A combined first and second order model for a junction with ramp buffer
The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 349-374.

Second order macroscopic traffic flow models are able to reproduce the so-called capacity drop effect, i.e., the phenomenon that the outflow of a congested region is substantially lower than the maximum achievable flow. Within this work, we propose a first order model for a junction with ramp buffer that is solely modified at the intersection so that the capacity drop is captured. Theoretical investigations motivate the new choice of coupling conditions and illustrate the difference to purely first and second order models. The numerical example considering the optimal control of the onramp merging into a main road highlights that the combined model generates similar results as the second order model.

Published online:
DOI: 10.5802/smai-jcm.90
Classification: 65M08, 90C30
Keywords: traffic flow, numerical analysis, ramp metering control

Jennifer Weissen 1; Oliver Kolb 1; Simone Göttlich 1

1 University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2022__8__349_0,
     author = {Jennifer Weissen and Oliver Kolb and Simone G\"ottlich},
     title = {A combined first and second order model for a junction with ramp buffer},
     journal = {The SMAI Journal of computational mathematics},
     pages = {349--374},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.90},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.90/}
}
TY  - JOUR
AU  - Jennifer Weissen
AU  - Oliver Kolb
AU  - Simone Göttlich
TI  - A combined first and second order model for a junction with ramp buffer
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 349
EP  - 374
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.90/
DO  - 10.5802/smai-jcm.90
LA  - en
ID  - SMAI-JCM_2022__8__349_0
ER  - 
%0 Journal Article
%A Jennifer Weissen
%A Oliver Kolb
%A Simone Göttlich
%T A combined first and second order model for a junction with ramp buffer
%J The SMAI Journal of computational mathematics
%D 2022
%P 349-374
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.90/
%R 10.5802/smai-jcm.90
%G en
%F SMAI-JCM_2022__8__349_0
Jennifer Weissen; Oliver Kolb; Simone Göttlich. A combined first and second order model for a junction with ramp buffer. The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 349-374. doi : 10.5802/smai-jcm.90. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.90/

[1] Boris Andreianov; Carlotta Donadello; Ulrich Razafison; Massimiliano D. Rosini Riemann problems with non-local point constraints and capacity drop, Math. Biosci. Eng., Volume 12 (2015), pp. 259-278 | arXiv | DOI | MR | Zbl

[2] Boris Andreianov; Carlotta Donadello; Massimiliano D. Rosini A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., Volume 26 (2016), pp. 751-802 | DOI | MR | Zbl

[3] A. Aw; A. Klar; T. Materne; M. Rascle Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., Volume 63 (2002), pp. 259-278 | DOI | MR | Zbl

[4] A. Aw; M. Rascle Resurrection of “Second Order” Models of Traffic Flow, SIAM J. Appl. Math., Volume 60 (2000), pp. 916-938 | DOI | MR | Zbl

[5] James H. Banks Freeway bottlenecks: a basis for ramp metering?, Transportation Research Record, Volume 1320 (1991), pp. 83-90

[6] Alberto Bressan Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, 20, Oxford University Press, 2005

[7] Alberto Bressan; Sunčica Čanić; Mauro Garavello; Michael Herty; Benedetto Piccoli Flows on networks: recent results and perspectives, EMS Surv. Math. Sci., Volume 1 (2014), pp. 47-111 | DOI | MR | Zbl

[8] Michael J. Cassidy; Robert L. Bertini Some traffic features at freeway bottlenecks, Transportation Research Part B: Methodological, Volume 33 (1999), pp. 25-42 | DOI

[9] Koohong Chung; Jittichai Rudjanakanoknad; Michael J. Cassidy Relation between traffic density and capacity drop at three freeway bottlenecks, Transportation Research Part B: Methodological, Volume 41 (2007), pp. 82-95 | DOI

[10] Giuseppe M. Coclite; Mauro Garavello; Benedetto Piccoli Traffic flow on a road network, SIAM J. Math. Anal., Volume 36 (2005), pp. 1862-1886 | DOI | MR

[11] Carlos F. Daganzo The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B: Methodological, Volume 28 (1994), pp. 269-287 | DOI

[12] Carlos F. Daganzo Requiem for second-order fluid approximations of traffic flow, Transportation Research Part B: Methodological, Volume 29 (1995), pp. 277-286 | DOI

[13] Edda Dal Santo; Carlotta Donadello; Sabrina F. Pellegrino; Massimiliano D. Rosini Representation of capacity drop at a road merge via point constraints in a first order traffic model, ESAIM, Math. Model. Numer. Anal., Volume 53 (2019), pp. 1-34 | DOI | MR | Zbl

[14] Maria Laura Delle Monache; Jack Reilly; Samitha Samaranayake; Walid Krichene; Paola Goatin; Alexandre M. Bayen A PDE-ODE model for a junction with ramp buffer, SIAM J. Appl. Math., Volume 74 (2014), pp. 22-39 | DOI | MR

[15] Shimao Fan; Ye Sun; Benedetto Piccoli; Benjamin Seibold; Daniel B. Work A collapsed generalized Aw–Rascle–Zhang model and its model accuracy (2017) (http://arxiv.org/abs/1702.03624)

[16] Mauro Garavello; Benedetto Piccoli Traffic flow on a road network using the Aw–Rascle model, Commun. Partial Differ. Equations, Volume 31 (2006), pp. 243-275 | DOI | MR | Zbl

[17] Mauro Garavello; Benedetto Piccoli Traffic Flow On Networks, AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences, 2006

[18] Paola Goatin The Aw–Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, Volume 44 (2006), pp. 287-303 | DOI | MR | Zbl

[19] Paola Goatin; Simone Göttlich; Oliver Kolb Speed limit and ramp meter control for traffic flow networks, Engineering Optimization, Volume 48 (2016), pp. 1121-1144 | DOI | MR

[20] Paola Goatin; Simone Göttlich; Oliver Kolb Capacity drop and traffic control for a second order traffic model, Netw. Heterog. Media, Volume 12 (2017), pp. 663-681 | DOI | MR | Zbl

[21] James M. Greenberg Extensions and amplifications of a traffic model of Aw and Rascle, SIAM J. Appl. Math., Volume 62 (2002), pp. 729-745 | DOI | MR

[22] Fred L. Hall; Kwaku Agyemang-Duah Freeway capacity drop and the definition of capacity, Transportation Research Record, Volume 1320 (2000), pp. 91-98

[23] Bertrand Haut; Georges Bastin A second order model of road junctions in fluid models of traffic networks, Netw. Heterog. Media, Volume 2 (2007), pp. 227-253 | DOI | MR | Zbl

[24] Bertrand Haut; Georges Bastin; Yacine Chitour A macroscopic traffic model for road networks with a representation of the capacity drop phenomenon at the junctions, IFAC Proceedings Volumes, Volume 38 (2005), pp. 114-119 | DOI

[25] Dirk Helbing Traffic and related self-driven many-particle systems, Rev. Mod. Phys., Volume 73 (2001), pp. 1067-1141 | DOI | MR

[26] M. Herty; S. Moutari A macro-kinetic hybrid model for traffic flow on road networks, Comput. Methods Appl. Math., Volume 9 (2009), pp. 238-252 | DOI | MR | Zbl

[27] M. Herty; S. Moutari; M. Rascle Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heterog. Media, Volume 1 (2006), pp. 275-294 | DOI | MR | Zbl

[28] M. Herty; M. Rascle Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., Volume 38 (2006), pp. 595-616 | DOI | MR | Zbl

[29] Michael Herty; Axel Klar Modeling, simulation, and optimization of traffic flow networks, SIAM J. Sci. Comput., Volume 25 (2003), pp. 1066-1087 | DOI | MR

[30] Helge Holden; Nils Henrik Risebro A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., Volume 26 (1995), pp. 999-1017 | DOI | MR | Zbl

[31] Oliver Kolb; Guillaume Costeseque; Paola Goatin; Simone Göttlich Pareto-optimal coupling conditions for the Aw–Rascle–Zhang traffic flow model at junctions, SIAM J. Appl. Math., Volume 78 (2018), pp. 1981-2002 | DOI | MR | Zbl

[32] Stanislav N. Kružkov First order quasilinear equations in several independent variables, Math. USSR, Sb., Volume 10 (1970)

[33] Peter D. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Society for Industrial and Applied Mathematics, 1973

[34] J. P. Lebacque Intersection Modeling, Application to Macroscopic Network Traffic Flow Models and Traffic Management, Traffic and Granular Flow ’03, Springer, 2005, pp. 261-278 | DOI | Zbl

[35] Jean Patrick Lebacque Two-phase bounded-acceleration traffic flow model: analytical solutions and applications, Transportation Research Record, Volume 1852 (2003), pp. 220-230 | DOI

[36] Michael James Lighthill; Gerald B. Whitham On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond., Ser. A, Volume 229 (1955), pp. 317-345 | DOI | MR | Zbl

[37] Markos Papageorgiou; Apostolos Kotsialos Freeway ramp metering: An overview, IEEE Transactions on Intelligent Transportation Systems, Volume 3 (2002), pp. 271-281 | DOI

[38] Celine Parzani; Christine Buisson Second-order model and capacity drop at merge, Transportation Research Record, Volume 2315 (2012), pp. 25-34 | DOI

[39] M. Rascle An improved macroscopic model of traffic flow: derivation and links with the Lighthill-Whitham model, Math. Comput. Modelling, Volume 35 (2002), pp. 581-590 | DOI | MR | Zbl

[40] Jack Reilly; Samitha Samaranayake; Maria Laura Delle Monache; Walid Krichene; Paola Goatin; Alexandre M. Bayen Adjoint-based optimization on a network of discretized scalar conservation laws with applications to coordinated ramp metering, J. Optim. Theory Appl., Volume 167 (2015), pp. 733-760 | DOI | MR | Zbl

[41] Paul I. Richards Shock waves on the highway, Oper. Res., Volume 4 (1956), pp. 42-51 | DOI | MR | Zbl

[42] Florian Siebel; Wolfram Mauser On the fundamental diagram of traffic flow, SIAM J. Appl. Math., Volume 66 (2006), pp. 1150-1162 | DOI | MR | Zbl

[43] Florian Siebel; Wolfram Mauser; Salissou Moutari; Michel Rascle Balanced vehicular traffic at a bottleneck, Math. Comput. Modelling, Volume 49 (2009), pp. 689-702 | DOI | MR | Zbl

[44] Martin Treiber; Arne Kesting Traffic Flow Dynamics: Data, Models and Simulation, Springer, 2013 | DOI

[45] H. M. Zhang A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, Volume 36 (2002), pp. 275-290 | DOI

Cited by Sources: