The paper deals with the multi-scale approximation of the influence of a small inhomogeneity of arbitrary shape in an elastic medium. A new multi-scale patch method is introduced, whose caracteristic is to deal with a large scale problem without inclusion, a small-scale problem on a patch surrounding the inclusion defining a corrector and an iterative procedure between these two problems. Theoretical results of convergence of the iterations, a posteriori error estimate and comparison of the corrector with the asymptotic expansion are provided. The finite element approximation is also addressed together with some numerical tests.
Keywords: Patch method, Asymptotic expansion, finite element method, multi-scale analysis, transmission problem
Saber Amdouni 1; Mohamed Khaled Gdoura 2; Arnaud Heibig 3; Thomas Homolle 4; Nidhal Mannai 1; Adrien Petrov 3; Yves Renard 3

@article{SMAI-JCM_2025__11__139_0, author = {Saber Amdouni and Mohamed Khaled Gdoura and Arnaud Heibig and Thomas Homolle and Nidhal Mannai and Adrien Petrov and Yves Renard}, title = {A multi-scale patch approximation for {Poisson} problems with a small inhomogeneous inclusion}, journal = {The SMAI Journal of computational mathematics}, pages = {139--163}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, year = {2025}, doi = {10.5802/smai-jcm.121}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.121/} }
TY - JOUR AU - Saber Amdouni AU - Mohamed Khaled Gdoura AU - Arnaud Heibig AU - Thomas Homolle AU - Nidhal Mannai AU - Adrien Petrov AU - Yves Renard TI - A multi-scale patch approximation for Poisson problems with a small inhomogeneous inclusion JO - The SMAI Journal of computational mathematics PY - 2025 SP - 139 EP - 163 VL - 11 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.121/ DO - 10.5802/smai-jcm.121 LA - en ID - SMAI-JCM_2025__11__139_0 ER -
%0 Journal Article %A Saber Amdouni %A Mohamed Khaled Gdoura %A Arnaud Heibig %A Thomas Homolle %A Nidhal Mannai %A Adrien Petrov %A Yves Renard %T A multi-scale patch approximation for Poisson problems with a small inhomogeneous inclusion %J The SMAI Journal of computational mathematics %D 2025 %P 139-163 %V 11 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.121/ %R 10.5802/smai-jcm.121 %G en %F SMAI-JCM_2025__11__139_0
Saber Amdouni; Mohamed Khaled Gdoura; Arnaud Heibig; Thomas Homolle; Nidhal Mannai; Adrien Petrov; Yves Renard. A multi-scale patch approximation for Poisson problems with a small inhomogeneous inclusion. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 139-163. doi : 10.5802/smai-jcm.121. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.121/
[1] Reconstruction of small inhomogeneities from boundary measurements, Lecture Notes in Mathematics, 1846, Springer, 2004 | DOI | MR
[2] Electromagnetic scattering by small dielectric inhomogeneities, J. Math. Pures Appl. (9), Volume 82 (2003) no. 7, pp. 749-842 | DOI | MR | Zbl
[3] On the uniformity of stresses inside an inhomogeneity of arbitrary shape, IMA J. Appl. Math., Volume 68 (2003) no. 3, pp. 299-311 | DOI | MR | Zbl
[4] Multi-scale asymptotic expansion for a small inclusion in elastic media, J. Elasticity, Volume 131 (2018) no. 2, pp. 207-237 | DOI | MR | Zbl
[5] The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation, SIAM J. Appl. Math., Volume 56 (1996) no. 6, pp. 1664-1693 | DOI | MR
[6] Field behavior near the edge of a microstrip antenna by the method of matched asymptotic expansions, Q. Appl. Math., Volume 69 (2011) no. 4, pp. 691-721 | DOI | MR | Zbl
[7] Small volume asymptotics for anisotropic elastic inclusions, Inverse Probl. Imaging, Volume 6 (2012) no. 1, pp. 1-23 | DOI | MR | Zbl
[8] Interpolation spaces: an introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer, 2012 | MR | Zbl
[9] Inverted finite elements: a new method for solving elliptic problems in unbounded domains, M2AN, Math. Model. Numer. Anal., Volume 39 (2005) no. 1, pp. 109-145 | DOI | Numdam | MR | Zbl
[10] Méthode de zoom structural étendue aux hétérogénéités non linéaires., Ph. D. Thesis, Université Montpellier (France) (2019)
[11] Influence of a boundary perforation on the Dirichlet energy, Control Cybern., Volume 34 (2005) no. 1, pp. 117-136 | MR | Zbl
[12] A multiscale correction method for local singular perturbations of the boundary, ESAIM, Math. Model. Numer. Anal., Volume 41 (2007) no. 1, pp. 111-127 | DOI | Numdam | MR | Zbl
[13] Changement d’échelles et zoom structural, 10e colloque national en calcul des structures (2011) (Clé–USB)
[14] An introduction to domain decomposition methods: algorithms, theory, and parallel implementation, Society for Industrial and Applied Mathematics, 2015 | DOI | MR
[15] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond., Ser. A, Volume 241 (1957), pp. 376-396 | DOI | MR | Zbl
[16] The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond., Ser. A, Volume 252 (1959), pp. 561-569 | DOI | MR | Zbl
[17] Mathematical analysis of a bonded joint with a soft thin adhesive, Math. Mech. Solids, Volume 4 (1999) no. 2, pp. 201-225 | DOI | MR | Zbl
[18] Finite element approximation of multi-scale elliptic problems using patches of elements, Numer. Math., Volume 101 (2005) no. 4, pp. 663-687 | DOI | MR | Zbl
[19] Shape optimization by the homogenization method, Applied Mathematical Sciences, 146, Springer, 2002 | DOI | MR | Zbl
[20] Asymptotically precise norm estimates of scattering from a small circular inhomogeneity, Appl. Anal., Volume 86 (2007) no. 4, pp. 433-458 | DOI | MR | Zbl
[21] Asymptotic and numerical study of fine inclusions in elastic domains, Ph. D. Thesis, Université de Lyon (France); École nationale d’ingénieurs de Tunis (Tunisie) (2017) https://theses.hal.science/tel-02000262
[22] A thick-point approximation of a small body embedded in an elastic medium: justification with an asymptotic analysis, Z. Angew. Math. Mech., Volume 101 (2021) no. 10, e202000170, 19 pages | MR | Zbl
[23] Modified Green functions in the theory of heterogeneous and/or anisotropic linearly elastic media, Micromechanics and Inhomogeneity: The Toshio Mura 65th Anniversary Volume, Springer, 1990, pp. 197-211 | DOI
[24] Modelling Small Deformations of Polycrystals, Elsevier Applied Science Publisher, 1986
[25] A circular inclusion in a finite domain I. The Dirichlet-Eshelby problem, Acta Mech., Volume 179 (2005) no. 1, pp. 67-90 | Zbl
[26] Modélisation multi-échelles de nappes fibrées en compression, Ph. D. Thesis, École Polytechnique X (France) (2011)
[27] Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et recherches mathématiques, 17, Dunod, 1968, xx+372 pages | MR
[28] Finite element method with patches for Poisson problems in polygonal domains, ESAIM, Proc., Volume 21 (2007), pp. 45-64 (Journées d’Analyse Fonctionnelle et Numérique en l’honneur de Michel Crouzeix) | DOI | MR | Zbl
[29] On the theory of linear elasticity in statistically homogeneous media, Rev. Roum. Math. Pures Appl., Volume 17 (1972) no. 2, pp. 261-273 | Zbl
[30] Multiscale algorithm with patches of finite elements, Math. Comput. Simul., Volume 76 (2007) no. 1-3, pp. 181-187 | DOI | MR | Zbl
[31] Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité, J. Math. Pures Appl. (9), Volume 53 (1974), pp. 251-269 | MR | Zbl
[32] Neutrality of the elliptic inhomogeneity in the case of non-uniform loading, Int. J. Eng. Sci., Volume 41 (2003) no. 18, pp. 2081-2090 | DOI | MR | Zbl
[33] Analyse multi-échelle et conditions aux limites approchées pour un probleme avec couche mince dans un domainea coin, Ph. D. Thesis, École Normale Supérieure de Cachan, Paris (2003)
Cited by Sources: