Accelerating non-local exchange in generalized optimized Schwarz methods
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 517-532.

The generalized optimised Schwarz method proposed in [Claeys & Parolin, 2022] is a variant of the Després algorithm for solving harmonic wave problems where transmission condition are enforced by means of a non-local exchange operator. We introduce and analyse an acceleration technique that significantly reduces the cost of applying this exchange operator without deteriorating the precision and convergence speed of the overall domain decomposition algorithm.

Published online:
DOI: 10.5802/smai-jcm.133
Classification: 65N55, 65F10, 65N22

Xavier Claeys 1; Roxane Delville Atchekzai 2

1 POems, CNRS, Inria, ENSTA, Institut Polytechnique de Paris, 91120 Palaiseau, France
2 CEA, CESTA, 33114 Le Barp, France
@article{SMAI-JCM_2025__11__517_0,
     author = {Xavier Claeys and Roxane Delville Atchekzai},
     title = {Accelerating non-local exchange in generalized optimized {Schwarz} methods},
     journal = {The SMAI Journal of computational mathematics},
     pages = {517--532},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.133},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.133/}
}
TY  - JOUR
AU  - Xavier Claeys
AU  - Roxane Delville Atchekzai
TI  - Accelerating non-local exchange in generalized optimized Schwarz methods
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 517
EP  - 532
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.133/
DO  - 10.5802/smai-jcm.133
LA  - en
ID  - SMAI-JCM_2025__11__517_0
ER  - 
%0 Journal Article
%A Xavier Claeys
%A Roxane Delville Atchekzai
%T Accelerating non-local exchange in generalized optimized Schwarz methods
%J The SMAI Journal of computational mathematics
%D 2025
%P 517-532
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.133/
%R 10.5802/smai-jcm.133
%G en
%F SMAI-JCM_2025__11__517_0
Xavier Claeys; Roxane Delville Atchekzai. Accelerating non-local exchange in generalized optimized Schwarz methods. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 517-532. doi : 10.5802/smai-jcm.133. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.133/

[1] Bernhard Beckermann; Sergei A. Goreinov; Evgeniĭ E. Tyrtyshnikov Some remarks on the Elman estimate for GMRES, SIAM J. Matrix Anal. Appl., Volume 27 (2006) no. 3, pp. 772-778 | DOI | MR | Zbl

[2] Xavier Claeys Non-local variant of the Optimised Schwarz Method for arbitrary non-overlapping subdomain partitions, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021) no. 2, pp. 429-448 | DOI | MR | Zbl

[3] Xavier Claeys Nonselfadjoint impedance in generalized optimized Schwarz methods, IMA J. Numer. Anal., Volume 43 (2023) no. 5, pp. 3026-3054 | DOI | MR | Zbl

[4] Xavier Claeys; Francis Collino; Emile Parolin Nonlocal optimized Schwarz methods for time-harmonic electromagnetics, Adv. Comput. Math., Volume 48 (2022) no. 6, 72, 36 pages | MR | Zbl

[5] Xavier Claeys; Emile Parolin Robust treatment of cross-points in Optimized Schwarz Methods, Numer. Math., Volume 151 (2022) no. 2, pp. 405-442 | DOI | MR | Zbl

[6] Francis Collino; Patrick Joly; Emile Parolin Non-local impedance operator for non-overlapping DDM for the Helmholtz equation, Domain decomposition methods in science and engineering XXVI (Lecture Notes in Computational Science and Engineering), Volume 145, Springer, 2022, pp. 725-733 | DOI | Zbl

[7] Bruno Després Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régime harmonique. Le théorème de Borg pour l’équation de Hill vectorielle, Ph. D. Thesis, Université de Paris IX (Dauphine), France (1991) | MR | Zbl

[8] Victorita Dolean; Pierre Jolivet; Frédéric Nataf An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation, Other Titles in Applied Mathematics, 144, Society for Industrial and Applied Mathematics, 2015, x+238 pages | DOI | MR | Zbl

[9] Martin J. Gander; Hui Zhang A class of iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods, SIAM Rev., Volume 61 (2019) no. 1, pp. 3-76 | DOI | MR | Zbl

[10] Jörg Liesen; Zdeněk Strakoš Krylov subspace methods, Numerical Mathematics and Scientific Computation, Oxford University Press, 2013, xv+391 pages | MR | Zbl

[11] Émile Parolin Non-overlapping domain decomposition methods with non-local transmissionoperators for harmonic wave propagation problems, Ph. D. Thesis, Institut Polytechnique de Paris, France (2020)

[12] Yousef Saad Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2003, xviii+528 pages | DOI | MR | Zbl

[13] Kirk M. Soodhalter; Eric de Sturler; Misha E. Kilmer A survey of subspace recycling iterative methods, GAMM-Mitt., Volume 43 (2020) no. 4, e202000016, 29 pages | MR | Zbl

[14] Andrea Toselli; Olof Widlund Domain decomposition methods — algorithms and theory, Springer Series in Computational Mathematics, 34, Springer, 2005, xv+450 pages | DOI | MR | Zbl

Cited by Sources: