Partial differential equations and variational methods for geometric processing of images
The SMAI Journal of computational mathematics, Volume S5 (2019), pp. 109-128.
Published online:
DOI: 10.5802/smai-jcm.55

Blanche Buet 1; Jean-Marie Mirebeau 1; Yves van Gennip 2; François Desquilbet 3; Johann Dreo 4; Frédéric Barbaresco 5; Gian Paolo Leonardi 6; Simon Masnou 7; Carola-Bibiane Schönlieb 8

1 Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
2 DIAM, Technical University of Delft, Netherlands
3 École Normale Supérieure de Paris, France
4 Thales Research and Technology, France
5 Thales Land & Air Systems, France
6 Dipartimento di Matematica, Università di Trento, Italy
7 Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, France
8 DAMTP, University of Cambridge, United Kingdom
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2019__S5__109_0,
     author = {Blanche Buet and Jean-Marie Mirebeau and Yves van Gennip and Fran\c{c}ois Desquilbet and Johann Dreo and Fr\'ed\'eric Barbaresco and Gian Paolo Leonardi and Simon Masnou and Carola-Bibiane Sch\"onlieb},
     title = {Partial differential equations and variational methods for geometric processing of images},
     journal = {The SMAI Journal of computational mathematics},
     pages = {109--128},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {S5},
     year = {2019},
     doi = {10.5802/smai-jcm.55},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.55/}
}
TY  - JOUR
AU  - Blanche Buet
AU  - Jean-Marie Mirebeau
AU  - Yves van Gennip
AU  - François Desquilbet
AU  - Johann Dreo
AU  - Frédéric Barbaresco
AU  - Gian Paolo Leonardi
AU  - Simon Masnou
AU  - Carola-Bibiane Schönlieb
TI  - Partial differential equations and variational methods for geometric processing of images
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 109
EP  - 128
VL  - S5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.55/
DO  - 10.5802/smai-jcm.55
LA  - en
ID  - SMAI-JCM_2019__S5__109_0
ER  - 
%0 Journal Article
%A Blanche Buet
%A Jean-Marie Mirebeau
%A Yves van Gennip
%A François Desquilbet
%A Johann Dreo
%A Frédéric Barbaresco
%A Gian Paolo Leonardi
%A Simon Masnou
%A Carola-Bibiane Schönlieb
%T Partial differential equations and variational methods for geometric processing of images
%J The SMAI Journal of computational mathematics
%D 2019
%P 109-128
%V S5
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.55/
%R 10.5802/smai-jcm.55
%G en
%F SMAI-JCM_2019__S5__109_0
Blanche Buet; Jean-Marie Mirebeau; Yves van Gennip; François Desquilbet; Johann Dreo; Frédéric Barbaresco; Gian Paolo Leonardi; Simon Masnou; Carola-Bibiane Schönlieb. Partial differential equations and variational methods for geometric processing of images. The SMAI Journal of computational mathematics, Volume S5 (2019), pp. 109-128. doi : 10.5802/smai-jcm.55. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.55/

[1] W. K. Allard On the first variation of a varifold., Ann. Math., Volume 95 (1972), pp. 417-491 | DOI | MR | Zbl

[2] F. Almgren; J. E. Taylor; L. Wang Curvature-driven flows: a variational approach, SIAM J. Control Optimization, Volume 31 (1993) no. 2, pp. 387-438 | DOI | MR | Zbl

[3] C. R. Anderson A Rayleigh–Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices, J. Comput. Phys., Volume 229 (2010) no. 19, pp. 7477-7487 | DOI | MR | Zbl

[4] F. Barbaresco, IEEE Symposium on Computational Intelligence for Security and Defence Applications (2011), pp. 51-58

[5] M. Bardi; I. Capuzzo-Dolcetta Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Modern Birkhäuser Classics, Birkhäuser, 2008 | Zbl

[6] G. Barles; C. Georgelin A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal., Volume 32 (1995) no. 2, pp. 484-500 | DOI | MR | Zbl

[7] G. Barles; H. M. Soner; P. E. Souganidis Front propagation and phase field theory, SIAM J. Control Optimization, Volume 31 (1993) no. 2, pp. 439-469 | DOI | MR | Zbl

[8] A. L. Bertozzi; A. Flenner Diffuse interface models on graphs for analysis of high dimensional data, SIAM J. Multiscale Mod. Simul., Volume 10 (2012) no. 3, pp. 1090-1118 | DOI | Zbl

[9] V. I. Bogachev Measure Theory II, Springer, 2007 | Zbl

[10] J. Boschand; S. Klamt; M. Stoll Generalizing diffuse interface methods on graphs: non-smooth potentials and hypergraphs, SIAM J. Appl. Math., Volume 78 (2018) no. 3, pp. 1350-1377

[11] A. Braides Γ-convergence for beginners, Oxford University Press, 2002 | DOI | Zbl

[12] K. A. Brakke The motion of a surface by its mean curvature, Princeton University Press, 1978 | MR | Zbl

[13] X. Bresson; T. F. Chan Non-local Unsupervised Variational Image Segmentation (2008) (Technical report cam-08-67)

[14] L. Bronsard; R. V. Kohn Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics, J. Differ. Equations, Volume 90 (1991) no. 2, pp. 211-237 | DOI | MR | Zbl

[15] J. Budd; Y. van Gennip Mass-preserving diffusion-based dynamics on graphs (in preparation)

[16] J. Budd; Y. van Gennip Graph MBO as a semi-discrete implicit Euler scheme for graph Allen–Cahn (2019) (https://arxiv.org/abs/1907.10774)

[17] B. Buet; G. P. Leonardi; S. Masnou A varifold approach to surface approximation., Arch. Ration. Mech. Anal., Volume 226 (2017), pp. 639-694 | DOI | MR | Zbl

[18] B. Buet; G. P. Leonardi; S. Masnou Weak and approximate curvatures of a measure: a varifold perspective. (2019) (submitted)

[19] L. Calatroni; Y. van Gennip; C.-B. Schönlieb; H. Rowland; A. Flenner Graph clustering, variational image segmentation methods and Hough transform scale detection for object measurement in images, J. Math. Imaging Vis., Volume 57 (2017) no. 2, pp. 269-291 | DOI | MR | Zbl

[20] J. Calder Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data (2017) (https://arxiv.org/abs/1710.10364)

[21] J. Calder The game theoretic p-Laplacian and semi-supervised learning with few labels, Nonlinearity, Volume 32 (2018) no. 1, pp. 301-330 | DOI | MR

[22] J. Calder; D. Slepčev Properly-weighted graph Laplacian for semi-supervised learning (2018) (https://arxiv.org/abs/1810.04351)

[23] D. Chen; J.-M. Mirebeau; L. D. Cohen Global minimum for a Finsler Elastica minimal path approach, Int. J. Comput. Vision, Volume 122 (2017) no. 3, pp. 458-483 | DOI | MR

[24] F. Chung Spectral Graph Theory, American Mathematical Society, 1997

[25] L. D. Cohen; R. Kimmel Global minimum for active contour models: A minimal path approach., Int. J. Comput. Vision, Volume 24 (1997) no. 1, pp. 57-78 | DOI

[26] M. Cucuringu; A. Pizzoferrato; Y. van Gennip An MBO scheme for clustering and semi-supervised clustering of signed networks (2019) (https://arxiv.org/abs/1901.03091)

[27] G. Dal Maso An introduction to Γ-convergence, Birkhäuser, 1993 | Zbl

[28] J. Digne; N. Audfray; C. Lartigue; C. Mehdi-Souzani; J.-M. Morel Farman Institute 3D Point Sets - High Precision 3D Data Sets, IPOL Journal, Volume 1 (2011), pp. 281-291

[29] J. Dreo; F. Desquilbet; F. Barbaresco; J.-M. Mirebeau, International RADAR’19 conference (2019)

[30] R. Duits; S. P. L. Meesters; J.-M. Mirebeau; J. M. Portegies Optimal paths for variants of the 2D and 3D Reeds–Shepp car with applications in image analysis, J. Math. Imaging Vis. (2018), pp. 1-33 | MR | Zbl

[31] M. M. Dunlop; D. Slepčev; A. M. Stuart; M. Thorpe Large data and zero noise limits of graph-based semi-supervised learning algorithms (2018) (https://arxiv.org/abs/1805:09450)

[32] A. Elmoataz; P. Buyssens On the connection between tug-of-war games and nonlocal PDEs on graphs, C. R. Méc. Acad. Sci. Paris, Volume 345 (2017) no. 3, pp. 177-183

[33] A. Elmoataz; X. Desquesnes; O. Lézoray Non-local morphological PDEs and p-Laplacian equation on graphs with applications in image processing and machine learning, IEEE Sel. Top. Signal Process., Volume 6 (2012) no. 7, pp. 764-779 | DOI

[34] A. Elmoataz; X. Desquesnes; M. Toutain On the game p-Laplacian on weighted graphs with applications in image processing and data clustering, Eur. J. Appl. Math., Volume 28 (2017), pp. 922-948 | DOI | MR | Zbl

[35] L. C. Evans Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., Volume 42 (1993) no. 2, pp. 533-557 | DOI | MR | Zbl

[36] C. Fowlkes; S. Belongie; F. Chung; J. Malik Spectral grouping using the Nystrom method, IEEE Trans. Pattern Anal. Mach. Intell., Volume 26 (2004) no. 2, pp. 214-225 | DOI

[37] C. Garcia-Cardona; A. Flenner; A. G. Percus, Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods (ICPRAM 2013) (2013), pp. 78-86

[38] C. Garcia-Cardona; A. Flenner; A. G. Percus Multiclass semi-supervised learning on graphs using Ginzburg–Landau functional minimization, Adv. Intell. Syst. Comput., Volume 318 (2015), pp. 19-135

[39] C. Garcia-Cardona; E. Merkurjev; A. L. Bertozzi; A. Flenner; A. G. Percus Multiclass data segmentation using diffuse interface methods on graphs, IEEE Trans. Pattern Anal. Mach. Intell., Volume 36 (2014), pp. 1600-1613 | DOI | Zbl

[40] N. Garcia Trillos; R. Murray A new analytical approach to consistency and overfitting in regularized empirical risk minimization, Eur. J. Appl. Math., Volume 28 (2017), pp. 886-921 | DOI | MR | Zbl

[41] N. Garcia Trillos; R. Murray A maximum principle argument for the uniform convergence of graph Laplacian regressors (2019) (https://arxiv.org/abs/1901.10089)

[42] N. Garcia Trillos; D. Slepčev Continuum limit of total variation on point clouds, Arch. Ration. Mech. Anal., Volume 220 (2016) no. 1, pp. 193-241 | DOI | MR | Zbl

[43] N. Garcia Trillos; D. Slepčev; J. von Brecht; T. Laurent; X. Bresson Consistency of Cheeger and Ratio Graph Cuts, J. Mach. Learn. Res., Volume 17 (2016), pp. 1-46 | MR | Zbl

[44] G. Gilboa; S. J. Osher Nonlocal Operators with Applications to Image Processing, SIAM J. Multiscale Mod. Simul., Volume 7 (2008) no. 3, pp. 1005-1028 | DOI | MR | Zbl

[45] Y. Hafiene; J. Fadili; A. Elmoataz Nonlocal p-Laplacian evolution problems on graphs, SIAM J. Numer. Anal., Volume 56 (2018) no. 2, pp. 1064-1090 | DOI | MR | Zbl

[46] Y. Hafiene; J. Fadili; A. Elmoataz Nonlocal p-Laplacian variational problems on graphs (2018) (https://arxiv.org/abs/1810.12817) | Zbl

[47] N. Hansen; S. D. Müller; P. Koumoutsakos Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)., Evol. Comput., Volume 11 (2003) no. 1, pp. 1-18 | DOI

[48] J. E. Hutchinson C 1,α multiple function regularity and tangent cone behaviour for varifolds with second fundamental form in L p ., Geometric measure theory and the calculus of variations (Proceedings of Symposia in Pure Mathematics), Volume 44, American Mathematical Society, 1986 | DOI | MR | Zbl

[49] J. E. Hutchinson Second fundamental form for varifolds and the existence of surfaces minimising curvature., Indiana Univ. Math. J., Volume 35 (1986) no. 1 | DOI | MR | Zbl

[50] M. Kass; A. Witkin; D. Terzopoulos Snakes: Active contour models., Int. J. Comput. Vision, Volume 14 (1988), pp. 321-331 | DOI

[51] B. Keetch; Y. van Gennip Approximation of the Max-K-Cut via a signless graph Allen–Cahn equation (In preparation)

[52] B. Keetch; Y. van Gennip A Max-Cut approximation using a graph based MBO scheme (2017) (https://arxiv.org/abs/1711.02419) | Zbl

[53] W. Liao; K. Rohr; S. Wörz, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013 (2013), pp. 550-557

[54] F. Lozes; M. Hidane; A. Elmoataz; O. Lezoray, 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings (2013), pp. 459-462 | DOI

[55] S. Luckhaus; T. Sturzenhecker Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differ. Equ., Volume 3 (1995) no. 2, pp. 253-271 | DOI | MR | Zbl

[56] X. Luo; A. L. Bertozzi Convergence of the graph Allen–Cahn scheme, J. Stat. Phys., Volume 167 (2017) no. 3, pp. 934-958 | DOI | MR | Zbl

[57] J. J. Manfredi; A. M. Oberman; A. P. Sviridov Nonlinear elliptic partial differential equations and p-harmonic functions on graphs, Differ. Integral Equ., Volume 28 (2015) no. 1–2, pp. 79-102 | MR | Zbl

[58] G. S. Medvedev The nonlinear heat equation on dense graphs and graph limits, SIAM J. Math. Anal., Volume 46 (2014) no. 4, pp. 2743-2766 | DOI | MR | Zbl

[59] Z. Meng; E. Merkurjev; A. Koniges; A. L. Bertozzi Hyperspectral Image Classification Using Graph Clustering Methods, IPOL Journal, Volume 7 (2017), pp. 218-245 | DOI | MR

[60] E. Merkurjev; C. Garcia-Cardona; A. L. Bertozzi; A. Flenner; A. G. Percus Diffuse interface methods for multiclass segmentation of high-dimensional data, Appl. Math. Lett., Volume 33 (2014), pp. 29-34 | DOI | MR | Zbl

[61] E. Merkurjev; T. Kostic; A. L. Bertozzi An MBO scheme on graphs for segmentation and image processing, SIAM J. Imaging Sci., Volume 6 (2013) no. 4, pp. 1903-1930 | DOI | Zbl

[62] B. Merriman; J. K. Bence; S. J. Osher Motion of multiple functions: a level set approach, J. Comput. Phys., Volume 112 (1994) no. 2, pp. 334-363 | DOI | MR | Zbl

[63] J.-M. Mirebeau Fast-marching methods for curvature penalized shortest paths., J. Math. Imaging Vis. (2017), pp. 1-32

[64] J.-M. Mirebeau; J. Dreo, Geometrical Science of Information (2017) | DOI | Zbl

[65] J.-M. Mirebeau; J. M. Portegies Hamiltonian fast marching: A numerical solver for anisotropic and non-holonomic eikonal PDEs., IPOL Journal, Volume 9 (2019), pp. 47-93 | DOI | MR

[66] L. Modica The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., Volume 98 (1987) no. 2, pp. 123-142 | DOI | MR | Zbl

[67] L. Modica; S. Mortola Un esempio di Γ-convergenza, Boll. Unione Mat. Ital., Volume 5 (1977) no. 14-B, pp. 285-299 | MR | Zbl

[68] E. J. Nyström Über die Praktische Auflösung von Linearen Integralgleichungen mit Anwendungen auf Randwertaufgaben der Potentialtheorie, Commentat. Phys.-Math., Volume 4 (1928) no. 15, pp. 1-52 | Zbl

[69] A. M. Oberman; J. Calder Lipschitz regularized deep neural networks converge and generalize (2018) (https://arxiv.org/abs/1808.09540)

[70] J. A. Sethian A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. USA, Volume 93 (1996) no. 4, pp. 1591-1595 | DOI | MR | Zbl

[71] Z. Shi; B. Wang; S. J. Osher Error estimation of weighted nonlocal Laplacian on random point cloud (2018) (https://arxiv.org/abs/1809.08622)

[72] L. Simon, Proceedings of the Centre for Mathematical Analysis, Australian National University, Volume 3 (1983) | MR | Zbl

[73] M. I. Skolnik Radar handbook, McGraw-Hill Book Co., 1970

[74] D. Slepčev; M. Thorpe Analysis of p-Laplacian regularization in semi-supervised learning (2017) (https://arxiv.org/abs/1707.06213)

[75] P. Strandmark; J. Ulen; F. Kahl; L. Grady, 2013 IEEE International Conference on Computer Vision(ICCV) (2013), pp. 2024-2031 | DOI

[76] C. Strode, IEEE Symposium on Computational Intelligence for Security and Defence Applications (2011), pp. 9-16

[77] J. E. Taylor Anisotropic interface motion, Mathematics of Microstructure Evolution (Empmd Monograph Series), Volume 4, The Minerals, Metals & Materials Society, 1996, pp. 135-148

[78] M. Thorpe; F. Theil Asymptotic Analysis of the Ginzburg–Landau Functional on Point Clouds, Proc. R. Soc. Edinb., Sect. A, Math., Volume 149 (2019), pp. 387-427 | DOI | MR | Zbl

[79] M. Thorpe; Y. van Gennip Deep Limits of Residual Neural Networks (2018) (https://arxiv.org/abs/1810.11741)

[80] F. Tudisco; M. Hein A nodal domain theorem and a higher-order Cheeger inequality for the graph p-Laplacian, J. Spectr. Theory, Volume 8 (2018) no. 3, pp. 883-908 | DOI | MR | Zbl

[81] Y. van Gennip An MBO scheme for minimizing the graph Ohta–Kawasaki functional, J. Nonlinear Sci. (2018), pp. 1-49

[82] Y. van Gennip; A. L. Bertozzi Γ-convergence of graph Ginzburg–Landau functionals, Adv. Differ. Equ., Volume 17 (2012) no. 11/12, pp. 1115-1180 | MR | Zbl

[83] Y. van Gennip; N. Guillen; B. Osting; A. L. Bertozzi Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs, Milan J. Math., Volume 82 (2014) no. 1, pp. 3-65 | DOI | MR | Zbl

[84] U. von Luxburg A tutorial on spectral clustering, Statistics and Computing, Volume 17 (2007) no. 4, pp. 395-416 | DOI | MR

[85] D. Wagner; F. Wagner, International Symposium on Mathematical Foundations of Computer Science (1993), pp. 744-750 | Zbl

Cited by Sources: