Modeling the wind circulation around mills with a Lagrangian stochastic approach
The SMAI Journal of computational mathematics, Volume 2 (2016), pp. 177-214.

This work aims at introducing model methodology and numerical studies related to a Lagrangian stochastic approach applied to the computation of the wind circulation around mills. We adapt the Lagrangian stochastic downscaling method that we have introduced in [3] and [4] to the atmospheric boundary layer and we introduce here a Lagrangian version of the actuator disc methods to take account of the mills. We present our numerical method and numerical experiments in the case of non rotating and rotating actuator disc models. First, for validation purpose we compare some numerical experiments against wind tunnel measurements. Second we perform some numerical experiments at the atmospheric scale and present some features of our numerical method, in particular the computation of the probability distribution of the wind in the wake zone, as a byproduct of the fluid particle model and the associated PDF method.

Published online:
DOI: 10.5802/smai-jcm.13
Keywords: Lagrangian stochastic model, PDF method, atmospheric boundary layer, actuator disc model

Mireille Bossy 1; José Espina 2; Jacques Moricel 2; Cristián Paris 2; Antoine Rousseau 3

1 Tosca Laboratory, Inria Sophia Antipolis – Méditerranée, France
2 Inria, Chile
3 Lemon Laboratory, Inria Sophia Antipolis – Méditerranée, France
@article{SMAI-JCM_2016__2__177_0,
     author = {Mireille Bossy and Jos\'e Espina and Jacques Moricel and Cristi\'an Paris and Antoine Rousseau},
     title = {Modeling the wind circulation around mills with a {Lagrangian} stochastic approach},
     journal = {The SMAI Journal of computational mathematics},
     pages = {177--214},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {2},
     year = {2016},
     doi = {10.5802/smai-jcm.13},
     zbl = {1416.76242},
     mrnumber = {3633549},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.13/}
}
TY  - JOUR
AU  - Mireille Bossy
AU  - José Espina
AU  - Jacques Moricel
AU  - Cristián Paris
AU  - Antoine Rousseau
TI  - Modeling the wind circulation around mills with a Lagrangian stochastic approach
JO  - The SMAI Journal of computational mathematics
PY  - 2016
SP  - 177
EP  - 214
VL  - 2
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.13/
DO  - 10.5802/smai-jcm.13
LA  - en
ID  - SMAI-JCM_2016__2__177_0
ER  - 
%0 Journal Article
%A Mireille Bossy
%A José Espina
%A Jacques Moricel
%A Cristián Paris
%A Antoine Rousseau
%T Modeling the wind circulation around mills with a Lagrangian stochastic approach
%J The SMAI Journal of computational mathematics
%D 2016
%P 177-214
%V 2
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.13/
%R 10.5802/smai-jcm.13
%G en
%F SMAI-JCM_2016__2__177_0
Mireille Bossy; José Espina; Jacques Moricel; Cristián Paris; Antoine Rousseau. Modeling the wind circulation around mills with a Lagrangian stochastic approach. The SMAI Journal of computational mathematics, Volume 2 (2016), pp. 177-214. doi : 10.5802/smai-jcm.13. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.13/

[1] I.H. Abbott; A.E. von Doenhoff Theory of Wing Sections, Dover Publications, 1959

[2] M. Bergmann; A. Iollo (2012)

[3] F. Bernardin; M. Bossy; C. Chauvin; P. Drobinski; A. Rousseau; T. Salameh Stochastic Downscaling Methods : Application to Wind Refinement, Stoch. Environ. Res. Risk. Assess., Volume 23 (2009) no. 6 | DOI | MR | Zbl

[4] F. Bernardin; M. Bossy; C. Chauvin; J-F. Jabir; A. Rousseau Stochastic Lagrangian Method for Downscaling Problems in Computational Fluid Dynamics, ESAIM: M2AN, Volume 44 (2010) no. 5, pp. 885-920 http://hal.archives-ouvertes.fr/docs/00/46/23/79/PDF/Version-Hal.pdf | DOI | Numdam | MR | Zbl

[5] M. Bossy; J. Fontbona; P-E. Jabin; J-F. Jabir Local Existence of Analytical Solutions to an Incompressible Lagrangian Stochastic Model in a Periodic Domain, Communications in Partial Differential Equations, Volume 38 (2013) no. 7, pp. 1141-1182 http://www.tandfonline.com/doi/abs/10.1080/03605302.2013.786727 | DOI | MR | Zbl

[6] M. Bossy; J.-F. Jabir Lagrangian stochastic models with specular boundary condition, Journal of Functional Analysis, Volume 268 (2015) no. 6, pp. 1309 -1381 http://www.sciencedirect.com/science/article/pii/S0022123614005102 | DOI | MR | Zbl

[7] P. Carlotti Two-Point Properties Of Atmospheric Turbulence Very Close To The Ground: Comparison Of A High Resolution Les With Theoretical Models, Boundary-Layer Meteorology, Volume 104 (2002) no. 3, pp. 381-410 | DOI

[8] L.P. Chamorro; F. Porté-Agel Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study, Boundary-Layer Meteorology, Volume 136 (2010) no. 3, pp. 515-533 | DOI

[9] P. Drobinski Solar energy conversion and photoenergy systems, Wind and Solar Renewable Energy Potential Resources Estimation (Encyclopedia of Life Support Systems), Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK (2014)

[10] P. Drobinski; P. Carlotti; J.-L. Redelsperger; V. Masson; R.M. Banta; R.K. Newsom Numerical and experimental investigation of the neutral atmospheric surface layer, J. Atmos. Sci., Volume 64 (2007), pp. 137-156 | DOI

[11] P.-A. Durbin; C.-G. Speziale Realizability of second-moment closure via stochastic analysis, J. Fluid Mech., Volume 280 (1994), pp. 395-407 | DOI | Zbl

[12] A. El Kasmi; C. Masson An extended model for turbulent flow through horizontal-axis wind turbines, Journal of Wind Engineering and Industrial Aerodynamics, Volume 96 (2008) no. 1, pp. 103 -122 http://www.sciencedirect.com/science/article/pii/S0167610507000943 | DOI

[13] A. Hallanger; I.Ø. Sand CFD Wake Modelling with a BEM Wind Turbine Sub-Model, Modeling, Identification and Control, Volume 34 (2013) no. 1, pp. 19-33 | DOI

[14] M. Hansen Aerodynamics of wind turbines, Earthscan, London, 2008

[15] D.C. Haworth Progress in probability density function methods for turbulent reacting flows, Progress in Energy and Combustion Science, Volume 36 (2010) no. 2, pp. 168 -259 http://www.sciencedirect.com/science/article/pii/S036012850900046X | DOI

[16] A. Kebaier Statistical Romberg extrapolation: a new variance reduction method and applications to option pricing, The Annals of Applied Probability, Volume 15 (2005) no. 4, pp. 2681-2705 | DOI | MR | Zbl

[17] P.M. Lafore et al The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations, Annales Geophysicae, Volume 16 (1998), pp. 90-109 | DOI

[18] J.F. Manwell; J.G. McGowan; A.L. Rogers Wind Energy Explained: Theory, Design and Application, John Wiley & Sons, Ltd, 2002 | DOI

[19] I. Masters; R. Malki; A.J. Williams; T.N. Croft (2012)

[20] R. Mikkelsen Actuator Disc Methods Applied to Wind Turbines, Technical University of Denmark (2003) (Doctoral dissertation)

[21] J.-P. Minier; E. Peirano The pdf approach to turbulent polydispersed two-phase flows, Physics Reports, Volume 352 (2001) no. 1-3, pp. 1-214 http://www.sciencedirect.com/science/article/pii/S0370157301000114 | DOI | MR | Zbl

[22] J.-P. Minier; E. Peirano; S. Chibbaro Weak first- and second-order numerical schemes for stochastic differential equations appearing in Lagrangian two-phase flow modeling, Monte Carlo Methods and Applications, Volume 9 (2003) no. 2, pp. 129-135 | DOI | MR | Zbl

[23] J.-P. Minier; J. Pozorski Wall-boundary conditions in probability density function methods and application to a turbulent channel flow, Physics of Fluids, Volume 11 (1999) no. 9, pp. 2632-2644 http://scitation.aip.org/content/aip/journal/pof2/11/9/10.1063/1.870125 | DOI | Zbl

[24] S.B. Pope Lagrangian pdf methods for turbulent flows, Annu. Rev. Fluid Mech., Volume 26 (1994), pp. 23-63 | DOI | MR | Zbl

[25] S.B. Pope Turbulent flows, Cambridge University Press, Cambridge, 2000, xxxiv+771 pages

[26] F. Porté-Agel; Hao Lub; Y.-T. Wu, In the Fifth International Symposium on Computational Wind Engineering (CWE2010) (2010)

[27] P.-A. Raviart An analysis of particle methods, Numerical methods in fluid dynamics (Como, 1983) (Lecture Notes in Math.), Volume 1127, Springer, Berlin, 1985, pp. 243-324 | DOI | MR

[28] P.E. Réthoré; N.N. Sørensen; A. Bechmann; F. Zahle, In Proceedings of European Wind Energy Conference (2009) (16-19 March)

[29] H. Schmidt; U. Schumann Coherent structure of the convective boundary layer derived from large-eddy simulations, J. Fluid Mech. (1989) | DOI | Zbl

[30] J.N. Sørensen; A. Myken Unsteady actuator disc model for horizontal axis wind turbines, Journal of Wind Engineering and Industrial Aerodynamics, Volume 39 (1992) no. 1–3, pp. 139 -149 http://www.sciencedirect.com/science/article/pii/016761059290540Q | DOI

[31] S. Sunada; A. Sakaguchi; K. Kawachi Airfoil Section Characteristics at a Low Reynolds Number, ASME. J. Fluids Eng., Volume 119 (1997) no. 1, pp. 129-135 | DOI

[32] Y.-T. Wu; F. Porté-Agel Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations, Boundary-Layer Meteorology, Volume 138 (2011) no. 3, pp. 345-366 | DOI

[33] Y.-T. Wu; F. Porté-Agel Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects, Boundary-Layer Meteorology, Volume 146 (2013) no. 2, pp. 181-205 | DOI

Cited by Sources: