This paper aims at developing a new numerical coupled approach to compute solutions of a compressible immiscible three-phase flow model with stiff source terms. The targeted applications involve flows with fast transient and shock waves. Thus, a well-posed model with respect to the initial conditions that embarks an entropy inequality is considered. A preliminary work on the underlying relaxation process of the model is conducted. Then the new numerical scheme is presented and numerically tested.
Keywords: Multiphase flows, Hyperbolic Systems, Relaxation, Compressible fluids, Transient flows, Steam explosion
Jean-Marc Hérard 1; Guillaume Jomée 1
@article{SMAI-JCM_2025__11__405_0, author = {Jean-Marc H\'erard and Guillaume Jom\'ee}, title = {A coupled approach to compute approximate solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms}, journal = {The SMAI Journal of computational mathematics}, pages = {405--434}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, year = {2025}, doi = {10.5802/smai-jcm.129}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.129/} }
TY - JOUR AU - Jean-Marc Hérard AU - Guillaume Jomée TI - A coupled approach to compute approximate solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms JO - The SMAI Journal of computational mathematics PY - 2025 SP - 405 EP - 434 VL - 11 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.129/ DO - 10.5802/smai-jcm.129 LA - en ID - SMAI-JCM_2025__11__405_0 ER -
%0 Journal Article %A Jean-Marc Hérard %A Guillaume Jomée %T A coupled approach to compute approximate solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms %J The SMAI Journal of computational mathematics %D 2025 %P 405-434 %V 11 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.129/ %R 10.5802/smai-jcm.129 %G en %F SMAI-JCM_2025__11__405_0
Jean-Marc Hérard; Guillaume Jomée. A coupled approach to compute approximate solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 405-434. doi : 10.5802/smai-jcm.129. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.129/
[1] A Godunov-type method for the seven-equation model of compressible two-phase flow, Comput. Fluids, Volume 54 (2012), pp. 67-91 | DOI | MR | Zbl
[2] Contribution à l’analyse des modèles aux tensions de Reynolds pour l’interaction choc turbulence, Ph. D. Thesis, Université Pierre et Marie Curie - Paris VI (2006) (https://theses.hal.science/tel-00850928)
[3] A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, Volume 12-6 (1986), pp. 861-889 | DOI | Zbl
[4] An approximate solution of the Riemann problem for a realisable second-moment turbulent closure, Shock Waves, Volume 11 (2002) no. 4, pp. 245-269 | DOI | Zbl
[5] Vapor Explosions, Ann. Rev. Fluid Mech., Volume 32 (2000) no. 1, pp. 573-611 | DOI | Zbl
[6] Physical aspects of the relaxation model in two-phase flow, Proc. R. Soc. Lond., Ser. A, Volume 428 (1990) no. 1875, pp. 379-397 | Zbl
[7] Asymptotic preserving methods for quasilinear hyperbolic systems with stiff relaxation: a review, SeMA J., Volume 81 (2024) no. 1, pp. 3-49 | DOI | MR | Zbl
[8] Relaxation and simulation of a barotropic three-phase flow model, ESAIM, Math. Model. Numer. Anal., Volume 53 (2019), pp. 1031-1059 | DOI | Numdam | MR | Zbl
[9] Simulation and preliminary validation of a three-phase flow model with energy, Comput. Fluids, Volume 221 (2021), 104868 | MR | Zbl
[10] A compressible multifluid system with new physical relaxation terms, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019), pp. 255-295 | DOI | Numdam | MR | Zbl
[11] Study of relaxation processes in a two-phase flow model, ESAIM, Proc. Surv., Volume 72 (2023), pp. 2-18 | DOI | Zbl
[12] Numerical methods for ordinary differential equations, John Wiley & Sons, 2016 | DOI | MR | Zbl
[13] Shock waves in sprays: numerical study of secondary atomization and experimental comparison, Shock Waves, Volume 26 (2016), pp. 403-415 | DOI
[14] A Solver for Stiff Finite-Rate Relaxation in Baer–Nunziato Two-Phase Flow Models, Droplet Interactions and Spray Processes (Grazia Lamanna; Simona Tonini; Gianpietro Elvio Cossali; Bernhard Weigand, eds.), Springer (2020), pp. 31-44 | DOI
[15] Closure laws for a two fluid two-pressure model, C. R. Acad. Sci. Paris, Volume I-332 (2002), pp. 927-932 | DOI | Numdam | MR | Zbl
[16] A positive and entropy-satisfying finite volume scheme for the Baer–Nunziato model, J. Comput. Phys., Volume 330 (2017), pp. 401-435 | DOI | MR | Zbl
[17] Validation of a two-fluid model on unsteady liquid-vapor water flows, Comput. Fluids, Volume 119 (2015), pp. 131-142 | DOI | MR | Zbl
[18] Definition and weak stability of nonconservative products, J. Math. Pures Appl., Volume 74 (1995) no. 2, pp. 483-548 | MR | Zbl
[19] A unified SHTC multiphase model of continuum mechanics (2024) | arXiv
[20] A hierarchy of non-equilibrium two-phase flow models, ESAIM, Proc. Surv., Volume 66 (2019), pp. 109-143 | DOI | Zbl
[21] Relaxation two-phase flow models and the sub-characteristic condition, Math. Models Methods Appl. Sci., Volume 21 (2011), pp. 2379-2407 | DOI | MR | Zbl
[22] Numerical modeling of two-phase flows using the two fluid two-pressure approach, Math. Models Methods Appl. Sci., Volume 14 (2004), pp. 663-700 | DOI | MR | Zbl
[23] The structure of pressure relaxation terms: the one-velocity case, 2014 (EDF report H-I83-2014-0276-EN. Available upon request to: sergey.gavrilyukuniv-amu.fr)
[24] Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, J. Comput. Phys., Volume 175 (2002), pp. 326-360 | DOI | MR | Zbl
[25] Droplet breakup phenomena in flows with velocity lag, Prog. Energy Combust. Sci., Volume 22 (1996) no. 3, pp. 201-265 | DOI
[26] Two phase flow modelling of a fluid mixing layer, J. Fluid Mech., Volume 378 (1999), pp. 39-47 | MR
[27] News on Baer–Nunziato type model at pressure equilibrium, Contin. Mech. Thermodyn., Volume 33 (2021), pp. 767-788 | MR | Zbl
[28] Modelisation et simulation numerique des ecoulements diphasiques par une approche bifluide a deux pressions, Ph. D. Thesis, Université Aix-Marseille (2007) (Available at : https://tel.archives-ouvertes.fr/tel-00169178v1)
[29] Baer–Nunziato type models for isothermal and isentropic flows (2025) (to appear in ESAIM, Proc. Surv.)
[30] A three-phase flow model, Mathematical and Computer Modeling, Volume 45 (2007), pp. 732-755 | DOI | MR | Zbl
[31] Une classe de modèles diphasiques bifluides avec changement de régime, 2012 (internal EDF report H-I81-2010-0486-FR, in French. An abridged version of this note is published on AIAA paper 2012-3356 and available at https://hal.archives-ouvertes.fr/hal-01582645/file/aiaa2012_3356.pdf)
[32] A class of three-phase flow models with energy, 2020 (internal EDF report 6125-3016-2020-01853-EN)
[33] A fractional step method to compute a class of compressible gas-liquid flows, Comput. Fluids, Volume 55 (2012), pp. 57-69 | DOI | MR | Zbl
[34] A four-field three-phase flow model with both miscible and immiscible components, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021), p. S251-S278 | DOI | MR | Zbl
[35] Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms, ESAIM, Math. Model. Numer. Anal., Volume 57 (2023) no. 6, pp. 3537-3583 | DOI | MR | Zbl
[36] Relaxation process in a hybrid two-phase flow model, 2025 (in revision, https://hal.science/hal-04197280v2)
[37] Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles (EDF report H-I81-2013-01162-FR, https://hal.science/hal-03092682)
[38] A three-phase flow model with two miscible phases, ESAIM, Math. Model. Numer. Anal., Volume 53 (2019), pp. 1373-1389 | DOI | Numdam | MR | Zbl
[39] KROTOS 38 to KROTOS 44: data report, 1996 (IRSN Technical Note No. I)
[40] Thermo-fluid dynamic theory of two-phase flow, 1975 (Eyrolles-Collection de la Direction des Etudes et Recherches EDF) | Zbl
[41] Simulation of compressible non-equilibrium multiphase flow models, Ph. D. Thesis, Aix-Marseile Université (2023) (https://hal.science/tel-04338786)
[42] Two phase modeling of a DDT: structure of the velocity relaxation zone, Phys. Fluids, Volume 9-12 (1997), pp. 3885-3897 | DOI
[43] The Cauchy problem for quasi-linear symetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 181-205 | DOI | MR | Zbl
[44] A Hierarchy of Relaxation Models for Two-Phase Flow, SIAM J. Appl. Math., Volume 72 (2012), pp. 1713-1741 | DOI | MR | Zbl
[45] Maxima : A Computer Algebra System, https://maxima.sourceforge.io/
[46] The challenge of modeling fuel–coolant interaction: Part II–Steam explosion, Nucl. Eng. Des., Volume 280 (2014), pp. 528-541 | DOI
[47] Closure conditions for non-equilibrium multi-component models, Contin. Mech. Thermodyn., Volume 28 (2016), pp. 1157-1189 | DOI | MR | Zbl
[48] Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flows with heat and mass transfer, Int. J. Multiphase Flow, Volume 153 (2022), 104097 | DOI | MR
[49] A numerical model for multiphase liquid–vapor–gas flows with interfaces and cavitation, Int. J. Multiphase Flow, Volume 113 (2019), pp. 208-230 | DOI | MR
[50] Derivation and closure of Baer and Nunziato type multiphase models by averaging a simple stochastic model, Multiscale Model. Simul., Volume 19 (2021) no. 1, pp. 401-439 | DOI | MR | Zbl
[51] MC3D Version 3.9 : Description of the models of the premixing application, IRSN internal report, 2017
[52] Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop, Int. J. Multiphase Flow, Volume 13 (1987) no. 6, pp. 741-757 | DOI
[53] Modeling and numerical simulation of compressible multicomponent flows, Ph. D. Thesis, Institut Polytechnique de Paris (2021) (Available at : https://tel.archives-ouvertes.fr/tel-03461287)
[54] Evaporation from Drops-I and-II, Chem. Eng. Progr, Volume 48 (1952), pp. 141-146
[55] A relaxation scheme for a hyperbolic multiphase flow model-Part I: Barotropic EOS, ESAIM, Math. Model. Numer. Anal., Volume 53 (2019) no. 5, pp. 1763-1795 | DOI | MR | Zbl
[56] The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys., Volume 212 (2006) no. 2, pp. 490-526 | DOI | MR | Zbl
[57] Numerical approximation for a Baer–Nunziato model of two-phase flows, Appl. Numer. Math., Volume 61 (2011) no. 5, pp. 702-721 | DOI | MR | Zbl
[58] HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow, J. Comput. Phys., Volume 229 (2010) no. 10, pp. 3573-3604 | DOI | MR | Zbl
[59] Solving ordinary differential equations. II: Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, 14, Springer, 1996 | MR | Zbl
[60] Development of a new steam explosion model for the MC3D software, Theses, Université de Lorraine (2023) https://theses.hal.science/tel-04216777 (https://theses.hal.science/tel-04216777)
Cited by Sources: