Long-time convergence of an adaptive biasing force method: Variance reduction by Helmholtz projection
The SMAI journal of computational mathematics, Volume 1 (2015) , pp. 55-82.

In this paper, we propose an improvement of the adaptive biasing force (ABF) method, by projecting the estimated mean force onto a gradient. We show on some numerical examples that the variance of the approximated mean force is reduced using this technique, which makes the algorithm more efficient than the standard ABF method. The associated stochastic process satisfies a nonlinear stochastic differential equation. Using entropy techniques, we prove exponential convergence to the stationary state of this stochastic process.

Published online:
DOI: https://doi.org/10.5802/smai-jcm.4
Keywords: Adaptive biasing force; Helmholtz projection; Free energy; Variance reduction.
@article{SMAI-JCM_2015__1__55_0,
     author = {Houssam Alrachid and Tony Leli\`evre},
     title = {Long-time convergence of an adaptive biasing force method: {Variance} reduction by {Helmholtz} projection},
     journal = {The SMAI journal of computational mathematics},
     pages = {55--82},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {1},
     year = {2015},
     doi = {10.5802/smai-jcm.4},
     mrnumber = {3620370},
     zbl = {1416.65015},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.4/}
}
Houssam Alrachid; Tony Lelièvre. Long-time convergence of an adaptive biasing force method: Variance reduction by Helmholtz projection. The SMAI journal of computational mathematics, Volume 1 (2015) , pp. 55-82. doi : 10.5802/smai-jcm.4. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.4/

[1] C. Ané; S. Blachère; D. Chafaï; P. Fougères; I. Gentil; F. Malrieu; C. Roberto; G. Scheffer Sur les inégalités de Sobolev logarithmiques, Société Mathématiques de France (in French), 2000 | Zbl 0982.46026

[2] A. Arnold; P. Markowich; G. Toscani; A. Unterreiter On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, Volume 26 (2001) no. 1-2, pp. 43-100 | Article | MR 1842428 | Zbl 0982.35113

[3] G. Bussi; A. Laio; M. Parrinello Equilibrium free energies from nonequilibrium metadynamics, Physical review letters, Volume 96 (2006) no. 9, 090601 pages | Article

[4] C. Chipot; A. Pohorille Free energy calculations, Springer, 2007 | Article

[5] E. Darve; A. Pohorille Calculating free energies using average force, The Journal of Chemical Physics, Volume 115 (2001) no. 20, pp. 9169-9183 | Article

[6] V. Girault; P-A. Raviart Finite element methods for Navier-Stokes equations: theory and algorithms, vol. 5 of Springer Series in Computational Mathematics, 1986

[7] J. Hénin; C. Chipot Overcoming free energy barriers using unconstrained molecular dynamics simulations, J. Chem. Phys, Volume 121 (2004), pp. 2904-2914 | Article

[8] T. Lelièvre; M. Rousset; G. Stoltz Computation of free energy profiles with parallel adaptive dynamics, The Journal of chemical physics, Volume 126 (2007) no. 13, 134111 pages | Article

[9] T. Lelièvre; M. Rousset; G. Stoltz Long-time convergence of an adaptive biasing force method, Nonlinearity, Volume 21 (2008) no. 6, 1155 pages | Article | MR 2422373 | Zbl 1146.35320

[10] T. Lelièvre; G. Stoltz; M. Rousset Free energy computations: A mathematical perspective, World Scientific, 2010 | Article | Zbl 1227.82002

[11] F. Otto; C. Villani Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, Journal of Functional Analysis, Volume 173 (2000) no. 2, pp. 361-400 | Article | MR 1760620 | Zbl 0985.58019

[12] D.C. Rapaport The art of molecular dynamics simulation, Cambridge university press, 2004

[13] C. Villani Topics in optimal transportation, Graduate Studies in Mathematics, Volume 58, American Mathematical Society, Providence, RI, 2003, xvi+370 pages | Article | MR 1964483 | Zbl 1106.90001

[14] F. Wang; D.P. Landau Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram, Physical Review E, Volume 64 (2001) no. 5, 056101 pages | Article