Blanche Buet 1; Jean-Marie Mirebeau 1; Yves van Gennip 2; François Desquilbet 3; Johann Dreo 4; Frédéric Barbaresco 5; Gian Paolo Leonardi 6; Simon Masnou 7; Carola-Bibiane Schönlieb 8
@article{SMAI-JCM_2019__S5__109_0, author = {Blanche Buet and Jean-Marie Mirebeau and Yves van Gennip and Fran\c{c}ois Desquilbet and Johann Dreo and Fr\'ed\'eric Barbaresco and Gian Paolo Leonardi and Simon Masnou and Carola-Bibiane Sch\"onlieb}, title = {Partial differential equations and variational methods for geometric processing of images}, journal = {The SMAI Journal of computational mathematics}, pages = {109--128}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {S5}, year = {2019}, doi = {10.5802/smai-jcm.55}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.55/} }
TY - JOUR AU - Blanche Buet AU - Jean-Marie Mirebeau AU - Yves van Gennip AU - François Desquilbet AU - Johann Dreo AU - Frédéric Barbaresco AU - Gian Paolo Leonardi AU - Simon Masnou AU - Carola-Bibiane Schönlieb TI - Partial differential equations and variational methods for geometric processing of images JO - The SMAI Journal of computational mathematics PY - 2019 SP - 109 EP - 128 VL - S5 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.55/ DO - 10.5802/smai-jcm.55 LA - en ID - SMAI-JCM_2019__S5__109_0 ER -
%0 Journal Article %A Blanche Buet %A Jean-Marie Mirebeau %A Yves van Gennip %A François Desquilbet %A Johann Dreo %A Frédéric Barbaresco %A Gian Paolo Leonardi %A Simon Masnou %A Carola-Bibiane Schönlieb %T Partial differential equations and variational methods for geometric processing of images %J The SMAI Journal of computational mathematics %D 2019 %P 109-128 %V S5 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.55/ %R 10.5802/smai-jcm.55 %G en %F SMAI-JCM_2019__S5__109_0
Blanche Buet; Jean-Marie Mirebeau; Yves van Gennip; François Desquilbet; Johann Dreo; Frédéric Barbaresco; Gian Paolo Leonardi; Simon Masnou; Carola-Bibiane Schönlieb. Partial differential equations and variational methods for geometric processing of images. The SMAI Journal of computational mathematics, Volume S5 (2019), pp. 109-128. doi : 10.5802/smai-jcm.55. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.55/
[1] On the first variation of a varifold., Ann. Math., Volume 95 (1972), pp. 417-491 | DOI | MR | Zbl
[2] Curvature-driven flows: a variational approach, SIAM J. Control Optimization, Volume 31 (1993) no. 2, pp. 387-438 | DOI | MR | Zbl
[3] A Rayleigh–Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices, J. Comput. Phys., Volume 229 (2010) no. 19, pp. 7477-7487 | DOI | MR | Zbl
[4] , IEEE Symposium on Computational Intelligence for Security and Defence Applications (2011), pp. 51-58
[5] Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Modern Birkhäuser Classics, Birkhäuser, 2008 | Zbl
[6] A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal., Volume 32 (1995) no. 2, pp. 484-500 | DOI | MR | Zbl
[7] Front propagation and phase field theory, SIAM J. Control Optimization, Volume 31 (1993) no. 2, pp. 439-469 | DOI | MR | Zbl
[8] Diffuse interface models on graphs for analysis of high dimensional data, SIAM J. Multiscale Mod. Simul., Volume 10 (2012) no. 3, pp. 1090-1118 | DOI | Zbl
[9] Measure Theory II, Springer, 2007 | Zbl
[10] Generalizing diffuse interface methods on graphs: non-smooth potentials and hypergraphs, SIAM J. Appl. Math., Volume 78 (2018) no. 3, pp. 1350-1377
[11] -convergence for beginners, Oxford University Press, 2002 | DOI | Zbl
[12] The motion of a surface by its mean curvature, Princeton University Press, 1978 | MR | Zbl
[13] Non-local Unsupervised Variational Image Segmentation (2008) (Technical report cam-08-67)
[14] Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics, J. Differ. Equations, Volume 90 (1991) no. 2, pp. 211-237 | DOI | MR | Zbl
[15] Mass-preserving diffusion-based dynamics on graphs (in preparation)
[16] Graph MBO as a semi-discrete implicit Euler scheme for graph Allen–Cahn (2019) (https://arxiv.org/abs/1907.10774)
[17] A varifold approach to surface approximation., Arch. Ration. Mech. Anal., Volume 226 (2017), pp. 639-694 | DOI | MR | Zbl
[18] Weak and approximate curvatures of a measure: a varifold perspective. (2019) (submitted)
[19] Graph clustering, variational image segmentation methods and Hough transform scale detection for object measurement in images, J. Math. Imaging Vis., Volume 57 (2017) no. 2, pp. 269-291 | DOI | MR | Zbl
[20] Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data (2017) (https://arxiv.org/abs/1710.10364)
[21] The game theoretic -Laplacian and semi-supervised learning with few labels, Nonlinearity, Volume 32 (2018) no. 1, pp. 301-330 | DOI | MR
[22] Properly-weighted graph Laplacian for semi-supervised learning (2018) (https://arxiv.org/abs/1810.04351)
[23] Global minimum for a Finsler Elastica minimal path approach, Int. J. Comput. Vision, Volume 122 (2017) no. 3, pp. 458-483 | DOI | MR
[24] Spectral Graph Theory, American Mathematical Society, 1997
[25] Global minimum for active contour models: A minimal path approach., Int. J. Comput. Vision, Volume 24 (1997) no. 1, pp. 57-78 | DOI
[26] An MBO scheme for clustering and semi-supervised clustering of signed networks (2019) (https://arxiv.org/abs/1901.03091)
[27] An introduction to -convergence, Birkhäuser, 1993 | Zbl
[28] Farman Institute 3D Point Sets - High Precision 3D Data Sets, IPOL Journal, Volume 1 (2011), pp. 281-291
[29] , International RADAR’19 conference (2019)
[30] Optimal paths for variants of the 2D and 3D Reeds–Shepp car with applications in image analysis, J. Math. Imaging Vis. (2018), pp. 1-33 | MR | Zbl
[31] Large data and zero noise limits of graph-based semi-supervised learning algorithms (2018) (https://arxiv.org/abs/1805:09450)
[32] On the connection between tug-of-war games and nonlocal PDEs on graphs, C. R. Méc. Acad. Sci. Paris, Volume 345 (2017) no. 3, pp. 177-183
[33] Non-local morphological PDEs and p-Laplacian equation on graphs with applications in image processing and machine learning, IEEE Sel. Top. Signal Process., Volume 6 (2012) no. 7, pp. 764-779 | DOI
[34] On the game -Laplacian on weighted graphs with applications in image processing and data clustering, Eur. J. Appl. Math., Volume 28 (2017), pp. 922-948 | DOI | MR | Zbl
[35] Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., Volume 42 (1993) no. 2, pp. 533-557 | DOI | MR | Zbl
[36] Spectral grouping using the Nystrom method, IEEE Trans. Pattern Anal. Mach. Intell., Volume 26 (2004) no. 2, pp. 214-225 | DOI
[37] , Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods (ICPRAM 2013) (2013), pp. 78-86
[38] Multiclass semi-supervised learning on graphs using Ginzburg–Landau functional minimization, Adv. Intell. Syst. Comput., Volume 318 (2015), pp. 19-135
[39] Multiclass data segmentation using diffuse interface methods on graphs, IEEE Trans. Pattern Anal. Mach. Intell., Volume 36 (2014), pp. 1600-1613 | DOI | Zbl
[40] A new analytical approach to consistency and overfitting in regularized empirical risk minimization, Eur. J. Appl. Math., Volume 28 (2017), pp. 886-921 | DOI | MR | Zbl
[41] A maximum principle argument for the uniform convergence of graph Laplacian regressors (2019) (https://arxiv.org/abs/1901.10089)
[42] Continuum limit of total variation on point clouds, Arch. Ration. Mech. Anal., Volume 220 (2016) no. 1, pp. 193-241 | DOI | MR | Zbl
[43] Consistency of Cheeger and Ratio Graph Cuts, J. Mach. Learn. Res., Volume 17 (2016), pp. 1-46 | MR | Zbl
[44] Nonlocal Operators with Applications to Image Processing, SIAM J. Multiscale Mod. Simul., Volume 7 (2008) no. 3, pp. 1005-1028 | DOI | MR | Zbl
[45] Nonlocal -Laplacian evolution problems on graphs, SIAM J. Numer. Anal., Volume 56 (2018) no. 2, pp. 1064-1090 | DOI | MR | Zbl
[46] Nonlocal -Laplacian variational problems on graphs (2018) (https://arxiv.org/abs/1810.12817) | Zbl
[47] Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)., Evol. Comput., Volume 11 (2003) no. 1, pp. 1-18 | DOI
[48] multiple function regularity and tangent cone behaviour for varifolds with second fundamental form in ., Geometric measure theory and the calculus of variations (Proceedings of Symposia in Pure Mathematics), Volume 44, American Mathematical Society, 1986 | DOI | MR | Zbl
[49] Second fundamental form for varifolds and the existence of surfaces minimising curvature., Indiana Univ. Math. J., Volume 35 (1986) no. 1 | DOI | MR | Zbl
[50] Snakes: Active contour models., Int. J. Comput. Vision, Volume 14 (1988), pp. 321-331 | DOI
[51] Approximation of the Max-K-Cut via a signless graph Allen–Cahn equation (In preparation)
[52] A Max-Cut approximation using a graph based MBO scheme (2017) (https://arxiv.org/abs/1711.02419) | Zbl
[53] , Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013 (2013), pp. 550-557
[54] , 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings (2013), pp. 459-462 | DOI
[55] Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differ. Equ., Volume 3 (1995) no. 2, pp. 253-271 | DOI | MR | Zbl
[56] Convergence of the graph Allen–Cahn scheme, J. Stat. Phys., Volume 167 (2017) no. 3, pp. 934-958 | DOI | MR | Zbl
[57] Nonlinear elliptic partial differential equations and -harmonic functions on graphs, Differ. Integral Equ., Volume 28 (2015) no. 1–2, pp. 79-102 | MR | Zbl
[58] The nonlinear heat equation on dense graphs and graph limits, SIAM J. Math. Anal., Volume 46 (2014) no. 4, pp. 2743-2766 | DOI | MR | Zbl
[59] Hyperspectral Image Classification Using Graph Clustering Methods, IPOL Journal, Volume 7 (2017), pp. 218-245 | DOI | MR
[60] Diffuse interface methods for multiclass segmentation of high-dimensional data, Appl. Math. Lett., Volume 33 (2014), pp. 29-34 | DOI | MR | Zbl
[61] An MBO scheme on graphs for segmentation and image processing, SIAM J. Imaging Sci., Volume 6 (2013) no. 4, pp. 1903-1930 | DOI | Zbl
[62] Motion of multiple functions: a level set approach, J. Comput. Phys., Volume 112 (1994) no. 2, pp. 334-363 | DOI | MR | Zbl
[63] Fast-marching methods for curvature penalized shortest paths., J. Math. Imaging Vis. (2017), pp. 1-32
[64] , Geometrical Science of Information (2017) | DOI | Zbl
[65] Hamiltonian fast marching: A numerical solver for anisotropic and non-holonomic eikonal PDEs., IPOL Journal, Volume 9 (2019), pp. 47-93 | DOI | MR
[66] The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., Volume 98 (1987) no. 2, pp. 123-142 | DOI | MR | Zbl
[67] Un esempio di -convergenza, Boll. Unione Mat. Ital., Volume 5 (1977) no. 14-B, pp. 285-299 | MR | Zbl
[68] Über die Praktische Auflösung von Linearen Integralgleichungen mit Anwendungen auf Randwertaufgaben der Potentialtheorie, Commentat. Phys.-Math., Volume 4 (1928) no. 15, pp. 1-52 | Zbl
[69] Lipschitz regularized deep neural networks converge and generalize (2018) (https://arxiv.org/abs/1808.09540)
[70] A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. USA, Volume 93 (1996) no. 4, pp. 1591-1595 | DOI | MR | Zbl
[71] Error estimation of weighted nonlocal Laplacian on random point cloud (2018) (https://arxiv.org/abs/1809.08622)
[72] , Proceedings of the Centre for Mathematical Analysis, Australian National University, Volume 3 (1983) | MR | Zbl
[73] Radar handbook, McGraw-Hill Book Co., 1970
[74] Analysis of -Laplacian regularization in semi-supervised learning (2017) (https://arxiv.org/abs/1707.06213)
[75] , 2013 IEEE International Conference on Computer Vision(ICCV) (2013), pp. 2024-2031 | DOI
[76] , IEEE Symposium on Computational Intelligence for Security and Defence Applications (2011), pp. 9-16
[77] Anisotropic interface motion, Mathematics of Microstructure Evolution (Empmd Monograph Series), Volume 4, The Minerals, Metals & Materials Society, 1996, pp. 135-148
[78] Asymptotic Analysis of the Ginzburg–Landau Functional on Point Clouds, Proc. R. Soc. Edinb., Sect. A, Math., Volume 149 (2019), pp. 387-427 | DOI | MR | Zbl
[79] Deep Limits of Residual Neural Networks (2018) (https://arxiv.org/abs/1810.11741)
[80] A nodal domain theorem and a higher-order Cheeger inequality for the graph -Laplacian, J. Spectr. Theory, Volume 8 (2018) no. 3, pp. 883-908 | DOI | MR | Zbl
[81] An MBO scheme for minimizing the graph Ohta–Kawasaki functional, J. Nonlinear Sci. (2018), pp. 1-49
[82] -convergence of graph Ginzburg–Landau functionals, Adv. Differ. Equ., Volume 17 (2012) no. 11/12, pp. 1115-1180 | MR | Zbl
[83] Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs, Milan J. Math., Volume 82 (2014) no. 1, pp. 3-65 | DOI | MR | Zbl
[84] A tutorial on spectral clustering, Statistics and Computing, Volume 17 (2007) no. 4, pp. 395-416 | DOI | MR
[85] , International Symposium on Mathematical Foundations of Computer Science (1993), pp. 744-750 | Zbl
Cited by Sources: