The generalized optimised Schwarz method proposed in [Claeys & Parolin, 2022] is a variant of the Després algorithm for solving harmonic wave problems where transmission condition are enforced by means of a non-local exchange operator. We introduce and analyse an acceleration technique that significantly reduces the cost of applying this exchange operator without deteriorating the precision and convergence speed of the overall domain decomposition algorithm.
Xavier Claeys 1; Roxane Delville Atchekzai 2
@article{SMAI-JCM_2025__11__517_0, author = {Xavier Claeys and Roxane Delville Atchekzai}, title = {Accelerating non-local exchange in generalized optimized {Schwarz} methods}, journal = {The SMAI Journal of computational mathematics}, pages = {517--532}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, year = {2025}, doi = {10.5802/smai-jcm.133}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.133/} }
TY - JOUR AU - Xavier Claeys AU - Roxane Delville Atchekzai TI - Accelerating non-local exchange in generalized optimized Schwarz methods JO - The SMAI Journal of computational mathematics PY - 2025 SP - 517 EP - 532 VL - 11 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.133/ DO - 10.5802/smai-jcm.133 LA - en ID - SMAI-JCM_2025__11__517_0 ER -
%0 Journal Article %A Xavier Claeys %A Roxane Delville Atchekzai %T Accelerating non-local exchange in generalized optimized Schwarz methods %J The SMAI Journal of computational mathematics %D 2025 %P 517-532 %V 11 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.133/ %R 10.5802/smai-jcm.133 %G en %F SMAI-JCM_2025__11__517_0
Xavier Claeys; Roxane Delville Atchekzai. Accelerating non-local exchange in generalized optimized Schwarz methods. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 517-532. doi : 10.5802/smai-jcm.133. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.133/
[1] Some remarks on the Elman estimate for GMRES, SIAM J. Matrix Anal. Appl., Volume 27 (2006) no. 3, pp. 772-778 | DOI | MR | Zbl
[2] Non-local variant of the Optimised Schwarz Method for arbitrary non-overlapping subdomain partitions, ESAIM, Math. Model. Numer. Anal., Volume 55 (2021) no. 2, pp. 429-448 | DOI | MR | Zbl
[3] Nonselfadjoint impedance in generalized optimized Schwarz methods, IMA J. Numer. Anal., Volume 43 (2023) no. 5, pp. 3026-3054 | DOI | MR | Zbl
[4] Nonlocal optimized Schwarz methods for time-harmonic electromagnetics, Adv. Comput. Math., Volume 48 (2022) no. 6, 72, 36 pages | MR | Zbl
[5] Robust treatment of cross-points in Optimized Schwarz Methods, Numer. Math., Volume 151 (2022) no. 2, pp. 405-442 | DOI | MR | Zbl
[6] Non-local impedance operator for non-overlapping DDM for the Helmholtz equation, Domain decomposition methods in science and engineering XXVI (Lecture Notes in Computational Science and Engineering), Volume 145, Springer, 2022, pp. 725-733 | DOI | Zbl
[7] Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régime harmonique. Le théorème de Borg pour l’équation de Hill vectorielle, Ph. D. Thesis, Université de Paris IX (Dauphine), France (1991) | MR | Zbl
[8] An introduction to domain decomposition methods. Algorithms, theory, and parallel implementation, Other Titles in Applied Mathematics, 144, Society for Industrial and Applied Mathematics, 2015, x+238 pages | DOI | MR | Zbl
[9] A class of iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods, SIAM Rev., Volume 61 (2019) no. 1, pp. 3-76 | DOI | MR | Zbl
[10] Krylov subspace methods, Numerical Mathematics and Scientific Computation, Oxford University Press, 2013, xv+391 pages | MR | Zbl
[11] Non-overlapping domain decomposition methods with non-local transmissionoperators for harmonic wave propagation problems, Ph. D. Thesis, Institut Polytechnique de Paris, France (2020)
[12] Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2003, xviii+528 pages | DOI | MR | Zbl
[13] A survey of subspace recycling iterative methods, GAMM-Mitt., Volume 43 (2020) no. 4, e202000016, 29 pages | MR | Zbl
[14] Domain decomposition methods — algorithms and theory, Springer Series in Computational Mathematics, 34, Springer, 2005, xv+450 pages | DOI | MR | Zbl
Cited by Sources: