A multi-scale patch approximation for Poisson problems with a small inhomogeneous inclusion
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 139-163.

The paper deals with the multi-scale approximation of the influence of a small inhomogeneity of arbitrary shape in an elastic medium. A new multi-scale patch method is introduced, whose caracteristic is to deal with a large scale problem without inclusion, a small-scale problem on a patch surrounding the inclusion defining a corrector and an iterative procedure between these two problems. Theoretical results of convergence of the iterations, a posteriori error estimate and comparison of the corrector with the asymptotic expansion are provided. The finite element approximation is also addressed together with some numerical tests.

Published online:
DOI: 10.5802/smai-jcm.121
Classification: 65N12, 65N30, 74Q05, 74Q15
Keywords: Patch method, Asymptotic expansion, finite element method, multi-scale analysis, transmission problem

Saber Amdouni 1; Mohamed Khaled Gdoura 2; Arnaud Heibig 3; Thomas Homolle 4; Nidhal Mannai 1; Adrien Petrov 3; Yves Renard 3

1 Laboratory For Mathematical And Numerical Modeling In Engineering Science, LAMSIN, LR99ES20, University of Tunis El Manar, National Engineering School of Tunis, Tunis, Tunisia
2 University of Carthage, National Institute of Applied Science and Technology, Centre Urbain Nord BP 676-1080 Tunis Cedex, Tunisia
3 INSA Lyon, ICJ UMR5208, CNRS, Ecole Centrale de Lyon, Universite Claude Bernard Lyon 1, Université Jean Monnet, 69621 Villeurbanne, France
4 Numerical Modeling and Simulation (FEA) Department of Simulation and Data-Science, Manufacture Française des Pneumatiques Michelin Center of Technologies, Ladoux, Clermont-Ferrand, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2025__11__139_0,
     author = {Saber Amdouni and Mohamed Khaled Gdoura and Arnaud Heibig and Thomas Homolle and Nidhal Mannai and Adrien Petrov and Yves Renard},
     title = {A multi-scale patch approximation for {Poisson} problems with a small inhomogeneous inclusion},
     journal = {The SMAI Journal of computational mathematics},
     pages = {139--163},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.121},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.121/}
}
TY  - JOUR
AU  - Saber Amdouni
AU  - Mohamed Khaled Gdoura
AU  - Arnaud Heibig
AU  - Thomas Homolle
AU  - Nidhal Mannai
AU  - Adrien Petrov
AU  - Yves Renard
TI  - A multi-scale patch approximation for Poisson problems with a small inhomogeneous inclusion
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 139
EP  - 163
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.121/
DO  - 10.5802/smai-jcm.121
LA  - en
ID  - SMAI-JCM_2025__11__139_0
ER  - 
%0 Journal Article
%A Saber Amdouni
%A Mohamed Khaled Gdoura
%A Arnaud Heibig
%A Thomas Homolle
%A Nidhal Mannai
%A Adrien Petrov
%A Yves Renard
%T A multi-scale patch approximation for Poisson problems with a small inhomogeneous inclusion
%J The SMAI Journal of computational mathematics
%D 2025
%P 139-163
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.121/
%R 10.5802/smai-jcm.121
%G en
%F SMAI-JCM_2025__11__139_0
Saber Amdouni; Mohamed Khaled Gdoura; Arnaud Heibig; Thomas Homolle; Nidhal Mannai; Adrien Petrov; Yves Renard. A multi-scale patch approximation for Poisson problems with a small inhomogeneous inclusion. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 139-163. doi : 10.5802/smai-jcm.121. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.121/

[1] Habib Ammari; Hyeonbae Kang Reconstruction of small inhomogeneities from boundary measurements, Lecture Notes in Mathematics, 1846, Springer, 2004 | DOI | MR

[2] Habib Ammari; Abdessatar Khelifi Electromagnetic scattering by small dielectric inhomogeneities, J. Math. Pures Appl. (9), Volume 82 (2003) no. 7, pp. 749-842 | DOI | MR | Zbl

[3] Y. A. Antipov; P. Schiavone On the uniformity of stresses inside an inhomogeneity of arbitrary shape, IMA J. Appl. Math., Volume 68 (2003) no. 3, pp. 299-311 | DOI | MR | Zbl

[4] Makrem Arfaoui; Mohamed Rafik Ben Hassine; Maher Moakher; Yves Renard; Grégory Vial Multi-scale asymptotic expansion for a small inclusion in elastic media, J. Elasticity, Volume 131 (2018) no. 2, pp. 207-237 | DOI | MR | Zbl

[5] A. Bendali; K. Lemrabet The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation, SIAM J. Appl. Math., Volume 56 (1996) no. 6, pp. 1664-1693 | DOI | MR

[6] A. Bendali; A. Makhlouf; S. Tordeux Field behavior near the edge of a microstrip antenna by the method of matched asymptotic expansions, Q. Appl. Math., Volume 69 (2011) no. 4, pp. 691-721 | DOI | MR | Zbl

[7] Elena Beretta; Eric Bonnetier; Elisa Francini; Anna L. Mazzucato Small volume asymptotics for anisotropic elastic inclusions, Inverse Probl. Imaging, Volume 6 (2012) no. 1, pp. 1-23 | DOI | MR | Zbl

[8] Jöran Bergh; Jörgen Löfström Interpolation spaces: an introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer, 2012 | MR | Zbl

[9] Tahar Zamène Boulmezaoud Inverted finite elements: a new method for solving elliptic problems in unbounded domains, M2AN, Math. Model. Numer. Anal., Volume 39 (2005) no. 1, pp. 109-145 | DOI | Numdam | MR | Zbl

[10] Anthony Chagneau Méthode de zoom structural étendue aux hétérogénéités non linéaires., Ph. D. Thesis, Université Montpellier (France) (2019)

[11] Marc Dambrine; Grégory Vial Influence of a boundary perforation on the Dirichlet energy, Control Cybern., Volume 34 (2005) no. 1, pp. 117-136 | MR | Zbl

[12] Marc Dambrine; Grégory Vial A multiscale correction method for local singular perturbations of the boundary, ESAIM, Math. Model. Numer. Anal., Volume 41 (2007) no. 1, pp. 111-127 | DOI | Numdam | MR | Zbl

[13] Loic Daridon; David Dureisseix; Sylvain Garcia; Stéphane Pagano Changement d’échelles et zoom structural, 10e colloque national en calcul des structures (2011) (Clé–USB)

[14] Victorita Dolean; Pierre Jolivet; Frédéric Nataf An introduction to domain decomposition methods: algorithms, theory, and parallel implementation, Society for Industrial and Applied Mathematics, 2015 | DOI | MR

[15] J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond., Ser. A, Volume 241 (1957), pp. 376-396 | DOI | MR | Zbl

[16] J. D. Eshelby The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond., Ser. A, Volume 252 (1959), pp. 561-569 | DOI | MR | Zbl

[17] Giuseppe Geymonat; Françoise Krasucki; Stefano Lenci Mathematical analysis of a bonded joint with a soft thin adhesive, Math. Mech. Solids, Volume 4 (1999) no. 2, pp. 201-225 | DOI | MR | Zbl

[18] Roland Glowinski; Jiwen He; Alexei Lozinski; Jacques Rappaz; Joël Wagner Finite element approximation of multi-scale elliptic problems using patches of elements, Numer. Math., Volume 101 (2005) no. 4, pp. 663-687 | DOI | MR | Zbl

[19] Allaire Grégoire Shape optimization by the homogenization method, Applied Mathematical Sciences, 146, Springer, 2002 | DOI | MR | Zbl

[20] Derek J. Hansen; Clair Poignard; Michael S. Vogelius Asymptotically precise norm estimates of scattering from a small circular inhomogeneity, Appl. Anal., Volume 86 (2007) no. 4, pp. 433-458 | DOI | MR | Zbl

[21] Mohamed Rafik Ben Hassine Asymptotic and numerical study of fine inclusions in elastic domains, Ph. D. Thesis, Université de Lyon (France); École nationale d’ingénieurs de Tunis (Tunisie) (2017) https://theses.hal.science/tel-02000262

[22] Arnaud Heibig; Nidhal Mannai; Adrien Petrov; Yves Renard A thick-point approximation of a small body embedded in an elastic medium: justification with an asymptotic analysis, Z. Angew. Math. Mech., Volume 101 (2021) no. 10, e202000170, 19 pages | MR | Zbl

[23] E. Kröner Modified Green functions in the theory of heterogeneous and/or anisotropic linearly elastic media, Micromechanics and Inhomogeneity: The Toshio Mura 65th Anniversary Volume, Springer, 1990, pp. 197-211 | DOI

[24] E. Kröner; J. Gittus; J. Zarka Modelling Small Deformations of Polycrystals, Elsevier Applied Science Publisher, 1986

[25] Shaofan Li; Roger Sauer; Gang Wang A circular inclusion in a finite domain I. The Dirichlet-Eshelby problem, Acta Mech., Volume 179 (2005) no. 1, pp. 67-90 | Zbl

[26] Eric Lignon Modélisation multi-échelles de nappes fibrées en compression, Ph. D. Thesis, École Polytechnique X (France) (2011)

[27] J.-L. Lions; E. Magenes Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et recherches mathématiques, 17, Dunod, 1968, xx+372 pages | MR

[28] Alexei Lozinski; Jacques Rappaz; Joël Wagner Finite element method with patches for Poisson problems in polygonal domains, ESAIM, Proc., Volume 21 (2007), pp. 45-64 (Journées d’Analyse Fonctionnelle et Numérique en l’honneur de Michel Crouzeix) | DOI | MR | Zbl

[29] P Mazilu On the theory of linear elasticity in statistically homogeneous media, Rev. Roum. Math. Pures Appl., Volume 17 (1972) no. 2, pp. 261-273 | Zbl

[30] Vittoria Rezzonico; Alexei Lozinski; Marco Picasso; Jacques Rappaz; Joël Wagner Multiscale algorithm with patches of finite elements, Math. Comput. Simul., Volume 76 (2007) no. 1-3, pp. 181-187 | DOI | MR | Zbl

[31] Enrique Sánchez-Palencia Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité, J. Math. Pures Appl. (9), Volume 53 (1974), pp. 251-269 | MR | Zbl

[32] P. Schiavone Neutrality of the elliptic inhomogeneity in the case of non-uniform loading, Int. J. Eng. Sci., Volume 41 (2003) no. 18, pp. 2081-2090 | DOI | MR | Zbl

[33] Grégory Vial Analyse multi-échelle et conditions aux limites approchées pour un probleme avec couche mince dans un domainea coin, Ph. D. Thesis, École Normale Supérieure de Cachan, Paris (2003)

Cited by Sources: