A two-dimensional method for a family of dispersive shallow water models
The SMAI Journal of computational mathematics, Volume 6 (2020), pp. 187-226.

We propose a numerical method for a family of two-dimensional dispersive shallow water systems with topography. The considered models consist in shallow water approximations – without the hydrostatic assumption – of the incompressible Euler system with free surface. Hence, the studied models appear as extensions of the classical shallow water system enriched with dispersive terms. The model formulation motivates us to use a prediction-correction scheme for its numerical approximation. The prediction part leads to solving a classical shallow water system with topography while the correction part leads to solving an elliptic-type problem. The numerical approximation of the considered dispersive models in the two-dimensional case over unstructured meshes is described, it requires to combine finite volume and finite element techniques. A special emphasis is given to the formulation and the numerical resolution of the correction step (variational formulation, inf-sup condition, boundary conditions,...). The numerical procedure is confronted with analytical and experimental test cases. Finally, an application to a real tsunami case is given.

Published online:
DOI: 10.5802/smai-jcm.66
Classification: 65M12, 74S10, 76M12, 35L65, 35Q30, 35Q35, 76D05
Keywords: shallow water flows, dispersive effects, prediction-correction scheme, combined finite volume / finite element technique, dispersive wave propagation, tsunami propagation
Nora Aïssiouene 1; Marie-Odile Bristeau 2; Edwige Godlewski 2; Anne Mangeney 3; Carlos Parés Madroñal 4; Jacques Sainte-Marie 2

1 Sorbonne Université, Institut Carnot Smiles, 4 Place Jussieu, F-75252 Paris cedex 05
2 Inria Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France & Sorbonne Université, Université de Paris, CNRS, Laboratoire Jacques-Louis Lions, LJLL, F-75005 Paris
3 Univ. de Paris, Institut de Physique du Globe de Paris, Seismology Group, 1 rue Jussieu, Paris F-75005, France
4 EDANYA, Universidad de Málaga, Campus de Teatinos s/n, 29080 Málaga, Spain
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2020__6__187_0,
     author = {Nora A{\"\i}ssiouene and Marie-Odile Bristeau and Edwige Godlewski and Anne Mangeney and Carlos Par\'es Madro\~nal and Jacques Sainte-Marie},
     title = {A two-dimensional method for a family of dispersive shallow water models},
     journal = {The SMAI Journal of computational mathematics},
     pages = {187--226},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {6},
     year = {2020},
     doi = {10.5802/smai-jcm.66},
     mrnumber = {4179258},
     zbl = {07272881},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.66/}
}
TY  - JOUR
AU  - Nora Aïssiouene
AU  - Marie-Odile Bristeau
AU  - Edwige Godlewski
AU  - Anne Mangeney
AU  - Carlos Parés Madroñal
AU  - Jacques Sainte-Marie
TI  - A two-dimensional method for a family of dispersive shallow water models
JO  - The SMAI Journal of computational mathematics
PY  - 2020
SP  - 187
EP  - 226
VL  - 6
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.66/
DO  - 10.5802/smai-jcm.66
LA  - en
ID  - SMAI-JCM_2020__6__187_0
ER  - 
%0 Journal Article
%A Nora Aïssiouene
%A Marie-Odile Bristeau
%A Edwige Godlewski
%A Anne Mangeney
%A Carlos Parés Madroñal
%A Jacques Sainte-Marie
%T A two-dimensional method for a family of dispersive shallow water models
%J The SMAI Journal of computational mathematics
%D 2020
%P 187-226
%V 6
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.66/
%R 10.5802/smai-jcm.66
%G en
%F SMAI-JCM_2020__6__187_0
Nora Aïssiouene; Marie-Odile Bristeau; Edwige Godlewski; Anne Mangeney; Carlos Parés Madroñal; Jacques Sainte-Marie. A two-dimensional method for a family of dispersive shallow water models. The SMAI Journal of computational mathematics, Volume 6 (2020), pp. 187-226. doi : 10.5802/smai-jcm.66. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.66/

[1] G. B. Airy Tides and Waves, Encycl. Metropolitana, Volume 5 (1845), pp. 291-369

[2] Nora Aïssiouene; Marie-Odile Bristeau; Edwige Godlewski; Jacques Sainte-Marie A combined finite volume - finite element scheme for a dispersive shallow water system, Netw. Heterog. Media, Volume 11 (2016) no. 1, pp. 1-27 | DOI | MR | Zbl

[3] S. Allgeyer; M.-O. Bristeau; D. Froger; R. Hamouda; V. Jauzein; A. Mangeney; J. Sainte-Marie; F. Souillé; M. Vallée Numerical approximation of the 3d hydrostatic Navier-Stokes system with free surface, ESAIM: M2AN, Volume 53 (2019) no. 6, pp. 1981-2024 | DOI | MR | Zbl

[4] B. Alvarez-Samaniego; D. Lannes Large time existence for 3D water-waves and asymptotics, Invent. Math., Volume 171 (2008) no. 3, pp. 485-541 | DOI | MR | Zbl

[5] C. Amante; B. W. Eakins ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis (2009) https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316 (Research Report)

[6] E. Audusse; F. Bouchut; M.-O. Bristeau; R. Klein; B. Perthame A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM J. Sci. Comput., Volume 25 (2004) no. 6, pp. 2050-2065 | DOI | MR | Zbl

[7] E. Audusse; M.-O. Bristeau A well-balanced positivity preserving second-order scheme for Shallow Water flows on unstructured meshes, J. Comput. Phys., Volume 206 (2005) no. 1, pp. 311-333 | DOI | MR | Zbl

[8] Ivo Babuska The Finite Element Method with Lagrangian Multipliers., Numer. Math., Volume 20 (1972/73), pp. 179-192 | DOI | MR | Zbl

[9] A.-J.-C. Barré de Saint-Venant Théorie du mouvement non permanent des eaux avec applications aux crues des rivières et à l’introduction des marées dans leur lit, C. R. Math. Acad. Sci. Paris, Volume 73 (1871), pp. 147-154 | Zbl

[10] Bathymetry & Relief NOAA home page (2017) (https://www.ngdc.noaa.gov/mgg/global/global.html)

[11] J. Behrens; F. Dias New computational methods in tsunami science, Philos Trans A Math Phys Eng Sci., Volume Oct 28 (2015) no. 373, p. (2053) | Zbl

[12] J.-L. Bona; T.-B. Benjamin; J.-J. Mahony Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Royal Soc. London Series A, Volume 272 (1972), pp. 47-78 | MR | Zbl

[13] J. L. Bona; M. Chen; J.-C. Saut Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: Part I. Derivation and linear theory, J. Nonlinear Sci., Volume 12 (2002), pp. 283-318 | DOI | Zbl

[14] P. Bonneton; E. Barthelemy; F. Chazel; R. Cienfuegos; D. Lannes; F. Marche; M. Tissier Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes, European Journal of Mechanics - B/Fluids, Volume 30 (2011) no. 6, pp. 589-597 (Special Issue: Nearshore Hydrodynamics) | DOI | Zbl

[15] P. Bonneton; F. Chazel; D. Lannes; F. Marche; M. Tissier A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, J. of Comp. Phys., Volume 230 (2010) no. 4, pp. 1479-1498 | DOI | MR | Zbl

[16] F. Bouchut An introduction to finite volume methods for hyperbolic conservation laws, ESAIM Proc., Volume 15 (2004), pp. 107-127 | MR | Zbl

[17] F. Bouchut Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Birkhäuser, 2004 | Zbl

[18] D. Bresch; E. Fernandez-Nieto; I. Ionescu; P. Vigneaux Augmented Lagrangian Method and Compressible Visco-Plastic Flows : Applications to Shallow Dense Avalanches, New Directions in Mathematical Fluid Mechanics (Advances in Mathematical Fluid Mechanics), Birkhäuser, 2010, pp. 57-89 (accepted November 2008. 33 pages. 12 figures) | Zbl

[19] F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, Volume 8 (1974) no. R-2, pp. 129-151 | Numdam | MR | Zbl

[20] M-O. Bristeau; B. Coussin Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes (2001) no. RR-4282 (Projet M3N) (Rapport de recherche)

[21] M.-O. Bristeau; A. Mangeney; J. Sainte-Marie; N. Seguin An energy-consistent depth-averaged Euler system: Derivation and properties, Discrete and Continuous Dynamical Systems - Series B, Volume 20 (2015) no. 4, pp. 961-988 | DOI | MR | Zbl

[22] R. Camassa; D. D. Holm; C. D. Levermore Long-time effects of bottom topography in shallow water, Physica D, Volume 98 (1996) no. 2-4, pp. 258-286 Nonlinear phenomena in ocean dynamics (Los Alamos, NM, 1995) | DOI | MR | Zbl

[23] F. Chazel; D. Lannes; F. Marche Numerical Simulation of Strongly Nonlinear and Dispersive Waves Using a Green–Naghdi Model, J. Sci. Comput., Volume 48 (2011) no. 1-3, pp. 105-116 | DOI | MR | Zbl

[24] A. J. Chorin Numerical solution of the Navier-Stokes equations, Math. Comput., Volume 22 (1968), pp. 745-762 | DOI | MR

[25] R. Cienfuegos; E. Barthélemy; P. Bonneton A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: Model development and analysis, Internat. J. Numer. Methods Fluids, Volume 51 (2006) no. 11, pp. 1217-1253 | DOI | Zbl

[26] Anne-Sophie Bonnet-Ben Dhia; Marie-Odile Bristeau; Edwige Godlewski; Sébastien Imperiale; Anne Mangeney; Jacques Sainte-Marie Pseudo-compressibility, dispersive model and acoustic waves in shallow water flows (2020) (working paper or preprint) | HAL | Zbl

[27] M.-W. Dingemans Wave propagation over uneven bottoms, Advanced Series on Ocean Engineering - World Scientific, 1997 | Zbl

[28] A. Duran; F. Marche Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations, Commun. Comput. Phys., Volume 17 (2015) no. 3, pp. 721-760 | DOI | MR | Zbl

[29] A. Duran; F. Marche A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes, Appl. Math. Model., Volume 45 (2017), pp. 840-864 | DOI | MR | Zbl

[30] A. Ern; J.-L. Guermond Theory and Practice of Finite Elements, Springer, 2004 | Zbl

[31] C. Escalante; T. Morales; M.-J. Castro, Proceedings of the XXIV congress on differential equations and applications XIV congress on applied mathematics (2015), pp. 255-259

[32] E. D. Fernandez-Nieto; M. Parisot; Y. Penel; J. Sainte-Marie A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows, Commun. Math. Sci., Volume 16 (2018) no. 5, pp. 1169-1202 | DOI | MR | Zbl

[33] A. G. Filippini; M. Kazolea; M. Ricchiuto A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up, J. Comp. Phys., Volume 310 (2016), pp. 381-417 | DOI | MR | Zbl

[34] F. Gallerano; G. Cannata; M. Villani An integral contravariant formulation of the fully non-linear Boussinesq equations, Coastal Engineering, Volume 83 (2014), pp. 119-136 | DOI

[35] J.-F. Gerbeau; B. Perthame Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation, Discrete Contin. Dyn. Syst., Volume 1 (2001) no. 1, pp. 89-102 | MR | Zbl

[36] S. Glimsdal; G. K. Pedersen; C. B. Harbitz; F. Løvholt Dispersion of tsunamis: does it really matter?, Natural Hazards and Earth System Sciences, Volume 13 (2013) no. 6, pp. 1507-1526 | DOI

[37] E. Godlewski; P.-A. Raviart Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118, Springer, New York, 1996 | DOI | Zbl

[38] A. E. Green; P. M. Naghdi A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., Volume 78 (1976), pp. 237-246 | DOI | Zbl

[39] J-L. Guermond Some implementations of projection methods for Navier-Stokes equations, ESAIM, Math. Model. Numer. Anal., Volume 30 (1996) no. 5, pp. 637-667 | DOI | Numdam | MR | Zbl

[40] J-L. Guermond; J. Shen On the error estimates for the rotational pressure-correction projection methods., Math. Comput., Volume 73 (2004) no. 248, pp. 1719-1737 | DOI | MR | Zbl

[41] Frédéric Hecht; C. Parés NSP1B3 : un logiciel pour résoudre les équations de Navier Stokes incompressible 3D (1991) no. RR-1449 https://hal.inria.fr/inria-00075111 (Projet MENUSIN) (Research Report)

[42] O. A. Ladyzhenskaya The mathematical theory of viscous incompressible flow., New York: Gordon and Breach, 1969 | Zbl

[43] D. Lannes The water waves problem, Mathematical Surveys and Monographs, 188, American Mathematical Society, 2013, xx+321 pages (Mathematical analysis and asymptotics) | DOI | MR

[44] D. Lannes; F. Marche A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations, J. Comput. Phys., Volume 282 (2015), pp. 238-268 | DOI | MR | Zbl

[45] Patrick Lascaux; Raymond Theodor Analyse numérique matricielle appliquée à l’art de l’ingénieur, Masson, 1986 | Zbl

[46] O. Le Métayer; S. Gavrilyuk; S. Hank A numerical scheme for the Green-Naghdi model, J. Comp. Phys., Volume 229 (2010) no. 6, pp. 2034-2045 | DOI | MR | Zbl

[47] R.-J. LeVeque Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002 | Zbl

[48] P.-L. Lions; B. Perthame; P. E. Souganidis Existence of entropy solutions to isentropic gas dynamics system., Commun. Pure Appl. Math., Volume 49 (1996), pp. 599-638 | DOI | MR | Zbl

[49] P.-L. Lions; B. Perthame; E. Tadmor Kinetic formulation of the isentropic gas dynamics and p-systems, Commun. Math. Physics, Volume 163 (1994), pp. 415-431 | DOI | MR | Zbl

[50] O. Nwogu Alternative form of Boussinesq equations for nearshore wave propagation, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Volume 119 (1993) no. 6, pp. 618-638 | DOI

[51] D. H. Peregrine Long waves on a beach, J. Fluid Mech., Volume 27 (1967), pp. 815-827 | DOI | Zbl

[52] O. Pironneau Méthodes des éléments finis pour les fluides., Masson, 1988, 199 pages | Zbl

[53] R. Rannacher On Chorin’s projection method for the incompressible Navier-Stokes equations, The Navier-Stokes Equations II — Theory and Numerical Methods (G. Heywood; Kyûya Masuda; Reimund Rautmann; A. Solonnikov, eds.) (Lecture Notes in Mathematics), Volume 1530, Springer, 1992, pp. 167-183 | DOI | MR | Zbl

[54] W. C. Thacker Some exact solutions to the non-linear shallow-water wave equations, J. Fluid Mech., Volume 107 (1981), pp. 499-508 | DOI | MR

[55] B. Van Leer Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., Volume 135 (1997) no. 2, pp. 227-248 (With an introduction by Ch. Hirsch, Commemoration of the 30th anniversary {of J. Comput. Phys.}) | DOI | MR | Zbl

Cited by Sources: