The velocity jump Langevin process and its splitting scheme: long time convergence and numerical accuracy
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 533-584

The Langevin dynamics is a diffusion process extensively used, in particular in molecular dynamics simulations, to sample Gibbs measures. Some alternatives based on (piecewise deterministic) kinetic velocity jump processes have gained interest over the last decade. One interest of the latter is the possibility to split forces (at the continuous-time level), reducing the numerical cost for sampling the trajectory. Motivated by this, a numerical scheme based on hybrid dynamics combining velocity jumps and Langevin diffusion, numerically more efficient than their classical Langevin counterparts, has been introduced for computational chemistry in [43]. The present work is devoted to the numerical analysis of this scheme. Our main results are, first, the exponential ergodicity of the continuous-time velocity jump Langevin process, second, a Talay–Tubaro expansion of the invariant measure of the numerical scheme on the torus, showing in particular that the scheme is of weak order $2$ in the step-size and, third, a bound on the quadratic risk of the corresponding practical MCMC estimator (possibly with Richardson extrapolation). With respect to previous works on the Langevin diffusion, new difficulties arise from the jump operator, which is non-local.

Published online:
DOI: 10.5802/smai-jcm.134
Classification: 65C40, 60J76, 60J60
Keywords: velocity jump process, Langevin diffusion, piecewise deterministic Markov process, molecular dynamics, exponential ergodicity, hypocoercivity, Talay–Tubaro expansion, weak discretization error

Nicolaï Gouraud 1; Lucas Journel 2; Pierre Monmarché 3

1 Qubit Pharmaceuticals, Paris, France and Sorbonne Université, LJLL, UMR 7598 CNRS and LCT, UMR 7616 CNRS, Paris, France
2 Institut de Mathématiques, Université de Neuchâtel, Switzerland
3 Sorbonne Université, LJLL, UMR 7598 CNRS and LCT, UMR 7616 CNRS, Paris, France and Institut Universitaire de France, Paris, France
@article{SMAI-JCM_2025__11__533_0,
     author = {Nicola{\"\i} Gouraud and Lucas Journel and Pierre Monmarch\'e},
     title = {The velocity jump {Langevin} process and its splitting scheme: long time convergence and numerical accuracy},
     journal = {The SMAI Journal of computational mathematics},
     pages = {533--584},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     year = {2025},
     doi = {10.5802/smai-jcm.134},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.134/}
}
TY  - JOUR
AU  - Nicolaï Gouraud
AU  - Lucas Journel
AU  - Pierre Monmarché
TI  - The velocity jump Langevin process and its splitting scheme: long time convergence and numerical accuracy
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 533
EP  - 584
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.134/
DO  - 10.5802/smai-jcm.134
LA  - en
ID  - SMAI-JCM_2025__11__533_0
ER  - 
%0 Journal Article
%A Nicolaï Gouraud
%A Lucas Journel
%A Pierre Monmarché
%T The velocity jump Langevin process and its splitting scheme: long time convergence and numerical accuracy
%J The SMAI Journal of computational mathematics
%D 2025
%P 533-584
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.134/
%R 10.5802/smai-jcm.134
%G en
%F SMAI-JCM_2025__11__533_0
Nicolaï Gouraud; Lucas Journel; Pierre Monmarché. The velocity jump Langevin process and its splitting scheme: long time convergence and numerical accuracy. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 533-584. doi: 10.5802/smai-jcm.134

[1] Christophe Andrieu; Alain Durmus; Nikolas Nüsken; Julien Roussel Hypocoercivity of piecewise deterministic Markov process-Monte Carlo, Ann. Appl. Probab., Volume 31 (2021) no. 5, pp. 2478-2517 | DOI | Zbl

[2] Dominique Bakry; Ivan Gentil; Michel Ledoux Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, 348, Springer, 2014, xx+552 pages | DOI | MR | Zbl

[3] Andrea Bertazzi; Joris Bierkens; Paul Dobson Approximations of Piecewise Deterministic Markov Processes and their convergence properties, Stochastic Processes Appl., Volume 154 (2022), pp. 91-153 | DOI | MR | Zbl

[4] Andrea Bertazzi; Paul Dobson; Pierre Monmarché Splitting schemes for second order approximations of piecewise-deterministic Markov processes (2023) | arXiv | Zbl

[5] Joris Bierkens; Paul Fearnhead; Gareth Roberts The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data, Ann. Stat., Volume 47 (2019) no. 3, pp. 1288-1320 | Zbl | DOI | MR

[6] Joris Bierkens; Sebastiano Grazzi; Kengo Kamatani; Gareth Roberts The Boomerang Sampler, Proceedings of the 37th International Conference on Machine Learning (Hal Daumé III; Aarti Singh, eds.) (Proceedings of Machine Learning Research), Volume 119, PMLR (2020), pp. 908-918

[7] Joris Bierkens; Gareth Roberts; Pierre-André Zitt Ergodicity of the zigzag process, Ann. Appl. Probab., Volume 29 (2019) no. 4, pp. 2266-2301 | MR | Zbl

[8] Léon Bottou; Frank E. Curtis; Jorge Nocedal Optimization methods for large-scale machine learning, SIAM Rev., Volume 60 (2018) no. 2, pp. 223-311 | DOI | Zbl | MR

[9] Nawaf Bou-Rabee Time Integrators for Molecular Dynamics, Entropy, Volume 16 (2014), pp. 138-162 | DOI

[10] Alexandre Bouchard-Côté; Sebastian J. Vollmer; Arnaud Doucet The bouncy particle sampler: a nonreversible rejection-free Markov chain Monte Carlo method, J. Am. Stat. Assoc., Volume 113 (2018) no. 522, pp. 855-867 | DOI | Zbl | MR

[11] Vincent Calvez; Gaël Raoul; Christian Schmeiser Confinement by biased velocity jumps: Aggregation of escherichia coli, Kinet. Relat. Models, Volume 8 (2015) no. 4, pp. 651-666 | DOI | MR | Zbl

[12] Alice Corbella; Simon E. F. Spencer; Gareth Roberts Automatic Zig-Zag sampling in practice, Stat. Comput., Volume 32 (2022) no. 6, 107 | DOI | MR | Zbl

[13] George Deligiannidis; Alexandre Bouchard-Côté; Arnaud Doucet Exponential ergodicity of the bouncy particle sampler, Ann. Stat., Volume 47 (2019) no. 3, pp. 1268-1287 | DOI | MR | Zbl

[14] George Deligiannidis; Daniel Paulin; Alexandre Bouchard-Côté; Arnaud Doucet Randomized Hamiltonian Monte Carlo as scaling limit of the bouncy particle sampler and dimension-free convergence rates, Ann. Appl. Probab., Volume 31 (2021) no. 6, pp. 2612-2662 | MR | Zbl

[15] Jean Dolbeault; Clément Mouhot; Christian Schmeiser Hypocoercivity for linear kinetic equations conserving mass, Trans. Am. Math. Soc., Volume 367 (2015) no. 6, pp. 3807-3828 | DOI | MR | Zbl

[16] Alain Durmus; Aurélien Enfroy; Éric Moulines; Gabriel Stoltz Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 61 (2025) no. 1, pp. 629-664 | DOI | MR | Zbl

[17] Alain Durmus; Aarnaud Guillin; Pierre Monmarché Geometric ergodicity of the Bouncy Particle Sampler, Ann. Appl. Probab., Volume 30 (2020) no. 5, pp. 2069-2098 | DOI | MR | Zbl

[18] Gerhard Wanner Ernst Hairer; Christian Lubich Geometric Numerical Integration, Springer, 2006 | DOI | MR

[19] Ulrich Essmann; Lalith Perera; Max L. Berkowitz; Tom Darden; Hsing Lee; Lee G. Pedersen A smooth particle mesh Ewald method, J. Chem. Phys., Volume 103 (1995) no. 19, pp. 8577-8593 | DOI

[20] Josephine Evans Hypocoercivity in Phi-entropy for the linear relaxation Boltzmann equation on the torus, SIAM J. Math. Anal., Volume 53 (2021) no. 2, pp. 1357-1378 | DOI | MR | Zbl

[21] Nicolaï Gouraud; Louis Lagardère; Olivier Adjoua; Thomas Plé; Pierre Monmarché; Jean-Philip Piquemal Velocity Jumps for Molecular Dynamics, J. Chem. Theory Comput., Volume 21 (2025) no. 6, pp. 2854-2866 | DOI

[22] Martin Hairer; Jonathan C. Mattingly Yet another look at Harris’ ergodic theorem for Markov chains, Seminar on stochastic analysis, random fields and applications VI. Centro Stefano Franscini, Ascona (Ticino), Switzerland, May 19–23, 2008., Birkhäuser, 2011, pp. 109-117 | DOI | Zbl

[23] Shi Jin; Lei Li; Jian-Guo Liu Random Batch Methods (RBM) for interacting particle systems, J. Comput. Phys., Volume 400 (2020), 108877 | DOI | MR | Zbl

[24] Shi Jin; Lei Li; Zhenli Xu; Yue Zhao A random batch Ewald method for particle systems with Coulomb interactions, SIAM J. Sci. Comput., Volume 43 (2021) no. 4, p. b937-b960 | DOI | MR | Zbl

[25] Lucas Journel Weak error expansion of a numerical scheme with rejection for singular Langevin process, ESAIM, Math. Model. Numer. Anal., Volume 58 (2024) no. 3, pp. 1153-1184 | DOI | MR | Zbl

[26] Lucas Journel; Pierre Monmarché Convergence of the kinetic annealing for general potentials, Electron. J. Probab., Volume 27 (2022), 159, 37 pages | DOI | MR | Zbl

[27] Marie Kopec Weak backward error analysis for Langevin process, BIT Numer. Math., Volume 55 (2015) no. 4, pp. 1057-1103 | DOI | MR | Zbl

[28] Benedict Leimkuhler; Charles Matthews Rational construction of stochastic numerical methods for molecular sampling, AMRX, Appl. Math. Res. Express, Volume 2013 (2013) no. 1, pp. 34-56 | DOI | Zbl | MR

[29] Benedict Leimkuhler; Charles Matthews Robust and efficient configurational molecular sampling via Langevin dynamics, J. Chem. Phys., Volume 138 (2013) no. 17, 174102 | DOI

[30] Benedict Leimkuhler; Charles Matthews; Gabriel Stoltz The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics, IMA J. Numer. Anal., Volume 36 (2016) no. 1, pp. 13-79 | DOI | Zbl | MR

[31] Vincent Lemaire; Michèle Thieullen; Nicolas Thomas Exact simulation of the jump times of a class of piecewise deterministic Markov processes, J. Sci. Comput., Volume 75 (2018) no. 3, pp. 1776-1807 | DOI | Zbl | MR

[32] Peter A. W. Lewis; Gerald S. Shedler Simulation of nonhomogeneous Poisson processes by thinning, Nav. Res. Logist. Q., Volume 26 (1979), pp. 403-413 | DOI | Zbl | MR

[33] Tsoy-Wo Ma Higher chain formula proved by combinatorics, Electron. J. Comb., Volume 16 (2009) no. 1, N21, 7 pages | MR | Zbl

[34] Jonathan C. Mattingly; Andrew M. Stuart; M. V. Tretyakov Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations, SIAM J. Numer. Anal., Volume 48 (2010) no. 2, pp. 552-577 | DOI | MR | Zbl

[35] Pierre Monmarché On 1 and entropic convergence for contractive PDMP, Electron. J. Probab., Volume 20 (2015), 128, 30 pages | MR | Zbl

[36] Pierre Monmarché Piecewise deterministic simulated annealing, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 13 (2016) no. 1, pp. 357-398 | MR | DOI | Zbl

[37] Pierre Monmarché Generalized Γ calculus and application to interacting particles on a graph, Potential Anal., Volume 50 (2019) no. 3, pp. 439-466 | DOI | Zbl | MR

[38] Pierre Monmarché A note on Fisher Information hypocoercive decay for the linear Boltzmann equation, Anal. Math. Phys., Volume 11 (2021) no. 1, 1, 11 pages | MR | Zbl

[39] Pierre Monmarché Almost sure contraction for diffusions on R d . Application to generalised Langevin diffusions, Stochastic Processes Appl., Volume 161 (2023), pp. 316-349 | DOI | MR | Zbl

[40] Pierre Monmarché Elementary coupling approach for non-linear perturbation of Markov processes with mean-field jump mechanisms and related problems, ESAIM, Probab. Stat., Volume 27 (2023), pp. 278-323 | DOI | MR | Zbl

[41] Pierre Monmarché An entropic approach for Hamiltonian Monte Carlo: The idealized case, Ann. Appl. Probab., Volume 34 (2024) no. 2, pp. 2243-2293 | DOI | MR | Zbl

[42] Pierre Monmarché; Mathias Rousset; Pierre-André Zitt Exact targeting of gibbs distributions using velocity-jump processes, Stoch. Partial Differ. Equ., Anal. Comput., Volume 11 (2023) no. 3, pp. 908-947 | Zbl | MR

[43] Pierre Monmarché; Jérémy Weisman; Louis Lagardère; Jean-Philip Piquemal Velocity jump processes: An alternative to multi-timestep methods for faster and accurate molecular dynamics simulations, J. Chem. Phys., Volume 153 (2020) no. 2, 024101 | DOI

[44] Filippo Pagani; Augustin Chevallier; Sam Power; Thomas House; Simon Cotter NuZZ: Numerical Zig-Zag for general models, Stat. Comput., Volume 34 (2024) no. 1, 61 | DOI | MR | Zbl

[45] Elias A. J. F. Peters; G. de With Rejection-free Monte Carlo sampling for general potentials, Phys. Rev. E, Volume 85 (2012) no. 2, 026703

[46] Pier Paolo Poier; Louis Lagardère; Jean-Philip Piquemal O(N) Stochastic Evaluation of Many-Body van der Waals Energies in Large Complex Systems, J. Chem. Theory Comput., Volume 8 (2022) no. 3, pp. 1633-1645 | DOI

[47] Denis Talay Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Relat. Fields, Volume 8 (2002) no. 2, pp. 163-198 | MR | Zbl

[48] Denis Talay; Luciano Tubaro Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Anal. Appl., Volume 8 (1990) no. 4, pp. 483-509 | DOI | MR | Zbl

[49] M. Tuckerman; Bruce J. Berne; Glenn J. Martyna Reversible multiple time scale molecular dynamics, J. Chem. Phys., Volume 97 (1992) no. 3, pp. 1990-2001 | DOI

[50] Cédric Villani Hypocoercivity, Memoirs of the American Mathematical Society, 950, American Mathematical Society, 2009, iv+141 pages | DOI | MR | Zbl

[51] Kosaku Yosida Functional analysis., Springer, 1994 | DOI | Zbl | MR

[52] Chaoen Zhang Hypocoercivity and global hypoellipticity for the kinetic Fokker-Planck equation in H k spaces, Kinet. Relat. Models, Volume 17 (2024) no. 3, pp. 394-435 | DOI | MR | Zbl

Cited by Sources: