A coupled approach to compute approximate solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 405-434.

This paper aims at developing a new numerical coupled approach to compute solutions of a compressible immiscible three-phase flow model with stiff source terms. The targeted applications involve flows with fast transient and shock waves. Thus, a well-posed model with respect to the initial conditions that embarks an entropy inequality is considered. A preliminary work on the underlying relaxation process of the model is conducted. Then the new numerical scheme is presented and numerically tested.

Published online:
DOI: 10.5802/smai-jcm.129
Classification: 76T30, 65M08, 34C26
Keywords: Multiphase flows, Hyperbolic Systems, Relaxation, Compressible fluids, Transient flows, Steam explosion

Jean-Marc Hérard 1; Guillaume Jomée 1

1 EDF Lab Chatou, 6 quai Watier, 78400, Chatou, France
@article{SMAI-JCM_2025__11__405_0,
     author = {Jean-Marc H\'erard and Guillaume Jom\'ee},
     title = {A coupled approach to compute approximate solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms},
     journal = {The SMAI Journal of computational mathematics},
     pages = {405--434},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.129},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.129/}
}
TY  - JOUR
AU  - Jean-Marc Hérard
AU  - Guillaume Jomée
TI  - A coupled approach to compute approximate solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 405
EP  - 434
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.129/
DO  - 10.5802/smai-jcm.129
LA  - en
ID  - SMAI-JCM_2025__11__405_0
ER  - 
%0 Journal Article
%A Jean-Marc Hérard
%A Guillaume Jomée
%T A coupled approach to compute approximate solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms
%J The SMAI Journal of computational mathematics
%D 2025
%P 405-434
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.129/
%R 10.5802/smai-jcm.129
%G en
%F SMAI-JCM_2025__11__405_0
Jean-Marc Hérard; Guillaume Jomée. A coupled approach to compute approximate solutions of a compressible immiscible three-phase flow model with fast transient and stiff source terms. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 405-434. doi : 10.5802/smai-jcm.129. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.129/

[1] Annalisa Ambroso; Christophe Chalons; Pierre-Arnaud Raviart A Godunov-type method for the seven-equation model of compressible two-phase flow, Comput. Fluids, Volume 54 (2012), pp. 67-91 | DOI | MR | Zbl

[2] Bruno Audebert Contribution à l’analyse des modèles aux tensions de Reynolds pour l’interaction choc turbulence, Ph. D. Thesis, Université Pierre et Marie Curie - Paris VI (2006) (https://theses.hal.science/tel-00850928)

[3] Melvin R. Baer; Jace W. Nunziato A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, Volume 12-6 (1986), pp. 861-889 | DOI | Zbl

[4] Christophe Berthon; Frédéric Coquel; Jean-Marc Hérard; Markus Uhlmann An approximate solution of the Riemann problem for a realisable second-moment turbulent closure, Shock Waves, Volume 11 (2002) no. 4, pp. 245-269 | DOI | Zbl

[5] Georges Berthoud Vapor Explosions, Ann. Rev. Fluid Mech., Volume 32 (2000) no. 1, pp. 573-611 | DOI | Zbl

[6] Zbigniew Bilicki; Joseph Kestin Physical aspects of the relaxation model in two-phase flow, Proc. R. Soc. Lond., Ser. A, Volume 428 (1990) no. 1875, pp. 379-397 | Zbl

[7] Sebastiano Boscarino; Giovanni Russo Asymptotic preserving methods for quasilinear hyperbolic systems with stiff relaxation: a review, SeMA J., Volume 81 (2024) no. 1, pp. 3-49 | DOI | MR | Zbl

[8] Hamza Boukili; Jean-Marc Hérard Relaxation and simulation of a barotropic three-phase flow model, ESAIM, Math. Model. Numer. Anal., Volume 53 (2019), pp. 1031-1059 | DOI | Numdam | MR | Zbl

[9] Hamza Boukili; Jean-Marc Hérard Simulation and preliminary validation of a three-phase flow model with energy, Comput. Fluids, Volume 221 (2021), 104868 | MR | Zbl

[10] Didier Bresch; Matthieu Hillairet A compressible multifluid system with new physical relaxation terms, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019), pp. 255-295 | DOI | Numdam | MR | Zbl

[11] Jean Bussac Study of relaxation processes in a two-phase flow model, ESAIM, Proc. Surv., Volume 72 (2023), pp. 2-18 | DOI | Zbl

[12] John Charles Butcher Numerical methods for ordinary differential equations, John Wiley & Sons, 2016 | DOI | MR | Zbl

[13] Alice Chauvin; Eric Daniel; Ashwin Chinnayya; Jacques Massoni; Georges Jourdan Shock waves in sprays: numerical study of secondary atomization and experimental comparison, Shock Waves, Volume 26 (2016), pp. 403-415 | DOI

[14] Simone Chiocchetti; Christoph Müller A Solver for Stiff Finite-Rate Relaxation in Baer–Nunziato Two-Phase Flow Models, Droplet Interactions and Spray Processes (Grazia Lamanna; Simona Tonini; Gianpietro Elvio Cossali; Bernhard Weigand, eds.), Springer (2020), pp. 31-44 | DOI

[15] Frédéric Coquel; Thierry Gallouët; Jean-Marc Hérard; Nicolas Seguin Closure laws for a two fluid two-pressure model, C. R. Acad. Sci. Paris, Volume I-332 (2002), pp. 927-932 | DOI | Numdam | MR | Zbl

[16] Frédéric Coquel; Jean-Marc Hérard; Khaled Saleh A positive and entropy-satisfying finite volume scheme for the Baer–Nunziato model, J. Comput. Phys., Volume 330 (2017), pp. 401-435 | DOI | MR | Zbl

[17] Fabien Crouzet; Frédéric Daude; Pascal Galon; Jean-Marc Hérard; Olivier Hurisse; Yujie Liu Validation of a two-fluid model on unsteady liquid-vapor water flows, Comput. Fluids, Volume 119 (2015), pp. 131-142 | DOI | MR | Zbl

[18] Gianni Dal Maso; Philippe G. Le Floch; François Murat Definition and weak stability of nonconservative products, J. Math. Pures Appl., Volume 74 (1995) no. 2, pp. 483-548 | MR | Zbl

[19] Davide Ferrari; Ilya Peshkov; Evgeniy Romenski; Michael Dumbser A unified SHTC multiphase model of continuum mechanics (2024) | arXiv

[20] Tore Flåtten; Gaute Linga A hierarchy of non-equilibrium two-phase flow models, ESAIM, Proc. Surv., Volume 66 (2019), pp. 109-143 | DOI | Zbl

[21] Tore Flåtten; Halvor Lund Relaxation two-phase flow models and the sub-characteristic condition, Math. Models Methods Appl. Sci., Volume 21 (2011), pp. 2379-2407 | DOI | MR | Zbl

[22] Thierry Gallouët; Jean-Marc Hérard; Nicolas Seguin Numerical modeling of two-phase flows using the two fluid two-pressure approach, Math. Models Methods Appl. Sci., Volume 14 (2004), pp. 663-700 | DOI | MR | Zbl

[23] Sergey Gavrilyuk The structure of pressure relaxation terms: the one-velocity case, 2014 (EDF report H-I83-2014-0276-EN. Available upon request to: sergey.gavrilyukuniv-amu.fr)

[24] Sergey Gavrilyuk; Richard Saurel Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, J. Comput. Phys., Volume 175 (2002), pp. 326-360 | DOI | MR | Zbl

[25] Boris E. Gelfand Droplet breakup phenomena in flows with velocity lag, Prog. Energy Combust. Sci., Volume 22 (1996) no. 3, pp. 201-265 | DOI

[26] James Glimm; David Saltz; David H. Sharp Two phase flow modelling of a fluid mixing layer, J. Fluid Mech., Volume 378 (1999), pp. 39-47 | MR

[27] Lene Grabowsky; Maren Hantke; Siegfried Müller News on Baer–Nunziato type model at pressure equilibrium, Contin. Mech. Thermodyn., Volume 33 (2021), pp. 767-788 | MR | Zbl

[28] Vincent Guillemaud Modelisation et simulation numerique des ecoulements diphasiques par une approche bifluide a deux pressions, Ph. D. Thesis, Université Aix-Marseille (2007) (Available at : https://tel.archives-ouvertes.fr/tel-00169178v1)

[29] Maren Hantke; Siegfried Muller; Aleskey Sikstel; Ferdinand Thein Baer–Nunziato type models for isothermal and isentropic flows (2025) (to appear in ESAIM, Proc. Surv.)

[30] Jean-Marc Hérard A three-phase flow model, Mathematical and Computer Modeling, Volume 45 (2007), pp. 732-755 | DOI | MR | Zbl

[31] Jean-Marc Hérard Une classe de modèles diphasiques bifluides avec changement de régime, 2012 (internal EDF report H-I81-2010-0486-FR, in French. An abridged version of this note is published on AIAA paper 2012-3356 and available at https://hal.archives-ouvertes.fr/hal-01582645/file/aiaa2012_3356.pdf)

[32] Jean-Marc Hérard A class of three-phase flow models with energy, 2020 (internal EDF report 6125-3016-2020-01853-EN)

[33] Jean-Marc Hérard; Olivier Hurisse A fractional step method to compute a class of compressible gas-liquid flows, Comput. Fluids, Volume 55 (2012), pp. 57-69 | DOI | MR | Zbl

[34] Jean-Marc Hérard; Olivier Hurisse; Lucie Quibel A four-field three-phase flow model with both miscible and immiscible components, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021), p. S251-S278 | DOI | MR | Zbl

[35] Jean-Marc Hérard; Guillaume Jomée Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms, ESAIM, Math. Model. Numer. Anal., Volume 57 (2023) no. 6, pp. 3537-3583 | DOI | MR | Zbl

[36] Jean-Marc Hérard; Guillaume Jomée Relaxation process in a hybrid two-phase flow model, 2025 (in revision, https://hal.science/hal-04197280v2)

[37] Jean-Marc Hérard; Yujie Liu Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles (EDF report H-I81-2013-01162-FR, https://hal.science/hal-03092682)

[38] Jean-Marc Hérard; Hélène Mathis A three-phase flow model with two miscible phases, ESAIM, Math. Model. Numer. Anal., Volume 53 (2019), pp. 1373-1389 | DOI | Numdam | MR | Zbl

[39] I. Huhtiniemi; H. Hohmann; R. Faraoni; M. Field; R. Gambaretti; K. Klein KROTOS 38 to KROTOS 44: data report, 1996 (IRSN Technical Note No. I)

[40] Mamoru Ishii Thermo-fluid dynamic theory of two-phase flow, 1975 (Eyrolles-Collection de la Direction des Etudes et Recherches EDF) | Zbl

[41] Guillaume Jomée Simulation of compressible non-equilibrium multiphase flow models, Ph. D. Thesis, Aix-Marseile Université (2023) (https://hal.science/tel-04338786)

[42] Ashwani Kapila; Steven F. Son; John B. Bdzil; Ralph Menikoff; Donald S. Stewart Two phase modeling of a DDT: structure of the velocity relaxation zone, Phys. Fluids, Volume 9-12 (1997), pp. 3885-3897 | DOI

[43] Tosio Kato The Cauchy problem for quasi-linear symetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 181-205 | DOI | MR | Zbl

[44] Halvor Lund A Hierarchy of Relaxation Models for Two-Phase Flow, SIAM J. Appl. Math., Volume 72 (2012), pp. 1713-1741 | DOI | MR | Zbl

[45] Maxima Maxima : A Computer Algebra System, https://maxima.sourceforge.io/

[46] Renaud Meignen; Bruno Raverdy; Stéphane Picchi; Julien Lamome The challenge of modeling fuel–coolant interaction: Part II–Steam explosion, Nucl. Eng. Des., Volume 280 (2014), pp. 528-541 | DOI

[47] Siegfried Müller; Maren Hantke; Pascal Richter Closure conditions for non-equilibrium multi-component models, Contin. Mech. Thermodyn., Volume 28 (2016), pp. 1157-1189 | DOI | MR | Zbl

[48] Marica Pelanti Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flows with heat and mass transfer, Int. J. Multiphase Flow, Volume 153 (2022), 104097 | DOI | MR

[49] Marica Pelanti; Keh-Ming Shyue A numerical model for multiphase liquid–vapor–gas flows with interfaces and cavitation, Int. J. Multiphase Flow, Volume 113 (2019), pp. 208-230 | DOI | MR

[50] Vincent Perrier; Enrique Gutiérrez Derivation and closure of Baer and Nunziato type multiphase models by averaging a simple stochastic model, Multiscale Model. Simul., Volume 19 (2021) no. 1, pp. 401-439 | DOI | MR | Zbl

[51] Stéphane Picchi MC3D Version 3.9 : Description of the models of the premixing application, IRSN internal report, 2017

[52] Martin M. Pilch; CA Erdman Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop, Int. J. Multiphase Flow, Volume 13 (1987) no. 6, pp. 741-757 | DOI

[53] Pratik Rai Modeling and numerical simulation of compressible multicomponent flows, Ph. D. Thesis, Institut Polytechnique de Paris (2021) (Available at : https://tel.archives-ouvertes.fr/tel-03461287)

[54] William E. Ranz Evaporation from Drops-I and-II, Chem. Eng. Progr, Volume 48 (1952), pp. 141-146

[55] Khaled Saleh A relaxation scheme for a hyperbolic multiphase flow model-Part I: Barotropic EOS, ESAIM, Math. Model. Numer. Anal., Volume 53 (2019) no. 5, pp. 1763-1795 | DOI | MR | Zbl

[56] Donald W. Schwendeman; Christopher W. Wahle; Ashwana K. Kapila The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys., Volume 212 (2006) no. 2, pp. 490-526 | DOI | MR | Zbl

[57] Mai D. Thanh; Dietmar Kröner; Nguyen T. Nam Numerical approximation for a Baer–Nunziato model of two-phase flows, Appl. Numer. Math., Volume 61 (2011) no. 5, pp. 702-721 | DOI | MR | Zbl

[58] Svetlana A. Tokareva; Eleuterio F. Toro HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow, J. Comput. Phys., Volume 229 (2010) no. 10, pp. 3573-3604 | DOI | MR | Zbl

[59] Gerhard Wanner; Ernst Hairer Solving ordinary differential equations. II: Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, 14, Springer, 1996 | MR | Zbl

[60] Linkai Wei Development of a new steam explosion model for the MC3D software, Theses, Université de Lorraine (2023) https://theses.hal.science/tel-04216777 (https://theses.hal.science/tel-04216777)

Cited by Sources: