Construction, analysis and implementation of two nodal finite volume schemes for the $P_N$ model for particle transport in 2D
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 39-84.

In this paper, we present two new nodal finite volume schemes for the $P_N$ model on arbitrary polygonal meshes in 2D. We show that these schemes are well-defined, conservative and stable, finally we prove their convergence. We also present some numerical results.

Published online:
DOI: 10.5802/smai-jcm.119
Classification: 65M08, 65M12
Keywords: nodal solver, $P_N$ approximation, transport equation, hyperbolic

Christophe Buet 1; Stéphane Del Pino 1; Victor Fournet 2

1 CEA, DAM, DIF, F-91297, Arpajon, France and Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance pour le Calcul et la simulation, 91297 Arpajon, France
2 Laboratoire Jacques Louis Lions, Sorbonne Université, 4 place Jussieu, 75005 Paris, France, CEA, DAM, DIF, F-91297, Arpajon, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2025__11__39_0,
     author = {Christophe Buet and St\'ephane Del Pino and Victor Fournet},
     title = {Construction, analysis and implementation of two nodal finite volume schemes for the $P_N$ model for particle transport {in~2D}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {39--84},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.119},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.119/}
}
TY  - JOUR
AU  - Christophe Buet
AU  - Stéphane Del Pino
AU  - Victor Fournet
TI  - Construction, analysis and implementation of two nodal finite volume schemes for the $P_N$ model for particle transport in 2D
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 39
EP  - 84
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.119/
DO  - 10.5802/smai-jcm.119
LA  - en
ID  - SMAI-JCM_2025__11__39_0
ER  - 
%0 Journal Article
%A Christophe Buet
%A Stéphane Del Pino
%A Victor Fournet
%T Construction, analysis and implementation of two nodal finite volume schemes for the $P_N$ model for particle transport in 2D
%J The SMAI Journal of computational mathematics
%D 2025
%P 39-84
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.119/
%R 10.5802/smai-jcm.119
%G en
%F SMAI-JCM_2025__11__39_0
Christophe Buet; Stéphane Del Pino; Victor Fournet. Construction, analysis and implementation of two nodal finite volume schemes for the $P_N$ model for particle transport in 2D. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 39-84. doi : 10.5802/smai-jcm.119. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.119/

[1] C. Buet; B. Després; E. Franck Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes, Numer. Math., Volume 122 (2012), pp. 227-278 | DOI | MR

[2] C. Buet; B. Després; G. Morel Approximation Properties of Vectorial Exponential Functions, Commun. Appl. Math. Comput., Volume 6 (2023), pp. 1801-1831 | DOI | MR | Zbl

[3] J. Bünger; N. Sarna; M. Torrilhon Stable Boundary Conditions and Discretization for P N Equations, J. Comput. Math., Volume 40 (2022) no. 6, pp. 977-1003 | DOI | MR | Zbl

[4] B. G. Carlson; K. D. Lathrop Computing Methods in Reactor Physics, Gordon and Breach, 1968, 171 pages

[5] G. Carré; S. Del Pino; B. Després; E. Labourasse A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., Volume 228 (2009) no. 14, pp. 5160-5183 | DOI | MR | Zbl

[6] B. Després; C. Mazeran Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems, Arch. Ration. Mech. Anal., Volume 178 (2005) no. 3, pp. 327-372 | DOI | MR | Zbl

[7] H. Egger; M. Schlottbom A mixed variational framework for the radiative transfer equation, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 3, 1150014, 30 pages | DOI | MR | Zbl

[8] H. Egger; M. Schlottbom A class of Galerkin schemes for time-dependent radiative transfer, SIAM J. Numer. Anal., Volume 54 (2016) no. 6, pp. 3577-3599 | DOI | MR | Zbl

[9] A. Ern; J.-L. Guermond Finite elements I: Approximation and interpolation, Texts in Applied Mathematics, 72, Springer, 2021 | DOI | MR

[10] R. Eymard; T. Gallouët; R. Herbin Finite volume methods, Solution of equations in n (Part 3) (Handbook of Numerical Analysis), Volume 7, Elsevier, 2000, pp. 713-1018

[11] C. Kristopher Garrett; Cory D. Hauck On the eigenstructure of spherical harmonic equations for radiative transport, Comput. Math. Appl., Volume 72 (2016) no. 2, pp. 264-270 https://www.sciencedirect.com/science/article/pii/s0898122115002850 (The Proceedings of ICMMES 2014) | DOI | MR | Zbl

[12] E. Godlewski; P-A. Raviart Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, 1996 | DOI | MR

[13] F. Hermeline Une méthode de volumes finis pour les équations elliptiques du second ordre, C. R. Math., Volume 326 (1998) no. 12, pp. 1433-1436 | DOI | Zbl

[14] F. Hermeline A discretization of the multigroup P N radiative transfer equation on general meshes, J. Comput. Phys., Volume 313 (2016), pp. 549-582 | DOI | MR | Zbl

[15] E. S. Kuznetsov Radiative equilibrium of a gaseous sphere surrounding an absolutely black sphere, Izv. An. SSSR Ser. Geophys., Volume 2 (1951), pp. 69-93

[16] P-H. Maire; R. Abgrall; J. Breil; J. Ovadia A cell-centered Lagrangian scheme for two dimensional compressible flow problems, SIAM J. Sci. Comput., Volume 29 (2007) no. 4, pp. 1781-1824 | DOI | MR | Zbl

[17] J. Mallet; S. Brull; B. Dubroca General moment system for plasma physics based on minimum entropy principle, Kinet. Relat. Models, Volume 8 (2015) no. 3, pp. 533-558 | DOI | MR

[18] C. Mazeran Sur la structure mathématique et l’approximation numérique de l’hydrodynamique lagrangienne bidimensionnelle, Ph. D. Thesis, Université de Bordeaux I (2007) Thèse de doctorat dirigée par C.-H. Bruneau et B. Després. https://oskar-bordeaux.fr/handle/20.500.12278/25073, 1 vol. (164 p.)

[19] D. Mihalas; B. W. Mihalas Foundations of Radiation Hydrodynamics, Oxford University Press, 1984 | MR

[20] G. Morel Asymptotic-preserving and well-balanced schemes for transport models using Trefftz discontinuous Galerkin method, Ph. D. Thesis, Mathématiques Appliquées, Sorbonne Université (2018) (Thèse de doctorat dirigée par B. Després et C. Buet. http://www.theses.fr/2018SORUS556)

[21] E. Olbrant; E. W. Larsen; M. Frank; B. Seibold Asymptotic derivation and numerical investigation of time-dependent simplified Pn equations, J. Comput. Phys., Volume 238 (2013), pp. 315-336 | DOI | MR | Zbl

[22] D. Pinchon; P. E. Hoggan Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes, J. Phys. A. Math. Theor., Volume 40 (2007) no. 7, pp. 1597-1610 semanticscholar.org/paper/d471c95ae5fcb840827ede748db1272995be3afd | DOI | MR | Zbl

[23] G. C. Pomraning The equations of radiation hydrodynamics, International Series of Monographs in Natural Philosophy, Pergamon Press, 1973

[24] B. Seibold; M. Frank STARMAP. A second order staggered grid method for spherical harmonics moment equations of radiative transfer, ACM Trans. Math. Softw., Volume 41 (2015) no. 1, 4, 28 pages | DOI | MR

[25] E. F. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 1999 | DOI | MR

[26] S. Van Criekingen; R. Beauwens; J. W. Jerome; E. E. Lewis Mixed-hybrid discretization methods for the linear Boltzmann transport equation, Comput. Methods Appl. Mech. Eng., Volume 195 (2006) no. 19-22, pp. 2719-2741 | DOI | MR

[27] S. Van Criekingen; E. E. Lewis; R. Beauwens Mixed-hybrid transport discretization using even and odd P N expansions, Nuclear Science and Engineering, Volume 152 (2006) no. 2, pp. 149-163 | DOI

[28] V. S. Vladimirov Mathematical problems in the one-velocity theory of particle transport (1963) (Technical report)

[29] E. P. Wigner Symmetries and Reflections, Indiana University Press, 1967

Cited by Sources: