The Langevin dynamics is a diffusion process extensively used, in particular in molecular dynamics simulations, to sample Gibbs measures. Some alternatives based on (piecewise deterministic) kinetic velocity jump processes have gained interest over the last decade. One interest of the latter is the possibility to split forces (at the continuous-time level), reducing the numerical cost for sampling the trajectory. Motivated by this, a numerical scheme based on hybrid dynamics combining velocity jumps and Langevin diffusion, numerically more efficient than their classical Langevin counterparts, has been introduced for computational chemistry in [43]. The present work is devoted to the numerical analysis of this scheme. Our main results are, first, the exponential ergodicity of the continuous-time velocity jump Langevin process, second, a Talay–Tubaro expansion of the invariant measure of the numerical scheme on the torus, showing in particular that the scheme is of weak order $2$ in the step-size and, third, a bound on the quadratic risk of the corresponding practical MCMC estimator (possibly with Richardson extrapolation). With respect to previous works on the Langevin diffusion, new difficulties arise from the jump operator, which is non-local.
Keywords: velocity jump process, Langevin diffusion, piecewise deterministic Markov process, molecular dynamics, exponential ergodicity, hypocoercivity, Talay–Tubaro expansion, weak discretization error
Nicolaï Gouraud 1; Lucas Journel 2; Pierre Monmarché 3
@article{SMAI-JCM_2025__11__533_0, author = {Nicola{\"\i} Gouraud and Lucas Journel and Pierre Monmarch\'e}, title = {The velocity jump {Langevin} process and its splitting scheme: long time convergence and numerical accuracy}, journal = {The SMAI Journal of computational mathematics}, pages = {533--584}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {11}, year = {2025}, doi = {10.5802/smai-jcm.134}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.134/} }
TY - JOUR AU - Nicolaï Gouraud AU - Lucas Journel AU - Pierre Monmarché TI - The velocity jump Langevin process and its splitting scheme: long time convergence and numerical accuracy JO - The SMAI Journal of computational mathematics PY - 2025 SP - 533 EP - 584 VL - 11 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.134/ DO - 10.5802/smai-jcm.134 LA - en ID - SMAI-JCM_2025__11__533_0 ER -
%0 Journal Article %A Nicolaï Gouraud %A Lucas Journel %A Pierre Monmarché %T The velocity jump Langevin process and its splitting scheme: long time convergence and numerical accuracy %J The SMAI Journal of computational mathematics %D 2025 %P 533-584 %V 11 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.134/ %R 10.5802/smai-jcm.134 %G en %F SMAI-JCM_2025__11__533_0
Nicolaï Gouraud; Lucas Journel; Pierre Monmarché. The velocity jump Langevin process and its splitting scheme: long time convergence and numerical accuracy. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 533-584. doi: 10.5802/smai-jcm.134
[1] Hypocoercivity of piecewise deterministic Markov process-Monte Carlo, Ann. Appl. Probab., Volume 31 (2021) no. 5, pp. 2478-2517 | DOI | Zbl
[2] Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2014, xx+552 pages | DOI | MR | Zbl
[3] Approximations of Piecewise Deterministic Markov Processes and their convergence properties, Stochastic Processes Appl., Volume 154 (2022), pp. 91-153 | DOI | MR | Zbl
[4] Splitting schemes for second order approximations of piecewise-deterministic Markov processes (2023) | arXiv | Zbl
[5] The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data, Ann. Stat., Volume 47 (2019) no. 3, pp. 1288-1320 | Zbl | DOI | MR
[6] The Boomerang Sampler, Proceedings of the 37th International Conference on Machine Learning (Hal Daumé III; Aarti Singh, eds.) (Proceedings of Machine Learning Research), Volume 119, PMLR (2020), pp. 908-918
[7] Ergodicity of the zigzag process, Ann. Appl. Probab., Volume 29 (2019) no. 4, pp. 2266-2301 | MR | Zbl
[8] Optimization methods for large-scale machine learning, SIAM Rev., Volume 60 (2018) no. 2, pp. 223-311 | DOI | Zbl | MR
[9] Time Integrators for Molecular Dynamics, Entropy, Volume 16 (2014), pp. 138-162 | DOI
[10] The bouncy particle sampler: a nonreversible rejection-free Markov chain Monte Carlo method, J. Am. Stat. Assoc., Volume 113 (2018) no. 522, pp. 855-867 | DOI | Zbl | MR
[11] Confinement by biased velocity jumps: Aggregation of escherichia coli, Kinet. Relat. Models, Volume 8 (2015) no. 4, pp. 651-666 | DOI | MR | Zbl
[12] Automatic Zig-Zag sampling in practice, Stat. Comput., Volume 32 (2022) no. 6, 107 | DOI | MR | Zbl
[13] Exponential ergodicity of the bouncy particle sampler, Ann. Stat., Volume 47 (2019) no. 3, pp. 1268-1287 | DOI | MR | Zbl
[14] Randomized Hamiltonian Monte Carlo as scaling limit of the bouncy particle sampler and dimension-free convergence rates, Ann. Appl. Probab., Volume 31 (2021) no. 6, pp. 2612-2662 | MR | Zbl
[15] Hypocoercivity for linear kinetic equations conserving mass, Trans. Am. Math. Soc., Volume 367 (2015) no. 6, pp. 3807-3828 | DOI | MR | Zbl
[16] Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 61 (2025) no. 1, pp. 629-664 | DOI | MR | Zbl
[17] Geometric ergodicity of the Bouncy Particle Sampler, Ann. Appl. Probab., Volume 30 (2020) no. 5, pp. 2069-2098 | DOI | MR | Zbl
[18] Geometric Numerical Integration, Springer, 2006 | DOI | MR
[19] A smooth particle mesh Ewald method, J. Chem. Phys., Volume 103 (1995) no. 19, pp. 8577-8593 | DOI
[20] Hypocoercivity in Phi-entropy for the linear relaxation Boltzmann equation on the torus, SIAM J. Math. Anal., Volume 53 (2021) no. 2, pp. 1357-1378 | DOI | MR | Zbl
[21] Velocity Jumps for Molecular Dynamics, J. Chem. Theory Comput., Volume 21 (2025) no. 6, pp. 2854-2866 | DOI
[22] Yet another look at Harris’ ergodic theorem for Markov chains, Seminar on stochastic analysis, random fields and applications VI. Centro Stefano Franscini, Ascona (Ticino), Switzerland, May 19–23, 2008., Birkhäuser, 2011, pp. 109-117 | DOI | Zbl
[23] Random Batch Methods (RBM) for interacting particle systems, J. Comput. Phys., Volume 400 (2020), 108877 | DOI | MR | Zbl
[24] A random batch Ewald method for particle systems with Coulomb interactions, SIAM J. Sci. Comput., Volume 43 (2021) no. 4, p. b937-b960 | DOI | MR | Zbl
[25] Weak error expansion of a numerical scheme with rejection for singular Langevin process, ESAIM, Math. Model. Numer. Anal., Volume 58 (2024) no. 3, pp. 1153-1184 | DOI | MR | Zbl
[26] Convergence of the kinetic annealing for general potentials, Electron. J. Probab., Volume 27 (2022), 159, 37 pages | DOI | MR | Zbl
[27] Weak backward error analysis for Langevin process, BIT Numer. Math., Volume 55 (2015) no. 4, pp. 1057-1103 | DOI | MR | Zbl
[28] Rational construction of stochastic numerical methods for molecular sampling, AMRX, Appl. Math. Res. Express, Volume 2013 (2013) no. 1, pp. 34-56 | DOI | Zbl | MR
[29] Robust and efficient configurational molecular sampling via Langevin dynamics, J. Chem. Phys., Volume 138 (2013) no. 17, 174102 | DOI
[30] The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics, IMA J. Numer. Anal., Volume 36 (2016) no. 1, pp. 13-79 | DOI | Zbl | MR
[31] Exact simulation of the jump times of a class of piecewise deterministic Markov processes, J. Sci. Comput., Volume 75 (2018) no. 3, pp. 1776-1807 | DOI | Zbl | MR
[32] Simulation of nonhomogeneous Poisson processes by thinning, Nav. Res. Logist. Q., Volume 26 (1979), pp. 403-413 | DOI | Zbl | MR
[33] Higher chain formula proved by combinatorics, Electron. J. Comb., Volume 16 (2009) no. 1, N21, 7 pages | MR | Zbl
[34] Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations, SIAM J. Numer. Anal., Volume 48 (2010) no. 2, pp. 552-577 | DOI | MR | Zbl
[35] On and entropic convergence for contractive PDMP, Electron. J. Probab., Volume 20 (2015), 128, 30 pages | MR | Zbl
[36] Piecewise deterministic simulated annealing, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 13 (2016) no. 1, pp. 357-398 | MR | DOI | Zbl
[37] Generalized calculus and application to interacting particles on a graph, Potential Anal., Volume 50 (2019) no. 3, pp. 439-466 | DOI | Zbl | MR
[38] A note on Fisher Information hypocoercive decay for the linear Boltzmann equation, Anal. Math. Phys., Volume 11 (2021) no. 1, 1, 11 pages | MR | Zbl
[39] Almost sure contraction for diffusions on . Application to generalised Langevin diffusions, Stochastic Processes Appl., Volume 161 (2023), pp. 316-349 | DOI | MR | Zbl
[40] Elementary coupling approach for non-linear perturbation of Markov processes with mean-field jump mechanisms and related problems, ESAIM, Probab. Stat., Volume 27 (2023), pp. 278-323 | DOI | MR | Zbl
[41] An entropic approach for Hamiltonian Monte Carlo: The idealized case, Ann. Appl. Probab., Volume 34 (2024) no. 2, pp. 2243-2293 | DOI | MR | Zbl
[42] Exact targeting of gibbs distributions using velocity-jump processes, Stoch. Partial Differ. Equ., Anal. Comput., Volume 11 (2023) no. 3, pp. 908-947 | Zbl | MR
[43] Velocity jump processes: An alternative to multi-timestep methods for faster and accurate molecular dynamics simulations, J. Chem. Phys., Volume 153 (2020) no. 2, 024101 | DOI
[44] NuZZ: Numerical Zig-Zag for general models, Stat. Comput., Volume 34 (2024) no. 1, 61 | DOI | MR | Zbl
[45] Rejection-free Monte Carlo sampling for general potentials, Phys. Rev. E, Volume 85 (2012) no. 2, 026703
[46] O(N) Stochastic Evaluation of Many-Body van der Waals Energies in Large Complex Systems, J. Chem. Theory Comput., Volume 8 (2022) no. 3, pp. 1633-1645 | DOI
[47] Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Relat. Fields, Volume 8 (2002) no. 2, pp. 163-198 | MR | Zbl
[48] Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Anal. Appl., Volume 8 (1990) no. 4, pp. 483-509 | DOI | MR | Zbl
[49] Reversible multiple time scale molecular dynamics, J. Chem. Phys., Volume 97 (1992) no. 3, pp. 1990-2001 | DOI
[50] Hypocoercivity, Memoirs of the American Mathematical Society, 950, American Mathematical Society, 2009, iv+141 pages | DOI | MR | Zbl
[51] Functional analysis., Springer, 1994 | DOI | Zbl | MR
[52] Hypocoercivity and global hypoellipticity for the kinetic Fokker-Planck equation in spaces, Kinet. Relat. Models, Volume 17 (2024) no. 3, pp. 394-435 | DOI | MR | Zbl
Cited by Sources: