Energy-consistent Petrov–Galerkin time discretization of port-Hamiltonian systems
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 335-367.

For a general class of nonlinear port-Hamiltonian systems we develop a high-order time discretization scheme with certain structure preservation properties. The finite or infinite-dimensional system under consideration possesses a Hamiltonian function, which represents an energy in the system and is conserved or dissipated along solutions. For infinite-dimensional systems this structure is preserved under suitable Galerkin discretization in space. The numerical scheme is energy-consistent in the sense that the Hamiltonian of the approximate solutions at time grid points behaves accordingly. This structure preservation property is achieved by specific design of a continuous Petrov–Galerkin (cPG) method in time. It coincides with standard cPG methods in special cases, in which the latter are energy-consistent. Examples of port-Hamiltonian ODEs and PDEs are presented to visualize the framework. In numerical experiments the energy consistency is verified and the convergence behavior is investigated.

Published online:
DOI: 10.5802/smai-jcm.127
Classification: 35K55, 37L65, 37K58, 65J08, 65J15, 65L60, 65M60, 65P10
Keywords: port-Hamiltonian system, Hamiltonian system, gradient system, energy conserving, structure preservation, Petrov-Galerkin

Jan Giesselmann 1; Attila Karsai 2; Tabea Tscherpel 1

1 Department of Mathematics, Technische Universität Darmstadt, Dolivostr. 15, 64293 Darmstadt,Germany
2 Institute of Mathematics, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin,Germany
@article{SMAI-JCM_2025__11__335_0,
     author = {Jan Giesselmann and Attila Karsai and Tabea Tscherpel},
     title = {Energy-consistent {Petrov{\textendash}Galerkin} time discretization of {port-Hamiltonian} systems},
     journal = {The SMAI Journal of computational mathematics},
     pages = {335--367},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.127},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.127/}
}
TY  - JOUR
AU  - Jan Giesselmann
AU  - Attila Karsai
AU  - Tabea Tscherpel
TI  - Energy-consistent Petrov–Galerkin time discretization of port-Hamiltonian systems
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 335
EP  - 367
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.127/
DO  - 10.5802/smai-jcm.127
LA  - en
ID  - SMAI-JCM_2025__11__335_0
ER  - 
%0 Journal Article
%A Jan Giesselmann
%A Attila Karsai
%A Tabea Tscherpel
%T Energy-consistent Petrov–Galerkin time discretization of port-Hamiltonian systems
%J The SMAI Journal of computational mathematics
%D 2025
%P 335-367
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.127/
%R 10.5802/smai-jcm.127
%G en
%F SMAI-JCM_2025__11__335_0
Jan Giesselmann; Attila Karsai; Tabea Tscherpel. Energy-consistent Petrov–Galerkin time discretization of port-Hamiltonian systems. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 335-367. doi : 10.5802/smai-jcm.127. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.127/

[1] N. Ahmed; G. Matthies Higher order continuous Galerkin-Petrov time stepping schemes for transient convection-diffusion-reaction equations, ESAIM, Math. Model. Numer. Anal., Volume 49 (2015) no. 5, pp. 1429-1450 | DOI | Numdam | MR | Zbl

[2] R. Altmann; R. Herzog Continuous Galerkin schemes for semiexplicit differential-algebraic equations, IMA J. Numer. Anal., Volume 42 (2022) no. 3, pp. 2214-2237 | DOI | MR | Zbl

[3] B. D. Andrews; P. E. Farrell High-order conservative and accurately dissipative numerical integrators via auxiliary variables (2024) | arXiv

[4] A. K. Aziz; P. Monk Continuous finite elements in space and time for the heat equation, Math. Comput., Volume 52 (1989) no. 186, pp. 255-274 | DOI | MR | Zbl

[5] J. Bradbury; R. Frostig; P. Hawkins; M. J. Johnson; C. Leary; D. Maclaurin; G. Necula; A. Paszke; J. VanderPlas; S. Wanderman-Milne; Q. Zhang JAX: composable transformations of Python+NumPy programs, 2018 (version 0.3.13, http://github.com/google/jax)

[6] E. Celledoni; S. Eidnes; B. Owren; T. Ringholm Dissipative numerical schemes on Riemannian manifolds with applications to gradient flows, SIAM J. Sci. Comput., Volume 40 (2018) no. 6, p. A3789-A3806 | DOI | MR | Zbl

[7] E. Celledoni; E. H. Høiseth Energy-Preserving and Passivity-Consistent Numerical Discretization of Port-Hamiltonian Systems (2017) | arXiv

[8] E. Celledoni; J. Jackaman Discrete conservation laws for finite element discretisations of multisymplectic PDEs, J. Comput. Phys., Volume 444 (2021), 110520, 26 pages | DOI | MR | Zbl

[9] S. Chaturantabut; C. Beattie; S. Gugercin Structure-preserving model reduction for nonlinear port-Hamiltonian systems, SIAM J. Sci. Comput., Volume 38 (2016) no. 5, p. B837-B865 | DOI | MR | Zbl

[10] K. Chrysafinos; N. J. Walkington Discontinuous Galerkin approximations of the Stokes and Navier-Stokes equations, Math. Comput., Volume 79 (2010) no. 272, pp. 2135-2167 | DOI | MR | Zbl

[11] D. Cohen; E. Hairer Linear energy-preserving integrators for Poisson systems, BIT Numer. Math., Volume 51 (2011), pp. 91-101 | DOI | MR | Zbl

[12] L. Diening; M. Růžička Interpolation operators in Orlicz–Sobolev spaces, Numer. Math., Volume 107 (2007) no. 1, pp. 107-129 | DOI | MR | Zbl

[13] H. Egger; J. Giesselmann; T. Kunkel; N. Philippi An asymptotic-preserving discretization scheme for gas transport in pipe networks, IMA J. Numer. Anal., Volume 43 (2023) no. 4, pp. 2137-2168 | DOI | Zbl

[14] H. Egger; O. Habrich; V. Shashkov On the energy stable approximation of Hamiltonian and gradient systems, Comput. Methods Appl. Math., Volume 21 (2021) no. 2, pp. 335-349 | DOI | MR | Zbl

[15] S. Eidnes Order theory for discrete gradient methods, BIT Numer. Math., Volume 62 (2022), pp. 1207-1255 | DOI | MR | Zbl

[16] A. Ern; J.-L. Guermond Finite elements III. First-order and time-dependent PDEs, Texts in Applied Mathematics, 74, Springer, 2021, viii+417 pages | DOI | MR

[17] D. A. French; J. W. Schaeffer Continuous finite element methods which preserve energy properties for nonlinear problems, Appl. Math. Comput., Volume 39 (1990) no. 3, pp. 271-295 | DOI | MR | Zbl

[18] Z. Ge; J. E. Marsden Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A, Volume 133 (1988) no. 3, pp. 134-139 | DOI | MR | Zbl

[19] B. Gess; J. Sauer; E. Tadmor Optimal regularity in time and space for the porous medium equation, Anal. PDE, Volume 13 (2020) no. 8, pp. 2441-2480 | DOI | MR | Zbl

[20] V. Girault; P.-A. Raviart Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, 5, Springer, 1986 | DOI | MR

[21] O. Gonzalez Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., Volume 6 (1996), pp. 449-467 | DOI | MR | Zbl

[22] M. Grmela; H. C. Öttinger Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E, Volume 56 (1997) no. 6, pp. 6620-6632 | DOI | MR

[23] M. Groß; P. Betsch; P. Steinmann Conservation properties of a time FE method. IV. Higher order energy and momentum conserving schemes, Int. J. Numer. Methods Eng., Volume 63 (2005) no. 13, pp. 1849-1897 | DOI | MR | Zbl

[24] E. Hairer Energy-preserving variant of collocation methods, JNAIAM, J. Numer. Anal. Ind. Appl. Math., Volume 5 (2010) no. 1-2, pp. 73-84 | MR | Zbl

[25] E. Hairer; C. Lubich Energy-diminishing integration of gradient systems, IMA J. Numer. Anal., Volume 34 (2014) no. 2, pp. 452-461 | DOI | MR | Zbl

[26] E. Hairer; C. Lubich; G. Wanner Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, 31, Springer, 2010, xviii+644 pages | MR

[27] J. Jackaman Finite element methods as geometric structure preserving algorithms, Ph. D. Thesis, School of Mathematical, Physical & Computational Sciences (2019) | DOI

[28] J. Jackaman; T. Pryer Conservative Galerkin methods for dispersive Hamiltonian problems, Calcolo, Volume 58 (2021) no. 3, 35, 36 pages | DOI | MR | Zbl

[29] P. Kotyczka; L. Lefèvre Discrete-time port-Hamiltonian systems: A definition based on symplectic integration, Syst. Control Lett., Volume 133 (2019), 104530, 9 pages | DOI | MR | Zbl

[30] R. I. McLachlan; G. R. W. Quispel; N. Robidoux Geometric integration using discrete gradients, Philos. Trans. R. Soc. Lond., Ser. A, Volume 357 (1999) no. 1754, pp. 1021-1045 | DOI | MR | Zbl

[31] V. Mehrmann; R. Morandin Structure-preserving discretization for port-Hamiltonian descriptor systems, 2019 IEEE 58th Conference on Decision and Control (CDC), IEEE, 2019, pp. 11-13 | DOI

[32] V. Mehrmann; B. Unger Control of port-Hamiltonian differential-algebraic systems and applications, Acta Numer., Volume 32 (2023), pp. 395-515 | DOI | MR | Zbl

[33] R. Morandin Modeling and Numerical Treatment of Port-Hamiltonian Descriptor Systems, Ph. D. Thesis, Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin (2024)

[34] P.-A. Raviart Sur la résolution de certaines équations paraboliques non linéaires, J. Funct. Anal., Volume 5 (1970), pp. 299-328 | DOI | MR | Zbl

[35] A. van der Schaft L 2 -Gain and Passivity Techniques in Nonlinear Control, Communications and Control Engineering Series, Springer, 2017 | DOI | MR

[36] A. van der Schaft; D. Jeltsema Port-Hamiltonian Systems Theory: An Introductory Overview, Found. Trends Syst. Control, Volume 1 (2014) no. 2-3, pp. 173-378 | DOI | Zbl

[37] F. Schieweck A-stable discontinuous Galerkin-Petrov time discretization of higher order, J. Numer. Math., Volume 18 (2010) no. 1, pp. 25-57 | DOI | MR | Zbl

[38] L. Schöbel-Kröhn Analysis and Numerical Approximation of Nonlinear Evolution Equations on Network Structures, Ph. D. Thesis, Technischen Universität Darmstadt (2020)

[39] P. Schulze Structure-Preserving Time Discretization of Port-Hamiltonian Systems via Discrete Gradient Pairs (2023) | arXiv

[40] J. L. Vázquez The porous medium equation. Mathematical theory, Oxford Mathematical Monographs, Clarendon Press, 2007, xxii+624 pages | MR

Cited by Sources: