In this paper we design, analyze and simulate a finite volume scheme for a cross-diffusion system which models chemotaxis with local sensing. This system has the same Lyapunov function (or entropy) as the celebrated minimal Keller–Segel system, but unlike the latter, its solutions are known to exist globally in 2D. The long-time behavior of solutions is only partially understood which motivates numerical exploration with a reliable numerical method. We propose a linearly implicit, two-point flux finite volume approximation of the system. We show that the scheme preserves, at the discrete level, the main features of the continuous system, namely mass conservation, non-negativity of solution, entropy dissipation, and duality estimates. These properties allow us to prove the well-posedness, unconditional stability and convergence of the scheme. We also show rigorously that the scheme possesses an asymptotic preserving (AP) property in the quasi-stationary limit. We complement our analysis with thorough numerical experiments investigating convergence and AP properties of the scheme as well as its reliability with respect to stability properties of steady solutions.
Keywords: finite volume scheme, entropy preserving, asymptotic preserving, Keller–Segel, local sensing, chemotaxis
Maxime Herda 1; Ariane Trescases 2; Antoine Zurek 3
@article{SMAI-JCM_2025__11__637_0,
author = {Maxime Herda and Ariane Trescases and Antoine Zurek},
title = {A finite volume scheme for the local sensing chemotaxis model},
journal = {The SMAI Journal of computational mathematics},
pages = {637--676},
year = {2025},
publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
volume = {11},
doi = {10.5802/smai-jcm.137},
language = {en},
url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.137/}
}
TY - JOUR AU - Maxime Herda AU - Ariane Trescases AU - Antoine Zurek TI - A finite volume scheme for the local sensing chemotaxis model JO - The SMAI Journal of computational mathematics PY - 2025 SP - 637 EP - 676 VL - 11 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.137/ DO - 10.5802/smai-jcm.137 LA - en ID - SMAI-JCM_2025__11__637_0 ER -
%0 Journal Article %A Maxime Herda %A Ariane Trescases %A Antoine Zurek %T A finite volume scheme for the local sensing chemotaxis model %J The SMAI Journal of computational mathematics %D 2025 %P 637-676 %V 11 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.137/ %R 10.5802/smai-jcm.137 %G en %F SMAI-JCM_2025__11__637_0
Maxime Herda; Ariane Trescases; Antoine Zurek. A finite volume scheme for the local sensing chemotaxis model. The SMAI Journal of computational mathematics, Volume 11 (2025), pp. 637-676. doi: 10.5802/smai-jcm.137
[1] Boundary concentration phenomena for the higher-dimensional Keller-Segel system, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 6, 132, 31 pages | MR | DOI | Zbl
[2] A time semi-exponentially fitted scheme for chemotaxis-growth models, Calcolo, Volume 54 (2017) no. 2, pp. 609-641 | MR | DOI | Zbl
[3] Finite volume methods for degenerate chemotaxis model, J. Comput. Appl. Math., Volume 235 (2011) no. 14, pp. 4015-4031 | Zbl | MR | DOI
[4] Keller-Segel chemotaxis models: a review, Acta Appl. Math., Volume 171 (2021), 6, 82 pages | MR | DOI | Zbl
[5] On discrete functional inequalities for some finite volume schemes, IMA J. Numer. Anal., Volume 35 (2015) no. 3, pp. 1125-1149 | MR | DOI | Zbl
[6] A finite volume scheme for a Keller-Segel model with additional cross-diffusion, IMA J. Numer. Anal., Volume 34 (2014) no. 1, pp. 96-122 | MR | DOI | Zbl
[7] Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., Volume 8 (1998) no. 2, pp. 715-743 | MR | Zbl
[8] Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., Volume 46 (2008) no. 2, pp. 691-721 | MR | DOI | Zbl
[9] Singular radial solutions for the Keller-Segel equation in high dimension, J. Math. Pures Appl. (9), Volume 134 (2020), pp. 204-254 | MR | DOI | Zbl
[10] Multiple positive solutions of the stationary Keller-Segel system, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 3, 74, 35 pages | MR | DOI | Zbl
[11] Unbounded mass radial solutions for the Keller-Segel equation in the disk, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 5, 198, 30 pages | MR | DOI | Zbl
[12] Computer-assisted proofs for the many steady states of a chemotaxis model with local sensing, Phys. D: Nonlinear Phenom., Volume 466 (2024), 134221, 18 pages | DOI | Zbl
[13] Precise computations of chemotactic collapse using moving mesh methods, J. Comput. Phys., Volume 202 (2005) no. 2, pp. 463-487 | MR | DOI | Zbl
[14] A mixed finite element method for nonlinear diffusion equations, Kinet. Relat. Models, Volume 3 (2010) no. 1, pp. 59-83 | MR | DOI | Zbl
[15] Delayed blow-up for chemotaxis models with local sensing, J. Lond. Math. Soc. (2), Volume 103 (2021) no. 4, pp. 1596-1617 | MR | DOI | Zbl
[16] Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions, IMA J. Numer. Anal., Volume 31 (2011) no. 1, pp. 61-85 semanticscholar.org/paper/d38fdd903d6c0e318755222ef01badd45197f92/... | MR | DOI | Zbl
[17] High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems, Adv. Comput. Math., Volume 44 (2018) no. 1, pp. 327-350 | Zbl | DOI
[18] A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., Volume 111 (2008) no. 2, pp. 169-205 | MR | DOI | Zbl
[19] Chemotactic cell aggregation viewed as instability and phase separation, Nonlinear Anal., Real World Appl., Volume 80 (2024), 104147, 15 pages | MR | DOI | Zbl
[20] A logarithmic chemotaxis model featuring global existence and aggregation, Nonlinear Anal., Real World Appl., Volume 50 (2019), pp. 562-582 | Zbl | DOI | MR
[21] Weak solutions to triangular cross diffusion systems modeling chemotaxis with local sensing, Nonlinear Anal., Theory Methods Appl., Volume 226 (2023), 113153, 26 pages | MR | DOI | Zbl
[22] Improved estimate for gradient schemes and super-convergence of the TPFA finite volume scheme, IMA J. Numer. Anal., Volume 38 (2018) no. 3, pp. 1254-1293 | MR | DOI | Zbl
[23] Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model, J. Sci. Comput., Volume 53 (2012) no. 3, pp. 689-713 | MR | DOI | Zbl
[24] Fully discrete analysis of a discontinuous finite element method for the keller-segel chemotaxis model, J. Sci. Comput., Volume 40 (2009) no. 1-3, pp. 211-256 | MR | DOI | Zbl
[25] New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model, SIAM J. Numer. Anal., Volume 47 (2009) no. 1, pp. 386-408 | MR | DOI | Zbl
[26] Efficient numerical algorithms based on difference potentials for chemotaxis systems in 3D, J. Sci. Comput., Volume 80 (2019) no. 1, pp. 26-59 | MR | DOI | Zbl
[27] Finite volume methods, Solution of equations in (Part 3). Techniques of scientific computing (Part 3), Elsevier/North Holland, 2000, pp. 713-1020 | DOI | Zbl
[28] A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math., Volume 104 (2006) no. 4, pp. 457-488 | MR | DOI | Zbl
[29] Modern methods in the calculus of variations. spaces, Springer Monographs in Mathematics, Springer, 2007 | MR | Zbl
[30] Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities, Acta Appl. Math., Volume 176 (2021), 3, 36 pages | MR | DOI | Zbl
[31] Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions, Nonlinear Anal., Theory Methods Appl., Volume 222 (2022), 112987, 7 pages | MR | DOI | Zbl
[32] Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equations, Volume 269 (2020) no. 6, pp. 5338-5378 | DOI | MR | Zbl
[33] Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 3, 92, 37 pages | MR | DOI | Zbl
[34] Elliptic problems in nonsmooth domains, Classics in Applied Mathematics, 69, Society for Industrial and Applied Mathematics, 2011 | DOI | MR | Zbl
[35] Boundedness and continuity of solutions to linear elliptic boundary value problems in two dimensions, Math. Ann., Volume 298 (1994) no. 4, pp. 719-727 https://eudml.org/doc/165193 | MR | DOI | Zbl
[36] Energy dissipative local discontinuous Galerkin methods for Keller-Segel chemotaxis model, J. Sci. Comput., Volume 78 (2019) no. 3, pp. 1387-1404 | MR | DOI | Zbl
[37] Convergence of a meshless numerical method for a chemotaxis system with density-suppressed motility, Comput. Math. Appl., Volume 148 (2023), pp. 293-301 | MR | DOI | Zbl
[38] Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility, J. Differ. Equations, Volume 299 (2021), pp. 513-541 | MR | DOI | Zbl
[39] Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption, Commun. Partial Differ. Equations, Volume 47 (2022) no. 5, pp. 1024-1069 | MR | DOI | Zbl
[40] Critical mass on the Keller-Segel system with signal-dependent motility, Proc. Am. Math. Soc., Volume 148 (2020) no. 11, pp. 4855-4873 | MR | DOI | Zbl
[41] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970) no. 3, pp. 399-415 | Zbl | DOI | MR
[42] Model for chemotaxis, J. Theor. Biol., Volume 30 (1971), pp. 225-234 | Zbl | DOI
[43] Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces, J. Evol. Equ., Volume 20 (2020) no. 2, pp. 421-457 | Zbl | DOI | MR
[44] Singular limit problem for the two-dimensional Keller-Segel system in scaling critical space, J. Differ. Equations, Volume 269 (2020) no. 10, pp. 8959-8997 | Zbl | DOI | MR
[45] Maximal regularity and a singular limit problem for the Patlak–Keller–Segel system in the scaling critical space involving , SN Partial Differ. Equ. Appl., Volume 3 (2022) no. 1, 3, 56 pages | Zbl | DOI | MR
[46] Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space, Adv. Differ. Equ., Volume 18 (2013) no. 11-12, pp. 1189-1208 | Zbl | MR
[47] The stability analysis of a 2D Keller-Segel-Navier-Stokes system in fast signal diffusion, Eur. J. Appl. Math., Volume 34 (2023) no. 1, pp. 160-209 | Zbl | DOI | MR
[48] Local discontinuous Galerkin method for the Keller-Segel chemotaxis model, J. Sci. Comput., Volume 73 (2017) no. 2-3, pp. 943-967 | MR | DOI | Zbl
[49] On the justification of the quasistationary approximation of several parabolic moving boundary problems—Part I, Nonlinear Anal., Real World Appl., Volume 17 (2014), pp. 1-22 | Zbl | DOI | MR
[50] Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations, Math. Comput., Volume 87 (2018) no. 311, pp. 1165-1189 | Zbl | DOI | MR
[51] Numerical simulation of chemotactic bacteria aggregation via mixed finite elements., M2AN, Math. Model. Numer. Anal., Volume 37 (2003) no. 4, pp. 617-630 https://eudml.org/doc/194181 | MR | Numdam | DOI | Zbl
[52] The fast signal diffusion limit in a Keller-Segel system, J. Math. Anal. Appl., Volume 472 (2019) no. 2, pp. 1313-1330 | Zbl | DOI | MR
[53] Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical Besov-Morrey spaces, J. Math. Anal. Appl., Volume 529 (2024) no. 2, 127207, 51 pages | Zbl | DOI | MR
[54] Maximal regularity of the heat evolution equation on spatial local spaces and application to a singular limit problem of the Keller-Segel system, Math. Ann., Volume 387 (2023) no. 1-2, pp. 389-431 | Zbl | DOI | MR
[55] Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., Volume 57 (1997) no. 4, pp. 1044-1081 | MR | Zbl | DOI
[56] Large mass boundary condensation patterns in the stationary Keller-Segel system, J. Differ. Equations, Volume 261 (2016) no. 6, pp. 3414-3462 | MR | DOI | Zbl
[57] Collapsing steady states of the Keller-Segel system, Nonlinearity, Volume 19 (2006) no. 3, pp. 661-684 | MR | DOI | Zbl
[58] Steady states with unbounded mass of the Keller-Segel system, Proc. R. Soc. Edinb., Sect. A, Math., Volume 145 (2015) no. 1, pp. 203-222 | MR | DOI | Zbl
[59] Stability property of the two-dimensional Keller-Segel model, Asymptotic Anal., Volume 61 (2009) no. 1, pp. 35-59 | MR | DOI | Zbl
[60] Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal., Volume 27 (2007) no. 2, pp. 332-365 | DOI | Zbl | MR
[61] Conservative numerical schemes for the Keller-Segel system and numerical results, RIMS Kôkyûroku Bessatsu, Volume B15 (2009), pp. 125-146 | MR | Zbl
[62] Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis, Commun. Pure Appl. Anal., Volume 11 (2012) no. 1, pp. 339-364 | Zbl | MR | DOI
[63] Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., Volume 171 (2005) no. 1, pp. 72-90 | MR | DOI | Zbl
[64] Stationary solutions of chemotaxis systems, Trans. Am. Math. Soc., Volume 292 (1985), pp. 531-556 | DOI | MR | Zbl
[65] Some structures of the solution set for a stationary system of chemotaxis, Adv. Math. Sci. Appl., Volume 10 (2000) no. 1, pp. 191-224 | MR | Zbl
[66] A positivity-preserving finite element method for chemotaxis problems in 3D, J. Comput. Appl. Math., Volume 239 (2013), pp. 290-303 | DOI | Zbl
[67] Steady state solutions of a reaction-diffusion system modeling chemotaxis, Math. Nachr., Volume 233-234 (2002), pp. 221-236 | MR | DOI | Zbl
[68] The fast signal diffusion limit in Keller-Segel(-fluid) systems, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 6, 196, 40 pages | Zbl | DOI | MR
[69] Steady states and pattern formation of the density-suppressed motility model, IMA J. Appl. Math., Volume 86 (2021) no. 3, pp. 577-603 | MR | DOI | Zbl
[70] Characteristic splitting mixed finite element analysis of Keller-Segel chemotaxis models, Appl. Math. Comput., Volume 278 (2016), pp. 33-44 | MR | DOI | Zbl
[71] Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model, J. Comput. Appl. Math., Volume 302 (2016), pp. 312-326 | MR | DOI | Zbl
[72] Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis, Numer. Math., Volume 135 (2017) no. 1, pp. 265-311 | MR | DOI | Zbl
Cited by Sources: