linear Boltzmann transport equation, Comput. Methods Appl. Mech. Eng., Volume 195 (2006) no. 19-22, pp. 2719-2741 | DOI | MR
[27] Mixed-hybrid transport discretization using even and odd expansions, Nuclear Science and Engineering, Volume 152 (2006) no. 2, pp. 149-163 | DOI
[28] Mathematical problems in the one-velocity theory of particle transport (1963) (Technical report)
[29] Symmetries and Reflections, Indiana University Press, 1967
Cited by Sources: