Stable approximation of Helmholtz solutions in the 3D ball using evanescent plane waves
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 435-472.

The goal of this paper is to show that evanescent plane waves are much better at numerically approximating Helmholtz solutions than classical propagative plane waves. By generalizing the Jacobi–Anger identity to complex-valued directions, we first prove that any solution of the Helmholtz equation on a three dimensional ball can be written as a continuous superposition of evanescent plane waves in a stable way. We then propose a practical numerical recipe to select discrete approximation sets of evanescent plane waves, which exhibits considerable improvements over standard propagative plane wave schemes in numerical experiments. We show that all this is not possible for propagative plane waves: they cannot stably represent general Helmholtz solutions, and any approximation based on discrete sets of propagative plane waves is doomed to have exponentially large coefficients and thus to be numerically unstable. This paper is motivated by applications to Trefftz-type Galerkin schemes and extends the recent results in [33] from two to three space dimensions.

Published online:
DOI: 10.5802/smai-jcm.130
Classification: 35J05, 41A30, 42C15, 44A15
Keywords: Helmholtz equation, Plane wave, Evanescent plane wave, Trefftz method, Stable approximation, Sampling, Herglotz representation, Jacobi–Anger identity

Nicola Galante 1; Andrea Moiola 2; Emile Parolin 1

1 Sorbonne Université, Université Paris Cité, CNRS, INRIA, Laboratoire Jacques-Louis Lions, LJLL, EPC ALPINES, F-75005 Paris, France
2 Department of Mathematics “Felice Casorati”, University of Pavia, Pavia, Italy
@article{SMAI-JCM_2025__11__435_0,
     author = {Nicola Galante and Andrea Moiola and Emile Parolin},
     title = {Stable approximation of {Helmholtz} solutions in the {3D} ball using evanescent plane waves},
     journal = {The SMAI Journal of computational mathematics},
     pages = {435--472},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.130},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.130/}
}
TY  - JOUR
AU  - Nicola Galante
AU  - Andrea Moiola
AU  - Emile Parolin
TI  - Stable approximation of Helmholtz solutions in the 3D ball using evanescent plane waves
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 435
EP  - 472
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.130/
DO  - 10.5802/smai-jcm.130
LA  - en
ID  - SMAI-JCM_2025__11__435_0
ER  - 
%0 Journal Article
%A Nicola Galante
%A Andrea Moiola
%A Emile Parolin
%T Stable approximation of Helmholtz solutions in the 3D ball using evanescent plane waves
%J The SMAI Journal of computational mathematics
%D 2025
%P 435-472
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.130/
%R 10.5802/smai-jcm.130
%G en
%F SMAI-JCM_2025__11__435_0
Nicola Galante; Andrea Moiola; Emile Parolin. Stable approximation of Helmholtz solutions in the 3D ball using evanescent plane waves. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 435-472. doi : 10.5802/smai-jcm.130. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.130/

[1] NIST Digital Library of Mathematical Functions, Release 1.1.9 of 2023-03-15 (http://dlmf.nist.gov/)

[2] Mark J. Ablowitz; Athanassios S. Fokas Complex variables: introduction and applications. 2 n d ed, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2003 | DOI | MR | Zbl

[3] Ben Adcock; Daan Huybrechs Frames and numerical approximation, SIAM Rev., Volume 61 (2019) no. 3, pp. 443-473 | DOI | MR | Zbl

[4] Ben Adcock; Daan Huybrechs Frames and numerical approximation II: Generalized sampling, J. Fourier Anal. Appl., Volume 26 (2020) no. 6, 87, 34 pages | DOI | MR | Zbl

[5] Hélène Barucq; Abderrahmane Bendali; Julien Diaz; Sébastien Tordeux Local strategies for improving the conditioning of the plane-wave Ultra-Weak Variational Formulation, J. Comput. Phys., Volume 441 (2021), 110449 | MR | Zbl

[6] Paul Bratley; Bennett L Fox Algorithm 659: Implementing Sobol’s quasirandom sequence generator, ACM Trans. Math. Softw., Volume 14 (1988) no. 1, pp. 88-100 | DOI | Zbl

[7] Olivier Cessenat; Bruno Despres Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM J. Numer. Anal., Volume 35 (1998) no. 1, pp. 255-299 | DOI | MR | Zbl

[8] C. J. Chapman; S. C. Hawkins Near-field scattering by the method of locally subsonic waves, Proc. R. Soc. Lond., Ser. A, Volume 480 (2024) no. 2292, 20230720, 26 pages | MR | Zbl

[9] Gilles Chardon; Albert Cohen; Laurent Daudet Sampling and reconstruction of solutions to the Helmholtz equation, Sampl. Theory Signal Image Process., Volume 13 (2014) no. 1, pp. 67-89 | DOI | MR | Zbl

[10] Ole Christensen An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser, 2016 | DOI | MR | Zbl

[11] Albert Cohen; Giovanni Migliorati Optimal weighted least-squares methods, SMAI J. Comput. Math., Volume 3 (2017), pp. 181-203 | DOI | Numdam | MR | Zbl

[12] David Colton; Rainer Kress Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, 93, Springer, 2013 | DOI | MR | Zbl

[13] Keenan Crane; Ulrich Pinkall; Peter Schröder Robust fairing via conformal curvature flow, ACM Trans. Graph., Volume 32 (2013) no. 4, pp. 1-10 | DOI | Zbl

[14] Elke Deckers; Onur Atak; Laurens Coox; Roberto D’Amico; Hendrik Devriendt; Stijn Jonckheere; Kunmo Koo; Bert Pluymers; Dirk Vandepitte; Wim Desmet The wave based method: an overview of 15 years of research, Wave Motion, Volume 51 (2014) no. 4, pp. 550-565 | DOI | MR | Zbl

[15] Arnaud Deraemaeker; Ivo Babuška; Philippe Bouillard Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, Int. J. Numer. Methods Eng., Volume 46 (1999) no. 4, pp. 471-499 | DOI | Zbl

[16] Wim Desmet A wave-based prediction technique for coupled vibro-acoustic analysis, Ph. D. Thesis, Katholieke University of Leuven, Belgium (1998)

[17] Arthur Erdélyi; Wilhelm Magnus; Fritz Oberhettinger; Francesco G. Tricomi Higher transcendental functions. Vols. I, II, McGraw-Hill, 1953 (Based, in part, on notes left by Harry Bateman) | MR | Zbl

[18] X. M. Feng; P. Wang; W. Yang; G. R. Jin High-precision evaluation of Wigner’s d matrix by exact diagonalization, Phys. Rev. E, Volume 92 (2015), 043307 | DOI

[19] Nicola Galante Evanescent Plane Wave Approximation of Helmholtz Solutions in Spherical Domains (2023) (Master Thesis, University of Pavia) | arXiv | Zbl

[20] Claude J. Gittelson; Ralf Hiptmair Dispersion analysis of plane wave discontinuous Galerkin methods, Int. J. Numer. Methods Eng., Volume 98 (2014) no. 5, pp. 313-323 | DOI | MR | Zbl

[21] Claude J. Gittelson; Ralf Hiptmair; Ilaria Perugia Plane wave discontinuous Galerkin methods: analysis of the h-version, M2AN, Math. Model. Numer. Anal., Volume 43 (2009) no. 2, pp. 297-331 | DOI | Numdam | MR | Zbl

[22] Allan Greenleaf; Yaroslav Kurylev; Matti Lassas; Gunther Uhlmann Cloaking Devices, Electromagnetic Wormholes, and Transformation Optics, SIAM Rev., Volume 51 (2009) no. 1, pp. 3-33 | DOI | MR | Zbl

[23] Jerrad Hampton; Alireza Doostan Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression, Comput. Methods Appl. Mech. Eng., Volume 290 (2015), pp. 73-97 | DOI | MR | Zbl

[24] Ralf Hiptmair; Andrea Moiola; Ilaria Perugia A survey of Trefftz methods for the Helmholtz equation, Building bridges: connections and challenges in modern approaches to numerical partial differential equations (Lecture Notes in Computational Science and Engineering), Volume 114, Springer, 2016, pp. 237-278 | MR | Zbl

[25] Daan Huybrechs; Anda-Elena Olteanu An oversampled collocation approach of the wave based method for Helmholtz problems, Wave Motion, Volume 87 (2019), pp. 92-105 | DOI | MR | Zbl

[26] Stephen Joe; Frances Y. Kuo Remark on Algorithm 659: implementing Sobol’s quasirandom sequence generator, ACM Trans. Math. Softw., Volume 29 (2003) no. 1, pp. 49-57 | DOI | MR | Zbl

[27] T. Luostari; T. Huttunen; P. Monk Improvements for the ultra weak variational formulation, Int. J. Numer. Methods Eng., Volume 94 (2013) no. 6, pp. 598-624 | DOI | MR | Zbl

[28] Jordi Marzo; Joaquim Ortega-Cerdà Equidistribution of Fekete points on the sphere, Constr. Approx., Volume 32 (2010) no. 3, pp. 513-521 | DOI | MR | Zbl

[29] Paolo Massimi; Radek Tezaur; Charbel Farhat A discontinuous enrichment method for three-dimensional multiscale harmonic wave propagation problems in multi-fluid and fluid-solid media, Int. J. Numer. Methods Eng., Volume 76 (2008) no. 3, pp. 400-425 | DOI | MR | Zbl

[30] Giovanni Migliorati; Fabio Nobile Stable high-order randomized cubature formulae in arbitrary dimension, J. Approx. Theory, Volume 275 (2022), 105706, 30 pages | DOI | MR | Zbl

[31] A. Moiola; R. Hiptmair; I. Perugia Plane wave approximation of homogeneous Helmholtz solutions, Z. Angew. Math. Phys., Volume 62 (2011) no. 5, pp. 809-837 | DOI | MR | Zbl

[32] Jean-Claude Nédélec Acoustic and electromagnetic equations. Integral representations for harmonic problems, Applied Mathematical Sciences, 144, Springer, 2001 | DOI | MR | Zbl

[33] Emile Parolin; Daan Huybrechs; Andrea Moiola Stable approximation of Helmholtz solutions in the disk by evanescent plane waves, ESAIM, Math. Model. Numer. Anal., Volume 57 (2023) no. 6, pp. 3499-3536 | DOI | MR | Zbl

[34] Vern I. Paulsen; Mrinal Raghupathi An introduction to the theory of reproducing kernel Hilbert spaces, Cambridge Studies in Advanced Mathematics, 152, Cambridge University Press, 2016 | DOI | MR | Zbl

[35] J. David Pendleton Euler angle geometry, helicity basis vectors, and the Wigner D-function addition theorem, Am. J. Phys., Volume 71 (2003) no. 12, pp. 1280-1291 | DOI

[36] Manfred Reimer Constructive theory of multivariate functions, Bibliographisches Institut, Mannheim, 1990, 280 pages | MR | Zbl

[37] Hervé Riou; Pierre Ladevèze; Benjamin Sourcis The multiscale VTCR approach applied to acoustics problems, J. Comput. Acoust., Volume 16 (2011) no. 04, pp. 487-505 | DOI | Zbl

[38] Vincent Robert Solveurs itératifs pour des méthodes de Trefftz par ondes planes évanescentes pour l’équation de Helmholtz, Masters thesis, Sorbonne Université (2024), 84 pages

[39] Margot Sirdey Méthode itérative de Trefftz pour la simulation d’ondes électromagnétiques en trois dimensions., Theses, Université de Pau et des Pays de l’Adour (2022) https://theses.hal.science/tel-04172930

[40] Ian H. Sloan; Robert S. Womersley Extremal systems of points and numerical integration on the sphere, Adv. Comput. Math., Volume 21 (2004) no. 1-2, pp. 107-125 | DOI | MR | Zbl

[41] Alan D. Sokal How to generalize (and not to generalize) the Chu–Vandermonde identity, Am. Math. Mon., Volume 127 (2019) no. 1, pp. 54-62 | DOI | MR | Zbl

[42] D. A. Varshalovich; A. N. Moskalev; V. K. Khersonskiı Quantum theory of angular momentum. Irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj symbols, World Scientific, 1988 (translated from the Russian) | DOI | MR | Zbl

[43] Jon Vegard Venås Benchmark target strength simulation models, 2019 (https://doi.org/10.11582/2019.00017) | DOI

[44] Robert S. Womersley; Ian H. Sloan How good can polynomial interpolation on the sphere be?, Adv. Comput. Math., Volume 14 (2001) no. 3, pp. 195-226 | DOI | MR | Zbl

Cited by Sources: