A finite volume scheme for the local sensing chemotaxis model
The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 637-676

In this paper we design, analyze and simulate a finite volume scheme for a cross-diffusion system which models chemotaxis with local sensing. This system has the same Lyapunov function (or entropy) as the celebrated minimal Keller–Segel system, but unlike the latter, its solutions are known to exist globally in 2D. The long-time behavior of solutions is only partially understood which motivates numerical exploration with a reliable numerical method. We propose a linearly implicit, two-point flux finite volume approximation of the system. We show that the scheme preserves, at the discrete level, the main features of the continuous system, namely mass conservation, non-negativity of solution, entropy dissipation, and duality estimates. These properties allow us to prove the well-posedness, unconditional stability and convergence of the scheme. We also show rigorously that the scheme possesses an asymptotic preserving (AP) property in the quasi-stationary limit. We complement our analysis with thorough numerical experiments investigating convergence and AP properties of the scheme as well as its reliability with respect to stability properties of steady solutions.

Published online:
DOI: 10.5802/smai-jcm.137
Classification: 35Q92, 35K51, 65M12, 65M08, 92C17
Keywords: finite volume scheme, entropy preserving, asymptotic preserving, Keller–Segel, local sensing, chemotaxis

Maxime Herda 1; Ariane Trescases 2; Antoine Zurek 3

1 Univ. Lille, CNRS, Inria, UMR 8524–Laboratoire Paul Painlevé, 59000 Lille
2 Institut de Mathématiques de Toulouse; UMR5219 - Université de Toulouse ; CNRS - UPS, F-31062 Toulouse Cedex 9, France
3 CNRS - Université de Montréal CRM - CNRS, Montréal, Canada and Université de Technologie de Compiègne, LMAC, 60200 Compiègne, France
@article{SMAI-JCM_2025__11__637_0,
     author = {Maxime Herda and Ariane Trescases and Antoine Zurek},
     title = {A finite volume scheme for the local sensing chemotaxis model},
     journal = {The SMAI Journal of computational mathematics},
     pages = {637--676},
     year = {2025},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {11},
     doi = {10.5802/smai-jcm.137},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.137/}
}
TY  - JOUR
AU  - Maxime Herda
AU  - Ariane Trescases
AU  - Antoine Zurek
TI  - A finite volume scheme for the local sensing chemotaxis model
JO  - The SMAI Journal of computational mathematics
PY  - 2025
SP  - 637
EP  - 676
VL  - 11
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.137/
DO  - 10.5802/smai-jcm.137
LA  - en
ID  - SMAI-JCM_2025__11__637_0
ER  - 
%0 Journal Article
%A Maxime Herda
%A Ariane Trescases
%A Antoine Zurek
%T A finite volume scheme for the local sensing chemotaxis model
%J The SMAI Journal of computational mathematics
%D 2025
%P 637-676
%V 11
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.137/
%R 10.5802/smai-jcm.137
%G en
%F SMAI-JCM_2025__11__637_0
Maxime Herda; Ariane Trescases; Antoine Zurek. A finite volume scheme for the local sensing chemotaxis model. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 637-676. doi: 10.5802/smai-jcm.137

[1] Oscar Agudelo; Angela Pistoia Boundary concentration phenomena for the higher-dimensional Keller-Segel system, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 6, 132, 31 pages | MR | DOI | Zbl

[2] Mohammed Akhmouch; Mohammed Benzakour Amine A time semi-exponentially fitted scheme for chemotaxis-growth models, Calcolo, Volume 54 (2017) no. 2, pp. 609-641 | MR | DOI | Zbl

[3] Boris Andreianov; Mostafa Bendahmane; Mazen Saad Finite volume methods for degenerate chemotaxis model, J. Comput. Appl. Math., Volume 235 (2011) no. 14, pp. 4015-4031 | Zbl | MR | DOI

[4] Gurusamy Arumugam; Jagmohan Tyagi Keller-Segel chemotaxis models: a review, Acta Appl. Math., Volume 171 (2021), 6, 82 pages | MR | DOI | Zbl

[5] Marianne Bessemoulin-Chatard; Claire Chainais-Hillairet; Francis Filbet On discrete functional inequalities for some finite volume schemes, IMA J. Numer. Anal., Volume 35 (2015) no. 3, pp. 1125-1149 | MR | DOI | Zbl

[6] Marianne Bessemoulin-Chatard; Ansgar Jüngel A finite volume scheme for a Keller-Segel model with additional cross-diffusion, IMA J. Numer. Anal., Volume 34 (2014) no. 1, pp. 96-122 | MR | DOI | Zbl

[7] Piotr Biler Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., Volume 8 (1998) no. 2, pp. 715-743 | MR | Zbl

[8] Adrien Blanchet; Vincent Calvez; José A. Carrillo Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., Volume 46 (2008) no. 2, pp. 691-721 | MR | DOI | Zbl

[9] Denis Bonheure; Jean-Baptiste Casteras; Juraj Foldes Singular radial solutions for the Keller-Segel equation in high dimension, J. Math. Pures Appl. (9), Volume 134 (2020), pp. 204-254 | MR | DOI | Zbl

[10] Denis Bonheure; Jean-Baptiste Casteras; Benedetta Noris Multiple positive solutions of the stationary Keller-Segel system, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 3, 74, 35 pages | MR | DOI | Zbl

[11] Denis Bonheure; Jean-Baptiste Casteras; Carlos Román Unbounded mass radial solutions for the Keller-Segel equation in the disk, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 5, 198, 30 pages | MR | DOI | Zbl

[12] Maxime Breden; Maxime Payan Computer-assisted proofs for the many steady states of a chemotaxis model with local sensing, Phys. D: Nonlinear Phenom., Volume 466 (2024), 134221, 18 pages | DOI | Zbl

[13] Chris J. Budd; Ricardo Carretero-González; Robert D. Russell Precise computations of chemotactic collapse using moving mesh methods, J. Comput. Phys., Volume 202 (2005) no. 2, pp. 463-487 | MR | DOI | Zbl

[14] Martin Burger; José A. Carrillo; Marie-Therese Wolfram A mixed finite element method for nonlinear diffusion equations, Kinet. Relat. Models, Volume 3 (2010) no. 1, pp. 59-83 | MR | DOI | Zbl

[15] Martin Burger; Philippe Laurençot; Ariane Trescases Delayed blow-up for chemotaxis models with local sensing, J. Lond. Math. Soc. (2), Volume 103 (2021) no. 4, pp. 1596-1617 | MR | DOI | Zbl

[16] Claire Chainais-Hillairet; Jérôme Droniou Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions, IMA J. Numer. Anal., Volume 31 (2011) no. 1, pp. 61-85 semanticscholar.org/paper/d38fdd903d6c0e318755222ef01badd45197f92/... | MR | DOI | Zbl

[17] Alina Chertock; Yekaterina Epshteyn; Hengrui Hu; Alexander Kurganov High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems, Adv. Comput. Math., Volume 44 (2018) no. 1, pp. 327-350 | Zbl | DOI

[18] Alina Chertock; Alexander Kurganov A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., Volume 111 (2008) no. 2, pp. 169-205 | MR | DOI | Zbl

[19] Kyunghan Choi; Yong-Jung Kim Chemotactic cell aggregation viewed as instability and phase separation, Nonlinear Anal., Real World Appl., Volume 80 (2024), 104147, 15 pages | MR | DOI | Zbl

[20] Laurent Desvillettes; Yong-Jung Kim; Ariane Trescases; Changwook Yoon A logarithmic chemotaxis model featuring global existence and aggregation, Nonlinear Anal., Real World Appl., Volume 50 (2019), pp. 562-582 | Zbl | DOI | MR

[21] Laurent Desvillettes; Philippe Laurençot; Ariane Trescases; Michael Winkler Weak solutions to triangular cross diffusion systems modeling chemotaxis with local sensing, Nonlinear Anal., Theory Methods Appl., Volume 226 (2023), 113153, 26 pages | MR | DOI | Zbl

[22] Jérôme Droniou; Neela Nataraj Improved L 2 estimate for gradient schemes and super-convergence of the TPFA finite volume scheme, IMA J. Numer. Anal., Volume 38 (2018) no. 3, pp. 1254-1293 | MR | DOI | Zbl

[23] Yekaterina Epshteyn Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model, J. Sci. Comput., Volume 53 (2012) no. 3, pp. 689-713 | MR | DOI | Zbl

[24] Yekaterina Epshteyn; Ahmet Izmirlioglu Fully discrete analysis of a discontinuous finite element method for the keller-segel chemotaxis model, J. Sci. Comput., Volume 40 (2009) no. 1-3, pp. 211-256 | MR | DOI | Zbl

[25] Yekaterina Epshteyn; Alexander Kurganov New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model, SIAM J. Numer. Anal., Volume 47 (2009) no. 1, pp. 386-408 | MR | DOI | Zbl

[26] Yekaterina Epshteyn; Qing Xia Efficient numerical algorithms based on difference potentials for chemotaxis systems in 3D, J. Sci. Comput., Volume 80 (2019) no. 1, pp. 26-59 | MR | DOI | Zbl

[27] Robert Eymard; Thierry Gallouët; Raphaèle Herbin Finite volume methods, Solution of equations in n (Part 3). Techniques of scientific computing (Part 3), Elsevier/North Holland, 2000, pp. 713-1020 | DOI | Zbl

[28] Francis Filbet A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math., Volume 104 (2006) no. 4, pp. 457-488 | MR | DOI | Zbl

[29] Irene Fonseca; Giovanni Leoni Modern methods in the calculus of variations. L p spaces, Springer Monographs in Mathematics, Springer, 2007 | MR | Zbl

[30] Kentaro Fujie; Jie Jiang Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities, Acta Appl. Math., Volume 176 (2021), 3, 36 pages | MR | DOI | Zbl

[31] Kentaro Fujie; Takasi Senba Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions, Nonlinear Anal., Theory Methods Appl., Volume 222 (2022), 112987, 7 pages | MR | DOI | Zbl

[32] Kentarou Fujie; Jie Jiang Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equations, Volume 269 (2020) no. 6, pp. 5338-5378 | DOI | MR | Zbl

[33] Kentarou Fujie; Jie Jiang Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 3, 92, 37 pages | MR | DOI | Zbl

[34] Pierre Grisvard Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, 69, Society for Industrial and Applied Mathematics, 2011 | DOI | MR | Zbl

[35] Konrad Gröger Boundedness and continuity of solutions to linear elliptic boundary value problems in two dimensions, Math. Ann., Volume 298 (1994) no. 4, pp. 719-727 https://eudml.org/doc/165193 | MR | DOI | Zbl

[36] Li Guo; Xingjie Helen Li; Yang Yang Energy dissipative local discontinuous Galerkin methods for Keller-Segel chemotaxis model, J. Sci. Comput., Volume 78 (2019) no. 3, pp. 1387-1404 | MR | DOI | Zbl

[37] Federico Herrero-Hervás; Mihaela Negreanu; Antonio Manuel Vargas Convergence of a meshless numerical method for a chemotaxis system with density-suppressed motility, Comput. Math. Appl., Volume 148 (2023), pp. 293-301 | MR | DOI | Zbl

[38] Jie Jiang; Philippe Laurençot Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility, J. Differ. Equations, Volume 299 (2021), pp. 513-541 | MR | DOI | Zbl

[39] Jie Jiang; Philippe Laurençot; Yanyan Zhang Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption, Commun. Partial Differ. Equations, Volume 47 (2022) no. 5, pp. 1024-1069 | MR | DOI | Zbl

[40] Hai-Yang Jin; Zhi-An Wang Critical mass on the Keller-Segel system with signal-dependent motility, Proc. Am. Math. Soc., Volume 148 (2020) no. 11, pp. 4855-4873 | MR | DOI | Zbl

[41] Evelyn F. Keller; Lee A. Segel Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970) no. 3, pp. 399-415 | Zbl | DOI | MR

[42] Evelyn F. Keller; Lee A. Segel Model for chemotaxis, J. Theor. Biol., Volume 30 (1971), pp. 225-234 | Zbl | DOI

[43] Masaki Kurokiba; Takayoshi Ogawa Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces, J. Evol. Equ., Volume 20 (2020) no. 2, pp. 421-457 | Zbl | DOI | MR

[44] Masaki Kurokiba; Takayoshi Ogawa Singular limit problem for the two-dimensional Keller-Segel system in scaling critical space, J. Differ. Equations, Volume 269 (2020) no. 10, pp. 8959-8997 | Zbl | DOI | MR

[45] Masaki Kurokiba; Takayoshi Ogawa Maximal regularity and a singular limit problem for the Patlak–Keller–Segel system in the scaling critical space involving BMO, SN Partial Differ. Equ. Appl., Volume 3 (2022) no. 1, 3, 56 pages | Zbl | DOI | MR

[46] Pierre Gilles Lemarié-Rieusset Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space, Adv. Differ. Equ., Volume 18 (2013) no. 11-12, pp. 1189-1208 | Zbl | MR

[47] Min Li; Zhaoyin Xiang; Guanyu Zhou The stability analysis of a 2D Keller-Segel-Navier-Stokes system in fast signal diffusion, Eur. J. Appl. Math., Volume 34 (2023) no. 1, pp. 160-209 | Zbl | DOI | MR

[48] Xingjie Helen Li; Chi-Wang Shu; Yang Yang Local discontinuous Galerkin method for the Keller-Segel chemotaxis model, J. Sci. Comput., Volume 73 (2017) no. 2-3, pp. 943-967 | MR | DOI | Zbl

[49] Friedrich Lippoth On the justification of the quasistationary approximation of several parabolic moving boundary problems—Part I, Nonlinear Anal., Real World Appl., Volume 17 (2014), pp. 1-22 | Zbl | DOI | MR

[50] Jian-Guo Liu; Li Wang; Zhennan Zhou Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations, Math. Comput., Volume 87 (2018) no. 311, pp. 1165-1189 | Zbl | DOI | MR

[51] Americo Marrocco Numerical simulation of chemotactic bacteria aggregation via mixed finite elements., M2AN, Math. Model. Numer. Anal., Volume 37 (2003) no. 4, pp. 617-630 https://eudml.org/doc/194181 | MR | Numdam | DOI | Zbl

[52] Masaaki Mizukami The fast signal diffusion limit in a Keller-Segel system, J. Math. Anal. Appl., Volume 472 (2019) no. 2, pp. 1313-1330 | Zbl | DOI | MR

[53] Toru Nogayama; Yoshihiro Sawano Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical Besov-Morrey spaces, J. Math. Anal. Appl., Volume 529 (2024) no. 2, 127207, 51 pages | Zbl | DOI | MR

[54] Takayoshi Ogawa; Takeshi Suguro Maximal regularity of the heat evolution equation on spatial local spaces and application to a singular limit problem of the Keller-Segel system, Math. Ann., Volume 387 (2023) no. 1-2, pp. 389-431 | Zbl | DOI | MR

[55] Hans G. Othmer; Angela Stevens Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., Volume 57 (1997) no. 4, pp. 1044-1081 | MR | Zbl | DOI

[56] Manuel del Pino; Angela Pistoia; Giusi Vaira Large mass boundary condensation patterns in the stationary Keller-Segel system, J. Differ. Equations, Volume 261 (2016) no. 6, pp. 3414-3462 | MR | DOI | Zbl

[57] Manuel del Pino; Juncheng Wei Collapsing steady states of the Keller-Segel system, Nonlinearity, Volume 19 (2006) no. 3, pp. 661-684 | MR | DOI | Zbl

[58] Angela Pistoia; Giusi Vaira Steady states with unbounded mass of the Keller-Segel system, Proc. R. Soc. Edinb., Sect. A, Math., Volume 145 (2015) no. 1, pp. 203-222 | MR | DOI | Zbl

[59] Andrzej Raczyński Stability property of the two-dimensional Keller-Segel model, Asymptotic Anal., Volume 61 (2009) no. 1, pp. 35-59 | MR | DOI | Zbl

[60] Norikazu Saito Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal., Volume 27 (2007) no. 2, pp. 332-365 | DOI | Zbl | MR

[61] Norikazu Saito Conservative numerical schemes for the Keller-Segel system and numerical results, RIMS Kôkyûroku Bessatsu, Volume B15 (2009), pp. 125-146 | MR | Zbl

[62] Norikazu Saito Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis, Commun. Pure Appl. Anal., Volume 11 (2012) no. 1, pp. 339-364 | Zbl | MR | DOI

[63] Norikazu Saito; Takashi Suzuki Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., Volume 171 (2005) no. 1, pp. 72-90 | MR | DOI | Zbl

[64] Renate Schaaf Stationary solutions of chemotaxis systems, Trans. Am. Math. Soc., Volume 292 (1985), pp. 531-556 | DOI | MR | Zbl

[65] Takasi Senba; Takashi Suzuki Some structures of the solution set for a stationary system of chemotaxis, Adv. Math. Sci. Appl., Volume 10 (2000) no. 1, pp. 191-224 | MR | Zbl

[66] Robert Strehl; Andriy Sokolov; Dmitri Kuzmin; Dirk Horstmann; Stefan Turek A positivity-preserving finite element method for chemotaxis problems in 3D, J. Comput. Appl. Math., Volume 239 (2013), pp. 290-303 | DOI | Zbl

[67] Guofang Wang; Jun-Cheng Wei Steady state solutions of a reaction-diffusion system modeling chemotaxis, Math. Nachr., Volume 233-234 (2002), pp. 221-236 | MR | DOI | Zbl

[68] Yulan Wang; Michael Winkler; Zhaoyin Xiang The fast signal diffusion limit in Keller-Segel(-fluid) systems, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 6, 196, 40 pages | Zbl | DOI | MR

[69] Zhi-An Wang; Xin Xu Steady states and pattern formation of the density-suppressed motility model, IMA J. Appl. Math., Volume 86 (2021) no. 3, pp. 577-603 | MR | DOI | Zbl

[70] Jiansong Zhang; Jiang Zhu; Rongpei Zhang Characteristic splitting mixed finite element analysis of Keller-Segel chemotaxis models, Appl. Math. Comput., Volume 278 (2016), pp. 33-44 | MR | DOI | Zbl

[71] Rongpei Zhang; Jiang Zhu; Abimael F. D. Loula; Xijun Yu Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model, J. Comput. Appl. Math., Volume 302 (2016), pp. 312-326 | MR | DOI | Zbl

[72] Guanyu Zhou; Norikazu Saito Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis, Numer. Math., Volume 135 (2017) no. 1, pp. 265-311 | MR | DOI | Zbl

Cited by Sources: