Combining reciprocity gap method and state estimator for source identification in an advection diffusion equation
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 233-260.

In this paper, we propose to revisit a reciprocity gap method for solving point inverse source problem in an advection diffusion equation. The motivation of this problem is in ecology for pollutant source identification in a river. We propose the construction of original (numerically computed) adjoint functions that allows to consider more realistic geometries and river flows. The method is combined with a state estimator which allows to accelerate the identification process. The proposed method is validated on several examples.

Published online:
DOI: 10.5802/smai-jcm.124
Classification: 35K10, 35R30, 65M32
Keywords: Inverse source problem, advection diffusion equation, reciprocity gap method.

Antoine Tonnoir 1

1 LMI INSA Rouen Normandie, Rouen, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2025__11__233_0,
     author = {Antoine Tonnoir},
     title = {Combining reciprocity gap method and state estimator for source identification in an advection diffusion equation},
     journal = {The SMAI Journal of computational mathematics},
     pages = {233--260},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.124},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.124/}
}
TY  - JOUR
AU  - Antoine Tonnoir
TI  - Combining reciprocity gap method and state estimator for source identification in an advection diffusion equation
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 233
EP  - 260
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.124/
DO  - 10.5802/smai-jcm.124
LA  - en
ID  - SMAI-JCM_2025__11__233_0
ER  - 
%0 Journal Article
%A Antoine Tonnoir
%T Combining reciprocity gap method and state estimator for source identification in an advection diffusion equation
%J The SMAI Journal of computational mathematics
%D 2025
%P 233-260
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.124/
%R 10.5802/smai-jcm.124
%G en
%F SMAI-JCM_2025__11__233_0
Antoine Tonnoir. Combining reciprocity gap method and state estimator for source identification in an advection diffusion equation. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 233-260. doi : 10.5802/smai-jcm.124. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.124/

[1] Carlos Alves; Ana Leonor Silvestre; Takéo Takahashi; Marius Tucsnak Solving inverse source problems using observability. Applications to the Euler–Bernoulli plate equation, SIAM J. Control Optim., Volume 48 (2009) no. 3, pp. 1632-1659 | DOI | MR | Zbl

[2] Michael Andrle; Faker Ben Belgacem; Abdellatif El Badia Identification of moving pointwise sources in an advection–dispersion–reaction equation, Inverse Probl., Volume 27 (2011) no. 2, 025007, 21 pages | MR | Zbl

[3] Michael Andrle; Abdellatif El Badia On an inverse source problem for the heat equation. Application to a pollution detection problem, II, Inverse Probl. Sci. Eng., Volume 23 (2015) no. 3, pp. 389-412 | DOI | MR | Zbl

[4] Matthieu Aussal; Philippe Moireau Kernel representation of Kalman observer and associated H-matrix based discretization, ESAIM, Control Optim. Calc. Var., Volume 28 (2022), 78, 41 pages | MR | Zbl

[5] Jacob Bear; Yehuda Bachmat Introduction to modeling of transport phenomena in porous media, Theory and Applications of Transport in Porous Media, 4, Springer, 2012

[6] Jacob Bear; Alexander H.-D. Cheng Modeling groundwater flow and contaminant transport, Theory and Applications of Transport in Porous Media, 23, Springer, 2010, xxi+834 pages | DOI

[7] Faker Ben Belgacem Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters, Inverse Probl. Imaging, Volume 6 (2012) no. 2, pp. 163-181 | DOI | MR | Zbl

[8] Muriel Boulakia; Maya de Buhan; Tiphaine Delaunay; Sébastien Imperiale; Philippe Moireau Solving inverse source wave problemfrom Carleman estimates to observer design (2024) (hal-04788439, version 1)

[9] Tiphaine Delaunay; Sébastien Imperiale; Philippe Moireau Mathematical analysis of an observer for solving inverse source wave problem (2023) (hal-04344193, version 1)

[10] Xiaomao Deng; Zi-Ju Liao; Xiao-Chuan Cai An efficient two-level overlapping domain decomposition method for recovering unsteady sources of 3D parabolic problems, Comput. Math. Appl., Volume 111 (2022), pp. 98-108 | DOI | MR | Zbl

[11] Bruce A. Egan; James R. Mahoney Numerical modeling of advection and diffusion of urban area source pollutants, J. Appl. Meteorol. Climatol., Volume 11 (1972) no. 2, pp. 312-322 | DOI

[12] Abdellatif El Badia; Tuong Ha-Duong On an inverse source problem for the heat equation. Application to a pollution detection problem, J. Inverse Ill-Posed Probl., Volume 10 (2002) no. 6, pp. 585-599 | DOI | MR | Zbl

[13] Abdellatif El Badia; Tuong Ha-Duong; Adel Hamdi Identification of a point source in a linear advection–dispersion–reaction equation: application to a pollution source problem, Inverse Probl., Volume 21 (2005) no. 3, pp. 1121-1136 | MR | Zbl

[14] Abdellatif El Badia; Adel Hamdi Inverse source problem in an advection–dispersion–reaction system: application to water pollution, Inverse Probl., Volume 23 (2007) no. 5, pp. 2103-2120 | MR | Zbl

[15] Adel Hamdi Detection-Identification of multiple unknown time-dependent point sources in a 2 D transport equation: application to accidental pollution, Inverse Probl. Sci. Eng., Volume 25 (2017) no. 10, pp. 1423-1447 | DOI | MR | Zbl

[16] Adel Hamdi A non-iterative method for identifying multiple unknown time-dependent sources compactly supported occurring in a 2d parabolic equation, Inverse Probl. Sci. Eng., Volume 26 (2018) no. 5, pp. 744-772 | DOI | MR | Zbl

[17] Adel Hamdi; Antoine Tonnoir Dispersion–current adjoint functions for monitoring accidental sources in 3D transport equations, Inverse Probl. Sci. Eng., Volume 29 (2021) no. 10, pp. 1445-1476 | DOI | MR | Zbl

[18] Katrijn M. A. Holvoet; Piet Seuntjens; Peter A. Vanrolleghem Monitoring and modeling pesticide fate in surface waters at the catchment scale, Ecol. Model., Volume 209 (2007) no. 1, pp. 53-64 | DOI

[19] Cheng-Hung Huang; Jia-Xun Li; Sin Kim An inverse problem in estimating the strength of contaminant source for groundwater systems, Appl. Math. Modelling, Volume 32 (2008) no. 4, pp. 417-431 | DOI | MR | Zbl

[20] Kartlos Kachiashvili; David Gordeziani; Raytcho Lazarov; David Melikdzhanian Modeling and simulation of pollutants transport in rivers, Appl. Math. Modelling, Volume 31 (2007) no. 7, pp. 1371-1396 | DOI | Zbl

[21] Hugo Lhachemi; Ionuţ Munteanu; Christophe Prieur Boundary output feedback stabilisation for 2-D and 3-D parabolic equations (2023) | arXiv

[22] Jacques-Louis Lions; Enrico Magenes Problèmes aux limites non homogènes. II, Ann. Inst. Fourier, Volume 11 (1961), pp. 137-178 | DOI | Numdam | MR | Zbl

[23] Ionuţ Munteanu Boundary stabilization of parabolic equations, Progress in Nonlinear Differential Equations and Their Applications, 93, Birkhäuser, 2019, xii+214 pages | DOI | MR

[24] James Weimer; Bruno Sinopoli; Bruce Krogh Multiple source detection and localization in advection-diffusion processes using wireless sensor networks, 2009 30th IEEE Real-Time Systems Symposium, IEEE (2009), pp. 333-342 | DOI

[25] Liu Yang; Zui-Cha Deng; Jian-Ning Yu; Guan-Wei Luo Optimization method for the inverse problem of reconstructing the source term in a parabolic equation, Math. Comput. Simul., Volume 80 (2009) no. 2, pp. 314-326 | DOI | MR | Zbl

[26] Sergiy Zhuk; Tigran T. Tchrakian; Stephen Moore; Rodrigo Ordonez-Hurtado; Robert Shorten On source-term parameter estimation for linear advection-diffusion equations with uncertain coefficients, SIAM J. Sci. Comput., Volume 38 (2016) no. 4, p. A2334-A2356 | DOI | MR | Zbl

Cited by Sources: