Reducing sensors for transient heat transfer problems by means of variational data assimilation
The SMAI journal of computational mathematics, Volume 7 (2021) , pp. 1-25.

We propose a contribution that combines model reduction with data assimilation. A dedicated Parametrized Background Data-Weak (PBDW) approach has been introduced in the literature so as to combine numerical models with experimental measurements. We extend the approach to a time-dependent framework by means of a POD-greedy reduced basis construction. Since the construction of the basis is performed offline, the algorithm addresses the time dependence of the problem while the time stepping scheme remains unchanged. Moreover, we devise a new algorithm that exploits offline state estimates in order to diminish both the dimension of the online PBDW statement and the number of required sensors collecting data. The idea is to exploit in situ observations in order to update the best-knowledge model, thereby improving the approximation capacity of the background space.

Published online:
DOI: https://doi.org/10.5802/smai-jcm.68
Classification: 65K10
Keywords: PBDW, model reduction, data assimilation, sensor reduction, heat transfer
@article{SMAI-JCM_2021__7__1_0,
     author = {Amina Benaceur},
     title = {Reducing sensors for transient heat transfer problems by means of variational data assimilation},
     journal = {The SMAI journal of computational mathematics},
     pages = {1--25},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {7},
     year = {2021},
     doi = {10.5802/smai-jcm.68},
     zbl = {07342234},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.68/}
}
Amina Benaceur. Reducing sensors for transient heat transfer problems by means of variational data assimilation. The SMAI journal of computational mathematics, Volume 7 (2021) , pp. 1-25. doi : 10.5802/smai-jcm.68. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.68/

[1] J.-P. Argaud; B. Bouriquet; F. de Caso; H. Gong; Y. Maday; O. Mula Sensor placement in nuclear reactors based on the generalized empirical interpolation method, J. Comput. Phys., Volume 363 (2018), pp. 354-370 | Article | MR 3784431 | Zbl 1392.82075

[2] J.-P. Argaud; B. Bouriquet; H. Gong; Y. Maday; O. Mula Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics, Spectral and high order methods for partial differential equations—ICOSAHOM 2016 (Lect. Notes Comput. Sci. Eng.), Volume 119, Springer, 2017, pp. 133-145 | Article | MR 3779495 | Zbl 1383.82078

[3] A. Benaceur Model reduction for nonlinear problems in thermics and mechanics (2018) https://hal.archives-ouvertes.fr/tel-01958278 (Thesis)

[4] A. Benaceur; V. Ehrlacher; A. Ern; S. Meunier A Progressive Reduced Basis/Empirical Interpolation Method for Nonlinear Parabolic Problems, SIAM J. Sci. Comput., Volume 40 (2018) no. 5, p. A2930-A2955 | Article | MR 3853612 | Zbl 1397.65180

[5] P. Binev; A. Cohen; O. Mula; J. Nichols Greedy Algorithms for Optimal Measurements Selection in State Estimation Using Reduced Models, SIAM/ASA J. Uncertain. Quantif., Volume 6 (2018) no. 3, pp. 1101-1126 | Article | MR 3835246 | Zbl 1407.65256

[6] A. Cohen; W. Dahmen; R. DeVore; J. Fadili; O. Mula; J. Nichols Optimal reduced model algorithms for data-based state estimation (2019) (https://arxiv.org/abs/1903.07938)

[7] A. Cohen; M. A. Davenport; D. Leviatan On the stability and accuracy of least squares approximations, Found. Comput. Math., Volume 13 (2013) no. 5, pp. 819-834 | Article | MR 3105946 | Zbl 1276.93086

[8] A. Cohen; M. A. Davenport; D. Leviatan Correction to: On the stability and accuracy of least squares approximations [MR3105946], Found. Comput. Math., Volume 19 (2019) no. 1, p. 239 | Article | MR 3913878 | Zbl 1407.93436

[9] B. De Moor Structured total least squares and L 2 approximation problems, Linear Algebra Appl., Volume 188/189 (1993), pp. 163-205 | Article | MR 1223460 | Zbl 0781.65028

[10] A. Ern; J.-L. Guermond Theory and practice of finite elements, Applied Mathematical Sciences, 159, Springer, 2004, xiv+524 pages | Article | MR 2050138 | Zbl 1059.65103

[11] A. Ern; J.-L. Guermond Theory and practice of finite elements, Applied Mathematical Sciences, 159, Springer, 2004, xiv+524 pages | Article | MR 2050138 | Zbl 1059.65103

[12] R. Everson; L. Sirovich Karhunen–Loeve procedure for gappy data, JOSA A, Volume 12 (1995) no. 8, pp. 1657-1664 | Article

[13] G. Franceschini; S. Macchietto Model-based design of experiments for parameter precision: State of the art, Chemical Engineering Science, Volume 63 (2008) no. 19, pp. 4846-4872 http://www.sciencedirect.com/science/article/pii/s0009250907008871 (Model-Based Experimental Analysis) | Article

[14] F. Galarce; J.-F. Gerbeau; D. Lombardi; O. Mula State estimation with nonlinear reduced models. Application to the reconstruction of blood flows with Doppler ultrasound images (2019) (https://arxiv.org/abs/1904.13367)

[15] H. Gong; Y. Maday; O. Mula; T. Taddei PBDW method for state estimation: error analysis for noisy data and nonlinear formulation (2019) (https://arxiv.org/abs/1906.00810)

[16] B. Haasdonk Convergence rates of the POD-greedy method, ESAIM, Math. Model. Numer. Anal., Volume 47 (2013) no. 3, pp. 859-873 | Article | Numdam | MR 3056412 | Zbl 1277.65074

[17] B. Haasdonk; M. Ohlberger Reduced basis method for finite volume approximations of parametrized linear evolution equations, M2AN, Math. Model. Numer. Anal., Volume 42 (2008) no. 2, pp. 277-302 | Article | Numdam | MR 2405149 | Zbl 1388.76177

[18] B. Haasdonk; J. Salomon; B. Wohlmuth A Reduced Basis Method for the Simulation of American Options, Numerical Mathematics and Advanced Applications (2012) | Article | Zbl 1269.91086

[19] J. K. Hammond; R. Chakir; F. Bourquin; Y. Maday PBDW: A non-intrusive Reduced Basis Data Assimilation method and its application to an urban dispersion modeling framework, Appl. Math. Model., Volume 76 (2019), pp. 1-25 | Article | MR 3969232 | Zbl 07187269

[20] F. Hecht New developments in FreeFem++, Open source on http://www.freefem.org, Volume 20, 2012 no. 3-4, pp. 251-265 | MR 3043640 | Zbl 1266.68090

[21] J. S. Hesthaven; G. Rozza; B. Stamm Certified reduced basis methods for parametrized partial differential equations, SpringerBriefs in Mathematics, Springer; BCAM Basque Center for Applied Mathematics, Bilbao, 2016, xiii+131 pages | Article | MR 3408061 | Zbl 1329.65203

[22] R. E. Kalman A new approach to linear filtering and prediction problems, Trans. ASME Ser. D. J. Basic Engrg., Volume 82 (1960) no. 1, pp. 35-45 | Article | MR 3931993

[23] Mark Kärcher; Sébastien Boyaval; Martin A. Grepl; Karen Veroy Reduced basis approximation and a posteriori error bounds for 4D-Var data assimilation, Optim. Eng., Volume 19 (2018) no. 3, pp. 663-695 | Article | MR 3843445

[24] K. Kunisch; S. Volkwein Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., Volume 90 (2001) no. 1, pp. 117-148 | Article | MR 1868765 | Zbl 1005.65112

[25] Q. Li; Y. Wang; M. Vasilyeva Multiscale model reduction for fluid infiltration simulation through dual-continuum porous media with localized uncertainties, J. Comput. Appl. Math., Volume 336 (2018), pp. 127-146 http://www.sciencedirect.com/science/article/pii/s0377042718300086 | Article | MR 3759701 | Zbl 06838775

[26] A. C. Lorenc A global three-dimensional multivariate statistical interpolation scheme, Monthly Weather Review, Volume 109 (1981) no. 4, pp. 701-721 | Article

[27] Y. Maday; O. Mula A generalized empirical interpolation method: application of reduced basis techniques to data assimilation, Analysis and numerics of partial differential equations (Springer INdAM Series), Volume 4, Springer, 2013, pp. 221-235 | Article | MR 3051403 | Zbl 1267.62013

[28] Y. Maday; O. Mula; A. T. Patera; M. Yano The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation, Comput. Methods Appl. Mech. Eng., Volume 287 (2015), pp. 310-334 | Article | MR 3318671 | Zbl 1423.76346

[29] Y. Maday; O. Mula; G. Turinici Convergence analysis of the generalized empirical interpolation method, SIAM J. Numer. Anal., Volume 54 (2016) no. 3, pp. 1713-1731 | Article | MR 3508987 | Zbl 1347.41044

[30] Y. Maday; A. T. Patera; J. D. Penn; M. Yano A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics, Int. J. Numer. Meth. Engng., Volume 102 (2015) no. 5, pp. 933-965 | Article | MR 3341243 | Zbl 1352.65529

[31] Y. Maday; A. T. Patera; J. D. Penn; M. Yano PBDW state estimation: noisy observations; configuration-adaptive background spaces; physical interpretations, CANUM 2014—42e Congrès National d’Analyse Numérique (ESAIM Proc. Surveys), Volume 50, EDP Sci., Les Ulis, 2015, pp. 144-168 | Article | MR 3416043 | Zbl 1342.82116

[32] Y. Maday; T. Taddei Adaptive PBDW Approach to State Estimation: Noisy Observations; User-Defined Update Spaces, SIAM J. Sci. Comput., Volume 41 (2019) no. 4, p. B669-B693 | Article | MR 3976648 | Zbl 1426.76551

[33] V. Mons; L. Margheri; J.-C. Chassaing; P. Sagaut Data assimilation-based reconstruction of urban pollutant release characteristics, Journal of Wind Engineering and Industrial Aerodynamics, Volume 169 (2017), pp. 232-250 | Article

[34] A. Nassiopoulos; F. Bourquin Fast three-dimensional temperature reconstruction, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 49-52, pp. 3169-3178 | Article | MR 2740784 | Zbl 1225.80008

[35] A. Quarteroni; A. Manzoni; F. Negri Reduced basis methods for partial differential equations, La Matematica per il 3+2, Springer, 2016, xiii+131 pages | Article | Zbl 1337.65113

[36] T. Taddei; A. T. Patera A localization strategy for data assimilation; application to state estimation and parameter estimation, SIAM J. Sci. Comput., Volume 40 (2018) no. 2, p. B611-B636 | Article | MR 3790087 | Zbl 1426.65144

[37] T. Taddei; J. D. Penn; A. T. Patera Validation by Monte Carlo sampling of experimental observation functionals, Int. J. Numer. Meth. Engng., Volume 112 (2017) no. 13, pp. 2135-2150 | Article | MR 3741926

[38] T. Taddei; J. D. Penn; M. Yano; A. T. Patera Simulation-based classification; a model-order-reduction approach for structural health monitoring, Arch. Comput. Methods Eng., Volume 25 (2018) no. 1, pp. 23-45 | Article | MR 3736474 | Zbl 1390.74078

[39] J. Waeytens; P. Chatellier; F. Bourquin Inverse computational fluid dynamics: Influence of discretization and model errors on flows in water network including junctions, Journal of Fluids Engineering, Volume 137 (2015) no. 9, p. 091401 | Article

[40] C. K. Wikle; L. M. Berliner A Bayesian tutorial for data assimilation, Physica D, Volume 230 (2007) no. 1-2, pp. 1-16 | Article | MR 2345198 | Zbl 1113.62032

[41] K. Willcox Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition, Computers & Fluids, Volume 35 (2006) no. 2, pp. 208-226 | Article | Zbl 1160.76394