We present commuting projection operators on de Rham sequences of two-dimensional multipatch spaces with local tensor-product parametrization and non-matching interfaces. Our construction yields projection operators which are local and stable in any $L^p$ norm with $p \in [1,\infty ]$: it applies to shape-regular spline patches with different mappings and resolutions, under the assumption that interior vertices are shared by exactly four patches, and that neighboring patches have nested resolutions in a way that excludes local chessboard patterns. Our construction also applies to de Rham sequences with homogeneous boundary conditions. Following a broken-FEEC approach, we first consider tensor-product commuting projections on the single-patch de Rham sequences, and modify the resulting patch-wise operators so as to enforce their conformity and commutation with the global derivatives, while preserving their projection and stability properties with constants independent of both the diameter and inner resolution of the patches.
Keywords: Commuting projection, finite element exterior calculus, de Rham sequence, multipatch spaces, isogeometric analysis
Martin Campos Pinto 1; Frederik Schnack 1

@article{SMAI-JCM_2025__11__85_0, author = {Martin Campos Pinto and Frederik Schnack}, title = {Bounded commuting projections for multipatch spaces with non-matching interfaces}, journal = {The SMAI Journal of computational mathematics}, pages = {85--137}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, year = {2025}, doi = {10.5802/smai-jcm.120}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.120/} }
TY - JOUR AU - Martin Campos Pinto AU - Frederik Schnack TI - Bounded commuting projections for multipatch spaces with non-matching interfaces JO - The SMAI Journal of computational mathematics PY - 2025 SP - 85 EP - 137 VL - 11 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.120/ DO - 10.5802/smai-jcm.120 LA - en ID - SMAI-JCM_2025__11__85_0 ER -
%0 Journal Article %A Martin Campos Pinto %A Frederik Schnack %T Bounded commuting projections for multipatch spaces with non-matching interfaces %J The SMAI Journal of computational mathematics %D 2025 %P 85-137 %V 11 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.120/ %R 10.5802/smai-jcm.120 %G en %F SMAI-JCM_2025__11__85_0
Martin Campos Pinto; Frederik Schnack. Bounded commuting projections for multipatch spaces with non-matching interfaces. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 85-137. doi : 10.5802/smai-jcm.120. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.120/
[1] Compatible spatial discretizations (Douglas N. Arnold; Pavel B. Bochev; Richard B. Lehoucq; Roy A. Nicolaides; Mikhail Shashkov, eds.), The IMA Volumes in Mathematics and its Applications, 142, Springer, 2006, xiv+238 pages (Papers from the IMA Hot Topics Workshop on Compatible Spatial Discretizations for Partial Differential Equations held at the University of Minnesota, Minneapolis, MN, May 11–15, 2004) | DOI | MR | Zbl
[2] Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155 | DOI | MR | Zbl
[3] Finite element exterior calculus: From Hodge theory to numerical stability, Bull. Am. Math. Soc., Volume 47 (2010) no. 2, pp. 281-354 | DOI | MR | Zbl
[4] Local -bounded commuting projections in FEEC, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021) no. 5, pp. 2169-2184 | DOI | MR | Zbl
[5] Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., Volume 16 (2006) no. 7, pp. 1031-1090 | DOI | MR | Zbl
[6] Finite element approximation of eigenvalue problems, Acta Numer., Volume 19 (2010), pp. 1-120 | DOI | MR | Zbl
[7] Discrete compactness for the p-version of discrete differential forms, SIAM J. Numer. Anal., Volume 49 (2011) no. 1, pp. 135-158 | DOI | MR | Zbl
[8] -conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes, Calcolo, Volume 58 (2021) no. 2, 18, 29 pages | DOI | MR | Zbl
[9] Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEE Proc. A: Phys. Sci., Meas., Instrum., Volume 135 (1988) no. 8, 1, pp. 493-500 | DOI
[10] Computational electromagnetism. Variational formulations, complementarity, edge elements, Academic Press Inc., 1998 | MR | Zbl
[11] Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis, Numer. Math., Volume 144 (2019) no. 1, pp. 201-236 | DOI | MR
[12] On Quasi-Interpolation Operators in Spline Spaces, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations (Gabriel R. Barrenechea; Franco Brezzi; Andrea Cangiani; Emmanuil H. Georgoulis, eds.) (Lecture Notes in Computational Science and Engineering), Springer, 2016, pp. 73-91 | DOI | Zbl
[13] Isogeometric Discrete Differential Forms in Three Dimensions, SIAM J. Numer. Anal., Volume 49 (2011) no. 2, pp. 818-844 | DOI | MR | Zbl
[14] Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 17, pp. 1143-1152 | DOI | MR | Zbl
[15] Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations, J. Comput. Phys., Volume 257 (2014), pp. 1291-1320 | DOI | MR | Zbl
[16] Approximation estimates for isogeometric spaces in multipatch geometries, Numer. Methods Partial Differ. Equations, Volume 31 (2015) no. 2, pp. 422-438 | DOI | MR
[17] Moment Preserving Local Spline Projection Operators, Computing, Volume 51 (2020) no. 3, pp. 565-585 | DOI
[18] Broken-FEEC discretizations and Hodge Laplace problems (2021) | arXiv | DOI
[19] Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension, Numer. Math., Volume 107 (2007) no. 1, pp. 87-106 | DOI | MR | Zbl
[20] Smoothed projections in finite element exterior calculus, Math. Comput., Volume 77 (2007) no. 262, pp. 813-830 | DOI | MR | Zbl
[21] On local linear functionals which vanish at all B-splines but one, Theory of approximation. With applications (Calgary, 1975), Academic Press Inc., 1976, pp. 120-145 | MR | Zbl
[22] Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal approximation estimates in , IMA J. Numer. Anal., Volume 42 (2022) no. 2, pp. 1023-1049 | DOI | MR
[23] Mollification in Strongly Lipschitz Domains with Application to Continuous and Discrete De Rham Complexes, Comput. Methods Appl. Math., Volume 16 (2016) no. 1, pp. 51-75 | DOI | MR
[24] Hierarchical B-spline complexes of discrete differential forms, IMA J. Numer. Anal., Volume 40 (2020) no. 1, pp. 422-473 | DOI | MR | Zbl
[25] Local Bounded Cochain Projections, Math. Comput., Volume 83 (2014) no. 290, pp. 2631-2656 | DOI | MR
[26] A broken FEEC framework for electromagnetic problems on mapped multipatch domains (2022) | arXiv | DOI
[27] Canonical construction of finite elements, Math. Comput., Volume 68 (1999) no. 228, pp. 1325-1346 | DOI | MR | Zbl
[28] Finite elements in computational electromagnetism, Acta Numer., Volume 11 (2002), pp. 237-339 | DOI | MR | Zbl
[29] MHD-kinetic hybrid code based on structure-preserving finite elements with particles-in-cell, J. Comput. Phys., Volume 433 (2021), 110143, 33 pages | DOI | MR
[30] Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., Volume 194 (2005-10) no. 39-41, pp. 4135-4195 | DOI | MR
[31] Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines, Comput. Methods Appl. Mech. Eng., Volume 293 (2015), pp. 38-70 | DOI | MR | Zbl
[32] Mimetic framework on curvilinear quadrilaterals of arbitrary order (2011) | arXiv
[33] Isogeometric de Rham complex discretization in solid toroidal domains (2021) | arXiv
[34] Geometric Particle-in-Cell Simulations of the Vlasov–Maxwell System in Curvilinear Coordinates, SIAM J. Sci. Comput., Volume 43 (2021) no. 1, p. B194-B218 | DOI | MR | Zbl
[35] A multilevel decomposition result in h(curl), Proceedings from the 8th European Multigrid, Multilevel, and Multiscale Conference (2005) (Edited by P.H.P. Wesseling and C.W. Oosterlee)
[36] A posteriori error estimates for Maxwell equations, Math. Comput., Volume 77 (2008) no. 262, pp. 633-650 | DOI | MR | Zbl
[38] Isogeometric discrete differential forms: Non-uniform degrees, Bézier extraction, polar splines and flows on surfaces, Comput. Methods Appl. Mech. Eng., Volume 376 (2021), 113576, 44 pages | DOI | MR | Zbl
Cited by Sources: