Generating synthetic data for neural operators
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 497-516.

Recent advances in the literature show promising potential of deep learning methods, particularly neural operators, in obtaining numerical solutions to partial differential equations (PDEs) beyond the reach of current numerical solvers. However, existing data-driven approaches often rely on training data produced by numerical PDE solvers (e.g., finite difference or finite element methods). We introduce a “backward” data generation method that avoids solving the PDE numerically: by randomly sampling candidate solutions $u_j$ from the appropriate solution space (e.g., $H_0^1(\Omega )$), we compute the corresponding right-hand side $f_j$ directly from the equation by differentiation. This produces training pairs ${(f_j, u_j)}$ by computing derivatives rather than solving a PDE numerically for each data point, enabling fast, large-scale data generation consisting of exact solutions. Experiments indicate that models trained on this synthetic data generalize well when tested on data produced by standard solvers. While the idea is simple, we hope this method will expand the potential of neural PDE solvers that do not rely on classical numerical solvers for data generation.

Published online:
DOI: 10.5802/smai-jcm.132
Classification: 65N35, 15A15
Keywords: synthetic data, numerical PDEs, neural operators

Erisa Hasani 1; Rachel A. Ward 1

1 Department of Mathematics, University of Texas at Austin, Austin, TX, USA
@article{SMAI-JCM_2025__11__497_0,
     author = {Erisa Hasani and Rachel A. Ward},
     title = {Generating synthetic data for neural operators},
     journal = {The SMAI Journal of computational mathematics},
     pages = {497--516},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.132},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.132/}
}
TY  - JOUR
AU  - Erisa Hasani
AU  - Rachel A. Ward
TI  - Generating synthetic data for neural operators
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 497
EP  - 516
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.132/
DO  - 10.5802/smai-jcm.132
LA  - en
ID  - SMAI-JCM_2025__11__497_0
ER  - 
%0 Journal Article
%A Erisa Hasani
%A Rachel A. Ward
%T Generating synthetic data for neural operators
%J The SMAI Journal of computational mathematics
%D 2025
%P 497-516
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.132/
%R 10.5802/smai-jcm.132
%G en
%F SMAI-JCM_2025__11__497_0
Erisa Hasani; Rachel A. Ward. Generating synthetic data for neural operators. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 497-516. doi : 10.5802/smai-jcm.132. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.132/

[1] Hedy Attouch; Giuseppe Buttazzo; Gérard Michaille Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, Society for Industrial and Applied Mathematics, 2014 | DOI | MR | Zbl

[2] Kaushik Bhattacharya; Bamdad Hosseini; Nikola Kovachki; Andrew Stuart Model reduction and neural networks for parametric PDEs (2020) | arXiv

[3] Onur Bilgin; Thomas Vergutz; Siamak Mehrkanoon GCN-FFNN: A two-stream deep model for learning solution to partial differential equations, Neurocomputing, Volume 511 (2022), pp. 131-141 | DOI

[4] Nicolas Boullé; Christopher J Earls; Alex Townsend Data-driven discovery of Green’s functions with human-understandable deep learning, Sci. Rep., Volume 12 (2022) no. 1, 4824

[5] Qianying Cao; Somdatta Goswami; George Em Karniadakis Laplace neural operator for solving differential equations, Nat. Mach. Intell., Volume 6 (2024) no. 6, pp. 631-640

[6] Ronald A. DeVore; George G. Lorentz Constructive approximation, Grundlehren der Mathematischen Wissenschaften, 303, Springer, 1993 | DOI | MR | Zbl

[7] L. C. Evans Partial Differential Equations, Graduate Studies in Mathematics, American Mathematical Society, 2010 https://books.google.com/books?id=xnu0o_ejrcqc | Zbl

[8] Vladimir Sergeevich Fanaskov; Ivan V. Oseledets Spectral neural operators, Doklady Mathematics, Volume 108 (2023), p. S226-S232 | DOI | MR | Zbl

[9] Denis S. Grebenkov; B.-T. Nguyen Geometrical structure of Laplacian eigenfunctions, SIAM Rev., Volume 55 (2013) no. 4, pp. 601-667 | DOI | MR | Zbl

[10] Maximilian Herde; Bogdan Raonic; Tobias Rohner; Roger Käppeli; Roberto Molinaro; Emmanuel de Bézenac; Siddhartha Mishra Poseidon: Efficient foundation models for pdes, Adv. Neural Inf. Process. Syst., Volume 37 (2024), pp. 72525-72624

[11] Xinquan Huang; Wenlei Shi; Xiaotian Gao; Xinran Wei; Jia Zhang; Jiang Bian; Mao Yang; Tie-Yan Liu LordNet: An efficient neural network for learning to solve parametric partial differential equations without simulated data, Neural Netw., Volume 176 (2024), 106354

[12] Nikola Kovachki; Zongyi Li; Burigede Liu; Kamyar Azizzadenesheli; Kaushik Bhattacharya; Andrew Stuart; Anima Anandkumar Neural operator: Learning maps between function spaces with applications to pdes, J. Mach. Learn. Res., Volume 24 (2023) no. 89, pp. 1-97 | MR

[13] G. Lamé Leçons sur la théorie mathématique de l’élasticité des corps solides, Bachelier, 1852 https://books.google.com/books?id=tfedaaaaqaaj

[14] Zongyi Li; Daniel Zhengyu Huang; Burigede Liu; Anima Anandkumar Fourier neural operator with learned deformations for pdes on general geometries, J. Mach. Learn. Res., Volume 24 (2023) no. 388, pp. 1-26 | MR

[15] Zongyi Li; Nikola Kovachki; Kamyar Azizzadenesheli; Burigede Liu; Kaushik Bhattacharya; Andrew Stuart; Anima Anandkumar Neural operator: Graph kernel network for partial differential equations (2020) | arXiv

[16] Zongyi Li; Nikola Kovachki; Kamyar Azizzadenesheli; Burigede Liu; Andrew Stuart; Kaushik Bhattacharya; Anima Anandkumar Multipole graph neural operator for parametric partial differential equations, Adv. Neural Inf. Process. Syst., Volume 33 (2020), pp. 6755-6766

[17] Haitao Lin; Lirong Wu; Yongjie Xu; Yufei Huang; Siyuan Li; Guojiang Zhao; Stan Z. Li Non-equispaced fourier neural solvers for pdes (2022) | arXiv

[18] Zichao Long; Yiping Lu; Xianzhong Ma; Bin Dong Pde-net: Learning pdes from data, International conference on machine learning, PMLR (2018), pp. 3208-3216

[19] Lu Lu; Pengzhan Jin; George Em Karniadakis Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators (2019) | arXiv

[20] Roberto Molinaro; Yunan Yang; Björn Engquist; Siddhartha Mishra Neural inverse operators for solving PDE inverse problems (2023) | arXiv | Zbl

[21] Michael Penwarden; Shandian Zhe; Akil Narayan; Robert M. Kirby A metalearning approach for physics-informed neural networks (PINNs): Application to parameterized PDEs, J. Comput. Phys., Volume 477 (2023), 111912 | MR | Zbl

[22] Federico Pichi; Beatriz Moya; Jan S Hesthaven A graph convolutional autoencoder approach to model order reduction for parametrized PDEs, J. Comput. Phys., Volume 501 (2024), 112762 | MR | Zbl

[23] Md Ashiqur Rahman; Zachary E. Ross; Kamyar Azizzadenesheli U-no: U-shaped neural operators (2022) | arXiv

[24] Maziar Raissi; Paris Perdikaris; George Em Karniadakis Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations (2017) | arXiv

[25] Bogdan Raonic; Roberto Molinaro; Tim De Ryck; Tobias Rohner; Francesca Bartolucci; Rima Alaifari; Siddhartha Mishra; Emmanuel de Bézenac Convolutional neural operators for robust and accurate learning of PDEs, Adv. Neural Inf. Process. Syst., Volume 36 (2023), pp. 77187-77200

[26] KAMBIZ SALARI; PATRICK KNUPP Code Verification by the Method of Manufactured Solutions (2000) https://www.osti.gov/biblio/759450 (Technical report) | DOI

[27] Jacob Seidman; Georgios Kissas; Paris Perdikaris; George J. Pappas NOMAD: Nonlinear manifold decoders for operator learning, Adv. Neural Inf. Process. Syst., Volume 35 (2022), pp. 5601-5613

[28] Jin Young Shin; Jae Yong Lee; Hyung Ju Hwang Pseudo-differential neural operator: Generalized fourier neural operator for learning solution operators of partial differential equations (2022) | arXiv

[29] Justin Sirignano; Konstantinos Spiliopoulos DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., Volume 375 (2018), pp. 1339-1364 | DOI | MR | Zbl

[30] Shashank Subramanian; Peter Harrington; Kurt Keutzer; Wahid Bhimji; Dmitriy Morozov; Michael W. Mahoney; Amir Gholami Towards foundation models for scientific machine learning: Characterizing scaling and transfer behavior, Adv. Neural Inf. Process. Syst., Volume 36 (2023), pp. 71242-71262

[31] Lesley Tan; Liang Chen Enhanced deeponet for modeling partial differential operators considering multiple input functions (2022) | arXiv

[32] V. Thomée From finite differences to finite elements: A short history of numerical analysis of partial differential equations, J. Comput. Appl. Math., Volume 128 (2001) no. 1, pp. 1-54 (Numerical Analysis 2000. Vol. VII: Partial Differential Equations) | DOI | MR | Zbl

[33] Alasdair Tran; Alexander Mathews; Lexing Xie; Cheng Soon Ong Factorized fourier neural operators (2021) | arXiv

[34] Renbo Tu; Colin White; Jean Kossaifi; Boris Bonev; Nikola Kovachki; Gennady Pekhimenko; Kamyar Azizzadenesheli; Anima Anandkumar Guaranteed approximation bounds for mixed-precision neural operators (2023) | arXiv

[35] Arnaud Vadeboncoeur; Ieva Kazlauskaite; Yanni Papandreou; Fehmi Cirak; Mark Girolami; Omer Deniz Akyildiz Random grid neural processes for parametric partial differential equations, International Conference on Machine Learning, PMLR (2023), pp. 34759-34778

[36] Sifan Wang; Hanwen Wang; Paris Perdikaris Learning the solution operator of parametric partial differential equations with physics-informed DeepONets, Sci. Adv., Volume 7 (2021) no. 40, eabi8605

[37] Bing Yu et al. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat., Volume 6 (2018) no. 1, pp. 1-12 | MR | Zbl

[38] Lulu Zhang; Tao Luo; Yaoyu Zhang; Zhi-Qin John Xu; Zheng Ma et al. MOD-Net: A machine learning approach via model-operator-data network for solving PDEs (2021) | arXiv

[39] Xiaoxuan Zhang; Krishna Garikipati Bayesian neural networks for weak solution of PDEs with uncertainty quantification (2021) | arXiv

Cited by Sources: