The goal of this paper is to show that evanescent plane waves are much better at numerically approximating Helmholtz solutions than classical propagative plane waves. By generalizing the Jacobi–Anger identity to complex-valued directions, we first prove that any solution of the Helmholtz equation on a three dimensional ball can be written as a continuous superposition of evanescent plane waves in a stable way. We then propose a practical numerical recipe to select discrete approximation sets of evanescent plane waves, which exhibits considerable improvements over standard propagative plane wave schemes in numerical experiments. We show that all this is not possible for propagative plane waves: they cannot stably represent general Helmholtz solutions, and any approximation based on discrete sets of propagative plane waves is doomed to have exponentially large coefficients and thus to be numerically unstable. This paper is motivated by applications to Trefftz-type Galerkin schemes and extends the recent results in [33] from two to three space dimensions.
Keywords: Helmholtz equation, Plane wave, Evanescent plane wave, Trefftz method, Stable approximation, Sampling, Herglotz representation, Jacobi–Anger identity
Nicola Galante 1; Andrea Moiola 2; Emile Parolin 1
@article{SMAI-JCM_2025__11__435_0, author = {Nicola Galante and Andrea Moiola and Emile Parolin}, title = {Stable approximation of {Helmholtz} solutions in the {3D} ball using evanescent plane waves}, journal = {The SMAI Journal of computational mathematics}, pages = {435--472}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, year = {2025}, doi = {10.5802/smai-jcm.130}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.130/} }
TY - JOUR AU - Nicola Galante AU - Andrea Moiola AU - Emile Parolin TI - Stable approximation of Helmholtz solutions in the 3D ball using evanescent plane waves JO - The SMAI Journal of computational mathematics PY - 2025 SP - 435 EP - 472 VL - 11 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.130/ DO - 10.5802/smai-jcm.130 LA - en ID - SMAI-JCM_2025__11__435_0 ER -
%0 Journal Article %A Nicola Galante %A Andrea Moiola %A Emile Parolin %T Stable approximation of Helmholtz solutions in the 3D ball using evanescent plane waves %J The SMAI Journal of computational mathematics %D 2025 %P 435-472 %V 11 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.130/ %R 10.5802/smai-jcm.130 %G en %F SMAI-JCM_2025__11__435_0
Nicola Galante; Andrea Moiola; Emile Parolin. Stable approximation of Helmholtz solutions in the 3D ball using evanescent plane waves. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 435-472. doi : 10.5802/smai-jcm.130. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.130/
[1] NIST Digital Library of Mathematical Functions, Release 1.1.9 of 2023-03-15 (http://dlmf.nist.gov/)
[2] Complex variables: introduction and applications. ed, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2003 | DOI | MR | Zbl
[3] Frames and numerical approximation, SIAM Rev., Volume 61 (2019) no. 3, pp. 443-473 | DOI | MR | Zbl
[4] Frames and numerical approximation II: Generalized sampling, J. Fourier Anal. Appl., Volume 26 (2020) no. 6, 87, 34 pages | DOI | MR | Zbl
[5] Local strategies for improving the conditioning of the plane-wave Ultra-Weak Variational Formulation, J. Comput. Phys., Volume 441 (2021), 110449 | MR | Zbl
[6] Algorithm 659: Implementing Sobol’s quasirandom sequence generator, ACM Trans. Math. Softw., Volume 14 (1988) no. 1, pp. 88-100 | DOI | Zbl
[7] Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM J. Numer. Anal., Volume 35 (1998) no. 1, pp. 255-299 | DOI | MR | Zbl
[8] Near-field scattering by the method of locally subsonic waves, Proc. R. Soc. Lond., Ser. A, Volume 480 (2024) no. 2292, 20230720, 26 pages | MR | Zbl
[9] Sampling and reconstruction of solutions to the Helmholtz equation, Sampl. Theory Signal Image Process., Volume 13 (2014) no. 1, pp. 67-89 | DOI | MR | Zbl
[10] An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser, 2016 | DOI | MR | Zbl
[11] Optimal weighted least-squares methods, SMAI J. Comput. Math., Volume 3 (2017), pp. 181-203 | DOI | Numdam | MR | Zbl
[12] Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, 93, Springer, 2013 | DOI | MR | Zbl
[13] Robust fairing via conformal curvature flow, ACM Trans. Graph., Volume 32 (2013) no. 4, pp. 1-10 | DOI | Zbl
[14] The wave based method: an overview of 15 years of research, Wave Motion, Volume 51 (2014) no. 4, pp. 550-565 | DOI | MR | Zbl
[15] Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, Int. J. Numer. Methods Eng., Volume 46 (1999) no. 4, pp. 471-499 | DOI | Zbl
[16] A wave-based prediction technique for coupled vibro-acoustic analysis, Ph. D. Thesis, Katholieke University of Leuven, Belgium (1998)
[17] Higher transcendental functions. Vols. I, II, McGraw-Hill, 1953 (Based, in part, on notes left by Harry Bateman) | MR | Zbl
[18] High-precision evaluation of Wigner’s matrix by exact diagonalization, Phys. Rev. E, Volume 92 (2015), 043307 | DOI
[19] Evanescent Plane Wave Approximation of Helmholtz Solutions in Spherical Domains (2023) (Master Thesis, University of Pavia) | arXiv | Zbl
[20] Dispersion analysis of plane wave discontinuous Galerkin methods, Int. J. Numer. Methods Eng., Volume 98 (2014) no. 5, pp. 313-323 | DOI | MR | Zbl
[21] Plane wave discontinuous Galerkin methods: analysis of the -version, M2AN, Math. Model. Numer. Anal., Volume 43 (2009) no. 2, pp. 297-331 | DOI | Numdam | MR | Zbl
[22] Cloaking Devices, Electromagnetic Wormholes, and Transformation Optics, SIAM Rev., Volume 51 (2009) no. 1, pp. 3-33 | DOI | MR | Zbl
[23] Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression, Comput. Methods Appl. Mech. Eng., Volume 290 (2015), pp. 73-97 | DOI | MR | Zbl
[24] A survey of Trefftz methods for the Helmholtz equation, Building bridges: connections and challenges in modern approaches to numerical partial differential equations (Lecture Notes in Computational Science and Engineering), Volume 114, Springer, 2016, pp. 237-278 | MR | Zbl
[25] An oversampled collocation approach of the wave based method for Helmholtz problems, Wave Motion, Volume 87 (2019), pp. 92-105 | DOI | MR | Zbl
[26] Remark on Algorithm 659: implementing Sobol’s quasirandom sequence generator, ACM Trans. Math. Softw., Volume 29 (2003) no. 1, pp. 49-57 | DOI | MR | Zbl
[27] Improvements for the ultra weak variational formulation, Int. J. Numer. Methods Eng., Volume 94 (2013) no. 6, pp. 598-624 | DOI | MR | Zbl
[28] Equidistribution of Fekete points on the sphere, Constr. Approx., Volume 32 (2010) no. 3, pp. 513-521 | DOI | MR | Zbl
[29] A discontinuous enrichment method for three-dimensional multiscale harmonic wave propagation problems in multi-fluid and fluid-solid media, Int. J. Numer. Methods Eng., Volume 76 (2008) no. 3, pp. 400-425 | DOI | MR | Zbl
[30] Stable high-order randomized cubature formulae in arbitrary dimension, J. Approx. Theory, Volume 275 (2022), 105706, 30 pages | DOI | MR | Zbl
[31] Plane wave approximation of homogeneous Helmholtz solutions, Z. Angew. Math. Phys., Volume 62 (2011) no. 5, pp. 809-837 | DOI | MR | Zbl
[32] Acoustic and electromagnetic equations. Integral representations for harmonic problems, Applied Mathematical Sciences, 144, Springer, 2001 | DOI | MR | Zbl
[33] Stable approximation of Helmholtz solutions in the disk by evanescent plane waves, ESAIM, Math. Model. Numer. Anal., Volume 57 (2023) no. 6, pp. 3499-3536 | DOI | MR | Zbl
[34] An introduction to the theory of reproducing kernel Hilbert spaces, Cambridge Studies in Advanced Mathematics, 152, Cambridge University Press, 2016 | DOI | MR | Zbl
[35] Euler angle geometry, helicity basis vectors, and the Wigner D-function addition theorem, Am. J. Phys., Volume 71 (2003) no. 12, pp. 1280-1291 | DOI
[36] Constructive theory of multivariate functions, Bibliographisches Institut, Mannheim, 1990, 280 pages | MR | Zbl
[37] The multiscale VTCR approach applied to acoustics problems, J. Comput. Acoust., Volume 16 (2011) no. 04, pp. 487-505 | DOI | Zbl
[38] Solveurs itératifs pour des méthodes de Trefftz par ondes planes évanescentes pour l’équation de Helmholtz, Masters thesis, Sorbonne Université (2024), 84 pages
[39] Méthode itérative de Trefftz pour la simulation d’ondes électromagnétiques en trois dimensions., Theses, Université de Pau et des Pays de l’Adour (2022) https://theses.hal.science/tel-04172930
[40] Extremal systems of points and numerical integration on the sphere, Adv. Comput. Math., Volume 21 (2004) no. 1-2, pp. 107-125 | DOI | MR | Zbl
[41] How to generalize (and not to generalize) the Chu–Vandermonde identity, Am. Math. Mon., Volume 127 (2019) no. 1, pp. 54-62 | DOI | MR | Zbl
[42] Quantum theory of angular momentum. Irreducible tensors, spherical harmonics, vector coupling coefficients, symbols, World Scientific, 1988 (translated from the Russian) | DOI | MR | Zbl
[43] Benchmark target strength simulation models, 2019 (https://doi.org/10.11582/2019.00017) | DOI
[44] How good can polynomial interpolation on the sphere be?, Adv. Comput. Math., Volume 14 (2001) no. 3, pp. 195-226 | DOI | MR | Zbl
Cited by Sources: