Splines for Meshes with Irregularities
The SMAI Journal of computational mathematics, Volume S5 (2019), pp. 161-183.

Splines form an elegant bridge between the continuous real world and the discrete computational world. Their tensor-product form lifts many univariate properties effortlessly to the surfaces, volumes and beyond. Irregularities, where the tensor-structure breaks down, therefore deserve attention – and provide a rich source of mathematical challenges and insights.

This paper reviews and categorizes techniques for splines on meshes with irregularities. Of particular interest are quad-dominant meshes that can have n4 valent interior points and T-junctions where quad-strips end. “Generalized” splines can use quad-dominant meshes as control nets both for modeling geometry and to support engineering analysis without additional meshing.

Published online:
DOI: 10.5802/smai-jcm.57
Classification: 65N35, 15A15
Keywords: splines, irregular, classification

Jörg Peters 1

1 Dept CISE, University of Florida, Gainesville FL 32611-6120, USA
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2019__S5__161_0,
     author = {J\"org Peters},
     title = {Splines for {Meshes} with {Irregularities}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {161--183},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {S5},
     year = {2019},
     doi = {10.5802/smai-jcm.57},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.57/}
}
TY  - JOUR
AU  - Jörg Peters
TI  - Splines for Meshes with Irregularities
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 161
EP  - 183
VL  - S5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.57/
DO  - 10.5802/smai-jcm.57
LA  - en
ID  - SMAI-JCM_2019__S5__161_0
ER  - 
%0 Journal Article
%A Jörg Peters
%T Splines for Meshes with Irregularities
%J The SMAI Journal of computational mathematics
%D 2019
%P 161-183
%V S5
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.57/
%R 10.5802/smai-jcm.57
%G en
%F SMAI-JCM_2019__S5__161_0
Jörg Peters. Splines for Meshes with Irregularities. The SMAI Journal of computational mathematics, Volume S5 (2019), pp. 161-183. doi : 10.5802/smai-jcm.57. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.57/

[1] Z. Andjelic What is the definition of a class A surface? (https://grabcad.com/questions/what-is-definition-of-class-a-surface, accessed May 2015)

[2] F. T. K. Au; Y. K. Cheung Spline Finite Elements for beam and plate, Computers & Structures, Volume 37 (1990), pp. 717-729

[3] F. T. K. Au; Y. K. Cheung Isoparametric Spline Finite Strip for Plane Structures, Computers & Structures, Volume 48 (1993), pp. 22-32 | Zbl

[4] P. J. Barendrecht IsoGeometric Analysis for Subdivision Surfaces, Technical University of Eindhoven (2013) (Masters thesis)

[5] P. J. Barendrecht; M. Bartoň; J. Kosinka Efficient quadrature rules for subdivision surfaces in isogeometric analysis, Comput. Methods Appl. Mech. Eng., Volume 340 (2018), pp. 1-23 | DOI | MR

[6] K.-P. Beier; Y. Chen Highlight-line algorithm for realtime surface-quality assessment, Comput.-Aided Des., Volume 26 (1994) no. 4, pp. 268-277 | DOI | Zbl

[7] T. Belytschko; H. Stolarski; W. K. Liu; N. Carpenter; J. SJ Ong Stress projection for membrane and shear locking in shell finite elements, Comput. Methods Appl. Mech. Eng., Volume 51 (1985) no. 1, pp. 221-258 | DOI | MR

[8] D. Bommes; B. Lévy; N. Pietroni; E. Puppo; C. Silva; M. Tarini; D. Zorin, Eurographics STARS (2012)

[9] V. Braibant; C. Fleury Shape Optimal Design using B-splines, Comput. Methods Appl. Mech. Eng., Volume 44 (1984), pp. 247-267 | DOI | Zbl

[10] E. Catmull; J. Clark Recursively generated B-spline surfaces on arbitrary topological meshes, Comput.-Aided Des., Volume 10 (1978), pp. 350-355 | DOI

[11] P. Charrot; J. A. Gregory A pentagonal surface patch for computer aided geometric design, Comput. Aided Geom. Des., Volume 1 (1984) no. 1 | DOI | Zbl

[12] F. Cirak; M. Ortiz; P. Schröder Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, Int. J. Numer. Meth. Engng., Volume 47 (2000), pp. 2039-2072 | DOI | Zbl

[13] CNN Inside VW’s high-tech transparent factory, 2014 (https://edition.cnn.com/2014/10/28/tech/gallery/industrial-art-inside-volkswagens-transparent-factory/index.html)

[14] C. de Boor, Geometric Modeling: Algorithms and New Trends (1987), pp. 131-148

[15] T. DeRose; M. Kass; T. Truong, Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH-98) (1998), pp. 85-94

[16] T. Dokken; T. Lyche; K. F. Pettersen Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Des., Volume 30 (2013) no. 3, pp. 331-356 | DOI | MR | Zbl

[17] D. Doo; M. Sabin Behaviour of recursive division surfaces near extraordinary points, Comput.-Aided Des., Volume 10 (1978), pp. 356-360 | DOI

[18] G. Farin Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Academic Press Inc., 1988 | Zbl

[19] Foundation Blender Elephants Dream, http://orange.blender.org, 2006

[20] C. Giannelli; B. Jüttler; H. Speleers THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Des., Volume 29 (2012) no. 7, pp. 485-498 | DOI | MR | Zbl

[21] C. Gotsma Rolling up our SLEFEs: Reflections on Putting an Academic Rendering Algorithm to Work, 2019 (SIAM/GD 19)

[22] J. A. Gregory, Computer Aided Geometric Design (1974), pp. 71-88 | DOI

[23] J. A. Gregory; J. M. Hahn Geometric continuity and convex combination patches, Comput. Aided Geom. Des., Volume 4 (1987) no. 1-2, pp. 79-89 | DOI | MR | Zbl

[24] J. A. Gregory; J. M. Hahn A C 2 polygonal surface patch, Comput. Aided Geom. Des., Volume 6 (1989) no. 1, pp. 69-75 | DOI | MR | Zbl

[25] J. A. Gregory; J. Zhou Filling polygonal holes with bicubic patches, Comput. Aided Geom. Des., Volume 11 (1994) no. 4, pp. 391-410 | DOI | MR | Zbl

[26] D. Groisser; J. Peters Matched G k -constructions always yield C k -continuous isogeometric elements, Comput. Aided Geom. Des., Volume 34 (2015), pp. 67-72 | DOI | MR | Zbl

[27] G. J. Hettinga; P. J. Barendrecht; J. Kosinka, EG 2018 - Short Papers (2018) | DOI

[28] G. J. Hettinga; J. Kosinka, EG 2017 - Short Papers (2017) | DOI

[29] G. J. Hettinga; J. Kosinka Multisided generalisations of Gregory patches, Comput. Aided Geom. Des., Volume 62 (2018), pp. 166-180 | DOI | MR | Zbl

[30] T. J. R. Hughes; J. A. Cottrell; Y. Bazilevs Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Comput. Methods Appl. Mech. Eng., Volume 194 (2005), pp. 4135-4195 | DOI | MR | Zbl

[31] W. Jakob; M. Tarini; D. Panozzo; O. Sorkine-Hornung Instant field-aligned meshes, ACM Trans. Graph., Volume 34 (2015) no. 6, 189 pages | DOI

[32] N. Jaxon; X. Qian Isogeometric analysis on triangulations, Comput.-Aided Des., Volume 46 (2014), pp. 45-57 | DOI | MR

[33] H. Kang; J. Xu; F. Chen; J. Deng A new basis for PHT-splines, Graph. Models, Volume 82 (2015), pp. 149-159 | DOI

[34] K. Karčiauskas; A. Myles; J. Peters, Proceedings of Symposium of Graphics Processing (SGP), June 26-28 2006, Cagliari, Italy (2006), pp. 173-180

[35] K. Karčiauskas; T. Nguyen; J. Peters, GDSPM 2015 in Salt Lake City, Utah October 12-14 (2015)

[36] K. Karčiauskas; T. Nguyen; J. Peters Generalizing bicubic splines for modelling and IGA with irregular layout, Comput.-Aided Des., Volume 70 (2016), pp. 23-35 | DOI

[37] K. Karčiauskas; D. Panozzo; J. Peters T-junctions in spline surfaces, ACM Trans. Graph., Volume 36 (2017) no. 5, pp. 170:1-9 | DOI

[38] K. Karčiauskas; J. Peters Quad-net obstacle course (http://www.cise.ufl.edu/research/SurfLab/shape_gallery.shtml, accessed 2017-09-05)

[39] K. Karčiauskas; J. Peters Bicubic polar subdivision, ACM Trans. Graph., Volume 26 (2007) no. 4, 14 pages | DOI | Zbl

[40] K. Karčiauskas; J. Peters Concentric Tesselation Maps and Curvature Continuous Guided Surfaces, Comput. Aided Geom. Des., Volume 24 (2007) no. 2, pp. 99-111 | DOI | Zbl

[41] K. Karčiauskas; J. Peters Surfaces with Polar Structure, Computing, Volume 79 (2007), pp. 309-315 | DOI | MR | Zbl

[42] K. Karčiauskas; J. Peters, IMA Mathematics of Surfaces XIII Conference (2009), pp. 222-234 | DOI | Zbl

[43] K. Karčiauskas; J. Peters Lens-shaped surfaces and C 2 subdivision, Computing, Volume 86 (2009) no. 2, pp. 171-183 | DOI | MR | Zbl

[44] K. Karčiauskas; J. Peters Biquintic G 2 surfaces via functionals, Comput. Aided Geom. Des. (2015), pp. 17-29 | DOI | Zbl

[45] K. Karčiauskas; J. Peters Can bi-cubic surfaces be class A?, Comput. Graph. Forum, Volume 34 (2015) no. 5, pp. 229-238 | DOI

[46] K. Karčiauskas; J. Peters Improved shape for multi-surface blends, Graph. Models, Volume 8 (2015), pp. 87-98 | DOI

[47] K. Karčiauskas; J. Peters Smooth multi-sided blending of biquadratic splines, Computers & Graphics, Volume 46 (2015), pp. 172-185 | DOI

[48] K. Karčiauskas; J. Peters Curvature continuous bi-4 constructions for scaffold- and sphere-like surfaces, Comput.-Aided Des., Volume 78 (2016), pp. 48-59 | DOI

[49] K. Karčiauskas; J. Peters Minimal bi-6 G 2 completion of bicubic spline surfaces, Comput. Aided Geom. Des., Volume 41 (2016), pp. 10-22 | DOI | MR | Zbl

[50] K. Karčiauskas; J. Peters Improved shape for refinable surfaces with singularly parameterized irregularities, Comput.-Aided Des., Volume 90 (2017), pp. 191-198 | DOI

[51] K. Karčiauskas; J. Peters Refinable G 1 functions on G 1 free-form surfaces, Comput. Aided Geom. Des., Volume 54 (2017), pp. 61-73 | DOI | MR | Zbl

[52] K. Karčiauskas; J. Peters Fair free-form surfaces that are almost everywhere parametrically C 2 , J. Comput. Appl. Math. (2018), pp. 1-10 | DOI | Zbl

[53] K. Karčiauskas; J. Peters Rapidly contracting subdivision yields finite, effectively C 2 surfaces, Computers & Graphics (2018), pp. 1-10 | DOI

[54] K. Karčiauskas; J. Peters Refinable bi-quartics for design and analysis, Comput.-Aided Des. (2018), pp. 1-10 | DOI

[55] K. Karčiauskas; J. Peters High quality refinable G-splines for locally quad-dominant meshes with T-gons, Comput. Graph. Forum, Volume 38 (2019) no. 5, pp. 151-161 | DOI

[56] K. Karčiauskas; J. Peters Localized G-splines for quad & T-gon meshes, Comput. Aided Geom. Des., Volume 71 (2019), pp. 244-254 | DOI | MR | Zbl

[57] K. Karčiauskas; J. Peters Refinable smooth surfaces for locally quad-dominant meshes with T-gons, Computers & Graphics, Volume 82 (2019), pp. 193-202 | DOI

[58] K. Karciauskas; J. Peters; U. Reif Shape Characterization of Subdivision Surfaces – Case Studies, Comput. Aided Geom. Des., Volume 21 (2004) no. 6, pp. 601-614 | DOI | MR | Zbl

[59] P. Kiciak Spline surfaces of arbitrary topology with continuous curvature and optimized shape, Comput.-Aided Des., Volume 45 (2013) no. 2, pp. 154-167 | DOI | MR

[60] R. Kraft Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendungen, University of Stuttgart (1998) (Ph. D. Thesis) | MR | Zbl

[61] K. Li; X. Qian Isogeometric analysis and shape optimization via boundary integral, Comput.-Aided Des., Volume 43 (2011) no. 11, pp. 1427-1437 | DOI

[62] C. Loop, SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing (2004), pp. 169-178 | DOI

[63] C. Loop; S. Schaefer Approximating Catmull–Clark subdivision surfaces with bicubic patches, ACM Trans. Graph., Volume 27 (2008) no. 1, p. 8:1-8:11 | DOI

[64] C. T. Loop; T. D. DeRose A Multisided Generalization of Bézier Surfaces, ACM Trans. Graph., Volume 8 (1989) no. 3, pp. 204-234 | DOI | Zbl

[65] C. T. Loop; S. Schaefer G 2 Tensor Product Splines over Extraordinary Vertices, Comput. Graph. Forum, Volume 27 (2008) no. 5, pp. 1373-1382 | DOI

[66] C. T. Loop; S. Schaefer; T. Ni; I. Castaño Approximating subdivision surfaces with Gregory patches for hardware tessellation, ACM Trans. Graph., Volume 28 (2009) no. 5

[67] D. Lutterkort; J. Peters Optimized Refinable Enclosures of Multivariate Polynomial Pieces, Comput. Aided Geom. Des., Volume 18 (2002) no. 9, pp. 851-863 | DOI | MR | Zbl

[68] B. Marussig; T. J. R. Hughes A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects, Arch. Comput. Methods Eng., Volume 25 (2018) no. 4, pp. 1059-1127 | DOI | MR

[69] A. Myles; K. Karčiauskas; J. Peters, PG ’07: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications (2007), pp. 313-320 | DOI

[70] A. Myles; K. Karčiauskas; J. Peters Pairs of bi-cubic surface constructions supporting polar connectivity, Comput. Aided Geom. Des., Volume 25 (2008) no. 8, pp. 621-630 | DOI | MR | Zbl

[71] A. Myles; J. Peters Bi-3 C 2 Polar Subdivision, ACM Trans. Graph., Volume 28 (2009) no. 3 | DOI

[72] A. Myles; J. Peters C 2 Splines Covering Polar Configurations, Comput.-Aided Des., Volume 43 (2011) no. 11, pp. 1322-1329 | DOI

[73] T. Nguyen; K. Karčiauskas; J. Peters A comparative study of several classical, discrete differential and isogeometric methods for solving Poisson’s equation on the disk, Axioms, Volume 3 (2014) no. 2, pp. 280-299 | DOI | Zbl

[74] T. Nguyen; K. Karčiauskas; J. Peters C 1 finite elements on non-tensor-product 2d and 3d manifolds, Appl. Math. Comput., Volume 272 (2016) no. 1, pp. 148-158 | DOI | MR | Zbl

[75] T. Nguyen; J. Peters Refinable C 1 spline elements for irregular quad layout, Comput. Aided Geom. Des., Volume 43 (2016), pp. 123-130 | DOI | MR | Zbl

[76] S. J. Owen, Proceedings of the 7th International Meshing Roundtable, IMR 1998, Dearborn, Michigan, USA, October 26-28, 1998 (1998), pp. 239-267

[77] J. Peters, Proceedings of Graphics Interface ’91 (1991), pp. 1-7 | DOI

[78] J. Peters Smooth interpolation of a mesh of curves, Computing, Volume 7 (1991), pp. 221-247 | MR | Zbl

[79] J. Peters Smooth free-form surfaces over irregular meshes generalizing quadratic splines, Comput. Aided Geom. Des., Volume 10 (1993), pp. 347-361 | DOI | MR | Zbl

[80] J. Peters PN Quads (2000), pp. 1-2 (Technical report)

[81] J. Peters, Handbook of Computer Aided Geometric Design (2002), pp. 193-229 | DOI

[82] J. Peters, Mathematical Foundations of Isogeometric Analysis, Volume 33 (2019), pp. 33-35

[83] J. Peters; K. Karčiauskas, Mathematical Methods for Curves and Surfaces. 7th International Conference on Mathematical Methods for Curves and Surfaces (Toensberg, 2008) (Lecture Notes in Computer Science), Volume 5862 (2010), pp. 299-315 | MR | Zbl

[84] J. Peters; U. Reif Subdivision Surfaces, Geometry and Computing, 3, Springer, 2008, i+204 pages | MR | Zbl

[85] J. Peters; X. Wu, Curve and surface design: Saint Malo 2002 (Modern Methods in Mathematics) (2003) | Zbl

[86] J. Peters; X. Wu SLEVEs for planar spline curves, Comput. Aided Geom. Des., Volume 21 (2004) no. 6, pp. 615-635 | DOI | MR | Zbl

[87] Pia R. Pfluger; Marian Neamtu On degenerate surface patches, Numer. Algorithms, Volume 5 (1993) no. 11, pp. 569-575 | DOI | MR | Zbl

[88] H. Prautzsch Freeform splines, Comput. Aided Geom. Des., Volume 14 (1997) no. 3, pp. 201-206 | DOI | MR | Zbl

[89] N. Ray; W. C. Li; B. Lévy; A. Sheffer; P. Alliez Periodic Global Parameterization, ACM Trans. Graph., Volume 25 (2006) no. 4, pp. 1460-1485 | DOI

[90] U. Reif TURBS—topologically unrestricted rational B-splines, Constr. Approx., Volume 14 (1998) no. 1, pp. 57-77 | DOI | MR | Zbl

[91] M. Sabin, Mathematics of Surfaces, Volume VI (1996), pp. 517-534 | Zbl

[92] P. Salvi; T. Várady Multi-sided Bézier surfaces over concave polygonal domains, Computers & Graphics, Volume 74 (2018), pp. 56-65 | DOI

[93] G. Sangalli; T. Takacs; R. Vazquez Unstructured spline spaces for isogeometric analysis based on spline manifolds, Comput. Aided Geom. Des., Volume 47 (2016), pp. 61-82 | DOI | MR | Zbl

[94] U. Schramm; W. D. Pilkey The coupling of geometric descriptions and finite elements usin+++g NURBS - A study in shape optimization, Finite Elem. Anal. Des., Volume 340 (1993), pp. 11-34 | DOI | Zbl

[95] L. L. Schumaker; M.-J. Lai Spline Functions on Triangulations, Cambridge University Press, 2007, pp. 1-677 | Zbl

[96] T. W. Sederberg; J. Zheng; A. Bakenov; A. Nasri, Proceedings of ACM SIGGRAPH 2003 (2003), pp. 477-484 | DOI

[97] K.-L. Shi; J.-H. Yong; L. Tang; J.-G. Sun; J.-C. Paul Polar NURBS Surface with Curvature Continuity, Comput. Graph. Forum, Volume 32 (2013) no. 7, pp. 363-370 | DOI

[98] Y. K. Shyy; C. Fleury; K. Izadpanah Shape Optimal Design using higher-order elements, Comput. Methods Appl. Mech. Eng., Volume 71 (1988), pp. 99-116 | DOI | Zbl

[99] J. Smith; S. Schaefer Selective Degree Elevation for Multi-Sided Bézier Patches, Comput. Graph. Forum, Volume 34 (2015) no. 2, pp. 609-615 | DOI

[100] T. Várady; A. P. Rockwood; P. Salvi Transfinite surface interpolation over irregular n-sided domains, Comput.-Aided Des., Volume 43 (2011) no. 11, pp. 1330-1340 | DOI

[101] T. Várady; P. Salvi; G. Karikó A Multi-sided Bézier Patch with a Simple Control Structure, Comput. Graph. Forum, Volume 35 (2016) no. 2, pp. 307-317 | DOI

[102] A. Vaxman; M. Campen; O. Diamanti; D. Panozzo; D. Bommes; K. Hildebrandt; M. Ben-Chen, SIGGRAPH ’17: ACM SIGGRAPH 2017 Courses (2016) | DOI

[103] A. Vlachos; J. Peters; C. Boyd; Jason L. Mitchell, Symposium on Interactive 3D Graphics (Bi-Annual Conference Series) (2001), pp. 159-166

[104] X. Wang; X. Qian An optimization approach for constructing trivariate B-spline solids, Comput.-Aided Des., Volume 46 (2014), pp. 179-191 | DOI | MR

[105] Wikipedia contributors Class_A_surfaces (http://en.wikipedia.org/wiki/Class_A_surfaces, accessed Jan 2017)

[106] Wikipedia contributors Freeform surface modelling — Wikipedia, The Free Encyclopedia, 2018 (https://en.wikipedia.org/w/index.php?title=Freeform_surface_modelling&oldid=871471382, accessed 2018-12-31)

[107] Y. Yamada Clay Modeling: Techniques for giving three-dimensional form to idea, Nissan Design Center, Kaneko Enterprises, 1997

[108] P. Yang; X. Qian A B-spline-based approach to heterogeneous objects design and analysis, Comput.-Aided Des., Volume 39 (2007) no. 2, pp. 95-111 | DOI

[109] X. Ye Curvature continuous interpolation of curve meshes, Comput. Aided Geom. Des., Volume 14 (1997) no. 2, pp. 169-190 | DOI | MR | Zbl

[110] Y. In Yeo; S. Bhandare; J. Peters, 8th International Conference on Mathematical Methods for Curves and Surfaces, Oslo June 2012 (Lecture Notes in Computer Science), Volume 8177 (2014), pp. 491-509 | MR

Cited by Sources: