Bounded commuting projections for multipatch spaces with non-matching interfaces
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 85-137.

We present commuting projection operators on de Rham sequences of two-dimensional multipatch spaces with local tensor-product parametrization and non-matching interfaces. Our construction yields projection operators which are local and stable in any $L^p$ norm with $p \in [1,\infty ]$: it applies to shape-regular spline patches with different mappings and resolutions, under the assumption that interior vertices are shared by exactly four patches, and that neighboring patches have nested resolutions in a way that excludes local chessboard patterns. Our construction also applies to de Rham sequences with homogeneous boundary conditions. Following a broken-FEEC approach, we first consider tensor-product commuting projections on the single-patch de Rham sequences, and modify the resulting patch-wise operators so as to enforce their conformity and commutation with the global derivatives, while preserving their projection and stability properties with constants independent of both the diameter and inner resolution of the patches.

Published online:
DOI: 10.5802/smai-jcm.120
Classification: 65N30, 65N12, 65D07
Keywords: Commuting projection, finite element exterior calculus, de Rham sequence, multipatch spaces, isogeometric analysis

Martin Campos Pinto 1; Frederik Schnack 1

1 Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2025__11__85_0,
     author = {Martin Campos Pinto and Frederik Schnack},
     title = {Bounded commuting projections for multipatch spaces with non-matching interfaces},
     journal = {The SMAI Journal of computational mathematics},
     pages = {85--137},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.120},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.120/}
}
TY  - JOUR
AU  - Martin Campos Pinto
AU  - Frederik Schnack
TI  - Bounded commuting projections for multipatch spaces with non-matching interfaces
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 85
EP  - 137
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.120/
DO  - 10.5802/smai-jcm.120
LA  - en
ID  - SMAI-JCM_2025__11__85_0
ER  - 
%0 Journal Article
%A Martin Campos Pinto
%A Frederik Schnack
%T Bounded commuting projections for multipatch spaces with non-matching interfaces
%J The SMAI Journal of computational mathematics
%D 2025
%P 85-137
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.120/
%R 10.5802/smai-jcm.120
%G en
%F SMAI-JCM_2025__11__85_0
Martin Campos Pinto; Frederik Schnack. Bounded commuting projections for multipatch spaces with non-matching interfaces. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 85-137. doi : 10.5802/smai-jcm.120. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.120/

[1] Compatible spatial discretizations (Douglas N. Arnold; Pavel B. Bochev; Richard B. Lehoucq; Roy A. Nicolaides; Mikhail Shashkov, eds.), The IMA Volumes in Mathematics and its Applications, 142, Springer, 2006, xiv+238 pages (Papers from the IMA Hot Topics Workshop on Compatible Spatial Discretizations for Partial Differential Equations held at the University of Minnesota, Minneapolis, MN, May 11–15, 2004) | DOI | MR | Zbl

[2] Douglas N. Arnold; Richard S. Falk; Ragnar Winther Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155 | DOI | MR | Zbl

[3] Douglas N. Arnold; Richard S. Falk; Ragnar Winther Finite element exterior calculus: From Hodge theory to numerical stability, Bull. Am. Math. Soc., Volume 47 (2010) no. 2, pp. 281-354 | DOI | MR | Zbl

[4] Douglas N. Arnold; Johnny Guzmán Local L 2 -bounded commuting projections in FEEC, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021) no. 5, pp. 2169-2184 | DOI | MR | Zbl

[5] Yuri Bazilevs; Lourenço Beirão da Veiga; J. Austin Cottrell; Thomas J. R. Hughes; Giancarlo Sangalli Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., Volume 16 (2006) no. 7, pp. 1031-1090 | DOI | MR | Zbl

[6] Daniele Boffi Finite element approximation of eigenvalue problems, Acta Numer., Volume 19 (2010), pp. 1-120 | DOI | MR | Zbl

[7] Daniele Boffi; Martin Costabel; Monique Dauge; Leszek Demkowicz; Ralf Hiptmair Discrete compactness for the p-version of discrete differential forms, SIAM J. Numer. Anal., Volume 49 (2011) no. 1, pp. 135-158 | DOI | MR | Zbl

[8] Francesca Bonizzoni; Guido Kanschat H 1 -conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes, Calcolo, Volume 58 (2021) no. 2, 18, 29 pages | DOI | MR | Zbl

[9] Alain Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, IEE Proc. A: Phys. Sci., Meas., Instrum., Volume 135 (1988) no. 8, 1, pp. 493-500 | DOI

[10] Alain Bossavit Computational electromagnetism. Variational formulations, complementarity, edge elements, Academic Press Inc., 1998 | MR | Zbl

[11] Annalisa Buffa; Jürgen Dölz; Stefan Kurz; Sebastian Schöps; Rafael Vázquez; Felix Wolf Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis, Numer. Math., Volume 144 (2019) no. 1, pp. 201-236 | DOI | MR

[12] Annalisa Buffa; Eduardo M. Garau; Carlotta Giannelli; Giancarlo Sangalli On Quasi-Interpolation Operators in Spline Spaces, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations (Gabriel R. Barrenechea; Franco Brezzi; Andrea Cangiani; Emmanuil H. Georgoulis, eds.) (Lecture Notes in Computational Science and Engineering), Springer, 2016, pp. 73-91 | DOI | Zbl

[13] Annalisa Buffa; Judith Rivas; Giancarlo Sangalli; Rafael Vázquez Isogeometric Discrete Differential Forms in Three Dimensions, SIAM J. Numer. Anal., Volume 49 (2011) no. 2, pp. 818-844 | DOI | MR | Zbl

[14] Annalisa Buffa; Giancarlo Sangalli; Rafael Vázquez Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 17, pp. 1143-1152 | DOI | MR | Zbl

[15] Annalisa Buffa; Giancarlo Sangalli; Rafael Vázquez Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations, J. Comput. Phys., Volume 257 (2014), pp. 1291-1320 | DOI | MR | Zbl

[16] Annalisa Buffa; Rafael Vázquez; Giancarlo Sangalli; Lourenço Beirão da Veiga Approximation estimates for isogeometric spaces in multipatch geometries, Numer. Methods Partial Differ. Equations, Volume 31 (2015) no. 2, pp. 422-438 | DOI | MR

[17] Martin Campos Pinto Moment Preserving Local Spline Projection Operators, Computing, Volume 51 (2020) no. 3, pp. 565-585 | DOI

[18] Martin Campos Pinto; Yaman Güçlü Broken-FEEC discretizations and Hodge Laplace problems (2021) | arXiv | DOI

[19] Snorre H. Christiansen Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension, Numer. Math., Volume 107 (2007) no. 1, pp. 87-106 | DOI | MR | Zbl

[20] Snorre H. Christiansen; Ragnar Winther Smoothed projections in finite element exterior calculus, Math. Comput., Volume 77 (2007) no. 262, pp. 813-830 | DOI | MR | Zbl

[21] Carl de Boor On local linear functionals which vanish at all B-splines but one, Theory of approximation. With applications (Calgary, 1975), Academic Press Inc., 1976, pp. 120-145 | MR | Zbl

[22] Alexandre Ern; Thirupathi Gudi; Iain Smears; Martin Vohralík Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H( div ), IMA J. Numer. Anal., Volume 42 (2022) no. 2, pp. 1023-1049 | DOI | MR

[23] Alexandre Ern; Jean-Luc Guermond Mollification in Strongly Lipschitz Domains with Application to Continuous and Discrete De Rham Complexes, Comput. Methods Appl. Math., Volume 16 (2016) no. 1, pp. 51-75 | DOI | MR

[24] John A Evans; Michael A Scott; Kendrick M Shepherd; Derek C Thomas; Rafael Vázquez Hierarchical B-spline complexes of discrete differential forms, IMA J. Numer. Anal., Volume 40 (2020) no. 1, pp. 422-473 | DOI | MR | Zbl

[25] Richard S. Falk; Ragnar Winther Local Bounded Cochain Projections, Math. Comput., Volume 83 (2014) no. 290, pp. 2631-2656 | DOI | MR

[26] Yaman Güçlü; Said Hadjout; Martin Campos Pinto A broken FEEC framework for electromagnetic problems on mapped multipatch domains (2022) | arXiv | DOI

[27] Ralf Hiptmair Canonical construction of finite elements, Math. Comput., Volume 68 (1999) no. 228, pp. 1325-1346 | DOI | MR | Zbl

[28] Ralf Hiptmair Finite elements in computational electromagnetism, Acta Numer., Volume 11 (2002), pp. 237-339 | DOI | MR | Zbl

[29] Florian Holderied; Stefan Possanner; Xin Wang MHD-kinetic hybrid code based on structure-preserving finite elements with particles-in-cell, J. Comput. Phys., Volume 433 (2021), 110143, 33 pages | DOI | MR

[30] Thomas J. R. Hughes; J. Austin Cottrell; Yuri Bazilevs Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., Volume 194 (2005-10) no. 39-41, pp. 4135-4195 | DOI | MR

[31] Kjetil André Johannessen; Mukesh Kumar; Trond Kvamsdal Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines, Comput. Methods Appl. Mech. Eng., Volume 293 (2015), pp. 38-70 | DOI | MR | Zbl

[32] Jasper Kreeft; Artur Palha; Marc Gerritsma Mimetic framework on curvilinear quadrilaterals of arbitrary order (2011) | arXiv

[33] Francesco Patrizi Isogeometric de Rham complex discretization in solid toroidal domains (2021) | arXiv

[34] Benedikt Perse; Katharina Kormann; Eric Sonnendrücker Geometric Particle-in-Cell Simulations of the Vlasov–Maxwell System in Curvilinear Coordinates, SIAM J. Sci. Comput., Volume 43 (2021) no. 1, p. B194-B218 | DOI | MR | Zbl

[35] Joachim Schöberl A multilevel decomposition result in h(curl), Proceedings from the 8th European Multigrid, Multilevel, and Multiscale Conference (2005) (Edited by P.H.P. Wesseling and C.W. Oosterlee)

[36] Joachim Schöberl A posteriori error estimates for Maxwell equations, Math. Comput., Volume 77 (2008) no. 262, pp. 633-650 | DOI | MR | Zbl

[37] Roger Temam Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, 1977 | MR

[38] Deepesh Toshniwal; Thomas J. R. Hughes Isogeometric discrete differential forms: Non-uniform degrees, Bézier extraction, polar splines and flows on surfaces, Comput. Methods Appl. Mech. Eng., Volume 376 (2021), 113576, 44 pages | DOI | MR | Zbl

Cited by Sources: