Numerical simulations of hydraulic jumps with the Shear Shallow Water model
The SMAI Journal of computational mathematics, Volume 4 (2018), pp. 319-344.

An extension and numerical approximation of the shear shallow water equations model, recently proposed in [25], is considered in this work. The model equations are able to describe the oscillatory nature of turbulent hydraulic jumps and as such correct the deficiency of the classical non-linear shallow water equations in describing such phenomena. The model equations, originally developed for horizontal flow or flows occurring over small constant slopes, are straightforwardly extended here for modeling flows over non-constant slopes and numerically solved by a second-order well-balanced finite volume scheme. Further, a new set of exact solutions to the extended model equations is derived and several numerical tests are performed to validate the numerical scheme and its ability to predict the oscillatory nature of hydraulic jumps under different flow conditions.

Published online:
DOI: 10.5802/smai-jcm.37
Keywords: Shear Shallow Water model, Shallow Water equations, Turbulent Hydraulic jumps, Free surface flows, Finite Volumes, Well-balancing

Argiris I. Delis 1; Hervé Guillard 2; Yih-Chin Tai 3

1 School of Production Engineering and Management, Technical University of Crete, University Campus, Chania, Crete, Greece
2 Inria Sophia Antipolis Méditerranée and Côte d’Azur University, LJAD, CNRS, France
3 Departement of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan 701, Taiwan
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2018__4__319_0,
     author = {Argiris I. Delis and Herv\'e Guillard and Yih-Chin Tai},
     title = {Numerical simulations of hydraulic jumps with the {Shear} {Shallow} {Water} model},
     journal = {The SMAI Journal of computational mathematics},
     pages = {319--344},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {4},
     year = {2018},
     doi = {10.5802/smai-jcm.37},
     zbl = {1416.76146},
     mrnumber = {3883672},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.37/}
}
TY  - JOUR
AU  - Argiris I. Delis
AU  - Hervé Guillard
AU  - Yih-Chin Tai
TI  - Numerical simulations of hydraulic jumps with the Shear Shallow Water model
JO  - The SMAI Journal of computational mathematics
PY  - 2018
SP  - 319
EP  - 344
VL  - 4
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.37/
DO  - 10.5802/smai-jcm.37
LA  - en
ID  - SMAI-JCM_2018__4__319_0
ER  - 
%0 Journal Article
%A Argiris I. Delis
%A Hervé Guillard
%A Yih-Chin Tai
%T Numerical simulations of hydraulic jumps with the Shear Shallow Water model
%J The SMAI Journal of computational mathematics
%D 2018
%P 319-344
%V 4
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.37/
%R 10.5802/smai-jcm.37
%G en
%F SMAI-JCM_2018__4__319_0
Argiris I. Delis; Hervé Guillard; Yih-Chin Tai. Numerical simulations of hydraulic jumps with the Shear Shallow Water model. The SMAI Journal of computational mathematics, Volume 4 (2018), pp. 319-344. doi : 10.5802/smai-jcm.37. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.37/

[1] A. Bermudez; M. E. Vázquez Upwind methods for hyperbolic conservation laws with source terms, Computers & Fluids, Volume 23 (1994) no. 8, pp. 1049-1071 | DOI | MR | Zbl

[2] J. Burguete; P. García-Navarro Efficient construction of high-resolution TVD conservative schemes for equations with source terms: Application to shallow water flows, International Journal for Numerical Methods in Fluids, Volume 37 (2001) no. 2, pp. 209-248 | DOI | MR | Zbl

[3] D. Caviedes-Voullième; G. Kesserwani Benchmarking a multiresolution Discontinuous Galerkin shallow water model: Implications for computational hydraulics, Advances in Water Resources, Volume 86 (2015), pp. 14-31 | DOI

[4] Y. Chachereau; H. Chanson Free-Surface Fluctuations and Turbulence in Hydraulic Jumps, Experimental Thermal and Fluid Science, Volume 35 (2011), pp. 896-909 | DOI

[5] H. Chanson Convective transport of air bubbles in strong hydraulic jumps, Int. J. Multiphase Flow, Volume 36 (2010), pp. 798-814 | DOI

[6] C.-K. Cheng; Y.-C. Tai; Y.-C. Jin Particle Image Velocity Measurement and Mesh-Free Method Modeling Study of Forced Hydraulic Jumps, Journal of Hydraulic Engineering, Volume 143 (2017) no. 9, 04017028 pages

[7] O. Delestre; C. Lucas; P.-A. Ksinant; F. Darboux; C. Laguerre; T.-N.-T. Vo; F. James; S. Cordier SWASHES: A compilation of shallow water analytic solutions for hydraulic and environmental studies, International Journal for Numerical Methods in Fluids, Volume 72 (2013), pp. 269-300 | DOI | MR | Zbl

[8] A. I. Delis; M. Kazolea; N. A. Kampanis A robust high-resolution finite volume scheme for the simulation of long waves over complex domains, International Journal for Numerical Methods in Fluids, Volume 56 (2008) no. 4, pp. 419-452 | DOI | MR | Zbl

[9] A. I. Delis; C. P. Skeels TVD schemes for open channel flow, International Journal for Numerical Methods in Fluids, Volume 26 (1998) no. 7, pp. 791-809 | DOI | Zbl

[10] A. I. Delis; C. P. Skeels; S. C. Ryrie Implicit high-resolution methods for modelling one-dimensional open channel flow, Journal of Hydraulic Research, Volume 38 (2000) no. 5, pp. 369-381 | DOI

[11] N. Goutal; F. Maurel Proceedings of the 2nd Workshop on Dam-Break Wave Simulation (1997) no. HE-43/97/016/B (Technical report)

[12] W. H. Graf; M. S. Altinakar Fluvial hydraulics: flow and transport processes in channels of simple geometry, Wiley, 1998

[13] W. H. Hager; R. Bremen Classical hydraulic jump: sequent depths, J. Hydraul. Res., Volume 27 (1989), pp. 565-585 | DOI

[14] W. H. Hager; R. Bremen; N. Kawagoshi Classical hydraulic jump: lenght of roller, J. Hydraul. Res., Volume 28 (1990), pp. 591-608 | DOI

[15] F. M. Henderson Open Channel Flow, MacMillan, 1966 | Zbl

[16] K. A. Ivanova; S. L. Gavrilyuk; B. Nkonga; G. L. Richard Formation and coarsening of roll-waves in shear shallow water flows down an inclined rectangular channel, Computers & Fluids, Volume 159 (2017), pp. 189-203 | DOI | MR | Zbl

[17] G. Kesserwani; R. Ghostine; J. Vazquez; A. Ghenaim; R. Mosé Application of a second-order Runge-Kutta discontinuous Galerkin scheme for the shallow water equations with source terms, International Journal for Numerical Methods in Fluids, Volume 56 (2008) no. 7, pp. 805-821 | DOI | MR | Zbl

[18] S.-H. Lee; N. G. Wright Simple and efficient solution of the shallow water equations with source terms, International Journal for Numerical Methods in Fluids, Volume 63 (2010) no. 3, pp. 313-340 | DOI | MR | Zbl

[19] I. MacDonald Analysis and computation of steady open channel flows, University of Reading (1996) https://www.reading.ac.uk/web/FILES/maths/I_macdonald-thesis.pdf (Ph. D. Thesis)

[20] I. MacDonald; M. J. Baines; N. K. Nichols; P. G. Samuels Steady open channel test problems with analytic solutions (1995) no. 3/95 (Technical report)

[21] I. MacDonald; M. J. Baines; N. K. Nichols; P. G. Samuels Analytic benchmark solutions for open-channel flows, Journal of Hydraulic Engineering, Volume 123 (1997) no. 11, pp. 1041-1044 | DOI

[22] K. M. Mok Relation of surface roller eddy formation and surface fluctuation in hydraulic jumps, Journal of Hydraulic Research, Volume 42 (2004) no. 2, pp. 207-212 | DOI

[23] M. Morales-Hernandez; P. García-Navarro; J. Murillo A large time step 1D upwind explicit scheme (CFL>1): Application to shallow water equations, Journal of Computational Physics, Volume 231 (2012) no. 19, pp. 6532-6557 | DOI | MR | Zbl

[24] G. L. Richard; S. L. Gavrilyuk A new model of roll waves: comparison with Brock’s experiments, Journal of Fluid Mechanics, Volume 698 (2012), pp. 374-405 | DOI | MR | Zbl

[25] G. L. Richard; S. L. Gavrilyuk The classical hydraulic jump in a model of shear shallow-water flows, Journal of Fluid Mechanics, Volume 725 (2013), pp. 492-521 | DOI | MR | Zbl

[26] E. F. Toro Shock-Capturing Methods for Free-Surface Shallow Flows, John Wiley and Sons, Ltd, 1998

[27] M.-H. Tseng Improved treatment of source terms in TVD scheme for shallow water equations, Advances in Water Resources, Volume 27 (2004) no. 6, pp. 617-629 | DOI

[28] M. E. Vázquez-Cendón Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry, Journal of Computational Physics, Volume 148 (1999) no. 2, pp. 497-526 | DOI | MR | Zbl

Cited by Sources: