We propose in the present work an extension of the Schwarz waveform relaxation method to the case of viscous shallow water system with advection term. We first show the difficulties that arise when approximating the Dirichlet to Neumann operators if we consider an asymptotic analysis based on large Reynolds number regime and a small domain aspect ratio. Therefore we focus on the design of a Schwarz algorithm with Robin like boundary conditions. We prove the well-posedness and the convergence of the algorithm.
DOI: 10.5802/smai-jcm.22
Mots-clés : Schwarz waveform relaxation, shallow water equations, domain decomposition, absorbing operators
Eric Blayo 1; Antoine Rousseau 2; Manel Tayachi 3
@article{SMAI-JCM_2017__3__117_0, author = {Eric Blayo and Antoine Rousseau and Manel Tayachi}, title = {Boundary conditions and {Schwarz} waveform relaxation method for linear viscous {Shallow} {Water} equations in hydrodynamics}, journal = {The SMAI Journal of computational mathematics}, pages = {117--137}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {3}, year = {2017}, doi = {10.5802/smai-jcm.22}, zbl = {1416.76203}, mrnumber = {3695790}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.22/} }
TY - JOUR AU - Eric Blayo AU - Antoine Rousseau AU - Manel Tayachi TI - Boundary conditions and Schwarz waveform relaxation method for linear viscous Shallow Water equations in hydrodynamics JO - The SMAI Journal of computational mathematics PY - 2017 SP - 117 EP - 137 VL - 3 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.22/ DO - 10.5802/smai-jcm.22 LA - en ID - SMAI-JCM_2017__3__117_0 ER -
%0 Journal Article %A Eric Blayo %A Antoine Rousseau %A Manel Tayachi %T Boundary conditions and Schwarz waveform relaxation method for linear viscous Shallow Water equations in hydrodynamics %J The SMAI Journal of computational mathematics %D 2017 %P 117-137 %V 3 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.22/ %R 10.5802/smai-jcm.22 %G en %F SMAI-JCM_2017__3__117_0
Eric Blayo; Antoine Rousseau; Manel Tayachi. Boundary conditions and Schwarz waveform relaxation method for linear viscous Shallow Water equations in hydrodynamics. The SMAI Journal of computational mathematics, Volume 3 (2017), pp. 117-137. doi : 10.5802/smai-jcm.22. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.22/
[1] Schwarz wave form relaxation for primitive equations of the ocean, SIAM J. Sci. Comput., Volume 32 (201) no. 5, pp. 2908-2936 | DOI | Zbl
[2] Towards optimized Schwarz methods for the Navier-Stokes equations, J. Sci. Comput., Volume 66 (2016), pp. 275-295 | DOI | MR | Zbl
[3] Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., Volume 31 (1977), pp. 245-267 | DOI | MR | Zbl
[4] Optimized Schwarz methods, SIAM Journal on Numerical Analysis, Volume 44 (2006) no. 2, pp. 699-731 | DOI | MR | Zbl
[5] Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems, SIAM Journal on Numerical Analysis, Volume 45 (2007) no. 2, pp. 666-697 | DOI | MR | Zbl
[6] Schwarz methods over the course of time, Electron. Trans. Numer. Anal., Volume 31 (2008), pp. 228-255 | MR
[7] , Eleventh International Conference on Domain Decomposition Methods (London, 1998) (1999), pp. 27-36
[8] Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation, Discrete and Continuous Dynamical Systems - Series B, Volume 1 (2001) no. 1, pp. 89-102 | DOI | MR | Zbl
[9] Artificial boundary conditions for incompletely parabolic perturbations of hyperbolic systems, SIAM J. Math. Anal., Volume 22 (1991) no. 5, pp. 1256-1283 | DOI | MR | Zbl
[10] The best interface conditions for domain decomposition methods: absorbing boundary conditions, Absorbing Boundaries and Layers, Domain Decomposition Methods. Applications to Large Scale Computations (L. Tourrette; L. Halpern, eds.), Nova Science Publishers, 2003, pp. 348-373
[11] , Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (1990), pp. 202-223 | Zbl
[12] An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions, Computers Fluids, Volume 33 (2004) no. 5–6, pp. 829 -837 (Applied Mathematics for Industrial Flow Problems) | DOI | MR | Zbl
[13] Schwarz waveform relaxation algorithms for the linear viscous equatorial shallow water equations, SIAM J. Sci. Comput., Volume 31 (2009) no. 5, pp. 3595-3625 | DOI | MR | Zbl
[14] A nonoverlapping domain decomposition method for the nonstationary Navier-Stokes problem, ZAMM J. Appl. Math. Mech., Volume 81 (2001), pp. 725-726 | DOI
[15] A nonoverlapping domain decomposition method for the Oseen equations, Math. Models Methods Appl. Sci., Volume 8 (1998), pp. 1091-1117 | DOI | MR | Zbl
[16] Balancing Neumann-Neumann methods for incompressible Stokes equations, Comm. Pure Appl. Math., Volume 55 (2002), pp. 302-335 | DOI | MR
[17] Domain decomposition methods for partial differential equations, Numerical mathematics and scientific computation, Clarendon Press, Oxford, New York, 1999 | Zbl
[18] A domain decomposition method for incompressible flow, SIAM J. Sci. Comput., Volume 14 (1993), pp. 49-67 | DOI | MR
[19] Global Existence for the Cauchy Problem for the Viscous Shallow Water Equations, Rocky Mountain J. Math., Volume 28 (1998) no. 3, pp. 1135-1152 | DOI | MR | Zbl
[20] Couplage de modèles de dimensions hétérogènes et application en hydrodynamique, University of Grenoble (2013) (Ph. D. Thesis)
[21] Design and analysis of a Schwarz coupling method for a dimensionally heterogeneous problem, Int. J. Num. Meth. Fluids, Volume 75 (2014), pp. 446-465 | DOI | MR
[22] Domain decomposition methods - Algorithms and theory, Springer, Berlin-Heidelberg, 2005 | DOI | Zbl
[23] On non overlapping domain decomposition methods for the incompressible Navier-Stokes equations, ESAIM Math. Mod. Num. Anal., Volume 39 (2005), pp. 1251-1269 | DOI
Cited by Sources: