For spaces of constant, linear, and quadratic splines of maximal smoothness on the Powell–Sabin 12-split of a triangle, the so-called S-bases were recently introduced. These are simplex spline bases with B-spline-like properties on the 12-split of a single triangle, which are tied together across triangles in a Bézier-like manner.
In this paper we give a formal definition of an S-basis in terms of certain basic properties. We proceed to investigate the existence of S-bases for the aforementioned spaces and additionally the cubic case, resulting in an exhaustive list. From their nature as simplex splines, we derive simple differentiation and recurrence formulas to other S-bases. We establish a Marsden identity that gives rise to various quasi-interpolants and domain points forming an intuitive control net, in terms of which conditions for -, -, and -smoothness are derived.
DOI: 10.5802/smai-jcm.56
Keywords: Stable bases, Powell–Sabin 12-split, Simplex splines, Marsden identity, Quasi-interpolation
Tom Lyche 1; Georg Muntingh 2
@article{SMAI-JCM_2019__S5__129_0, author = {Tom Lyche and Georg Muntingh}, title = {B-spline-like bases for $C^2$ cubics on the {Powell{\textendash}Sabin} 12-split}, journal = {The SMAI Journal of computational mathematics}, pages = {129--159}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {S5}, year = {2019}, doi = {10.5802/smai-jcm.56}, zbl = {1360.41005}, language = {en}, url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.56/} }
TY - JOUR AU - Tom Lyche AU - Georg Muntingh TI - B-spline-like bases for $C^2$ cubics on the Powell–Sabin 12-split JO - The SMAI Journal of computational mathematics PY - 2019 SP - 129 EP - 159 VL - S5 PB - Société de Mathématiques Appliquées et Industrielles UR - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.56/ DO - 10.5802/smai-jcm.56 LA - en ID - SMAI-JCM_2019__S5__129_0 ER -
%0 Journal Article %A Tom Lyche %A Georg Muntingh %T B-spline-like bases for $C^2$ cubics on the Powell–Sabin 12-split %J The SMAI Journal of computational mathematics %D 2019 %P 129-159 %V S5 %I Société de Mathématiques Appliquées et Industrielles %U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.56/ %R 10.5802/smai-jcm.56 %G en %F SMAI-JCM_2019__S5__129_0
Tom Lyche; Georg Muntingh. B-spline-like bases for $C^2$ cubics on the Powell–Sabin 12-split. The SMAI Journal of computational mathematics, Volume S5 (2019), pp. 129-159. doi : 10.5802/smai-jcm.56. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.56/
[1] The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, 2002 | arXiv | DOI
[2] Finite element stiffness matrices for analysis of plate bending, Proceedings of the conference on Matrix Methods in Structural Mechanics, Wright-Patterson A.F.B., 1965, pp. 515-546
[3] A B-spline-like basis for the Powell–Sabin 12-split based on simplex splines, Math. Comput., Volume 82 (2013) no. 283, pp. 1667-1707 | DOI | MR | Zbl
[4] Geometric modeling with splines: an introduction, A K Peters, 2001 | DOI | Zbl
[5] Isogeometric analysis: toward integration of CAD and FEA, John Wiley & Sons, 2009, 360 pages | Zbl
[6] Refinable piecewise quintic polynomials on Powell–Sabin-12 triangulations, J. Comput. Appl. Math., Volume 240 (2013), pp. 62-73 | DOI | MR | Zbl
[7] On calculating normalized Powell–Sabin B-splines, Comput. Aided Geom. Des., Volume 15 (1997) no. 1, pp. 61-78 | DOI | MR | Zbl
[8] A Hermite subdivision scheme for the evaluation of the Powell–Sabin 12-split element, Approximation theory IX (Innovations in Applied Mathematics), Volume 2, Vanderbilt University Press, 1998, pp. 33-38 | Zbl
[9] Construction and analysis of cubic Powell–Sabin B-splines, Comput. Aided Geom. Des., Volume 57 (2017), pp. 1-22 | DOI | MR | Zbl
[10] Bracket notation for the “coefficient of” operator, A Classical Mind: Essays in Honour of C. A. R. Hoare, Prentice Hall International (UK) Ltd., 1994 | arXiv
[11] Macro-elements and stable local bases for splines on Powell–Sabin triangulations, Math. Comput., Volume 72 (2003) no. 241, pp. 335-354 | DOI | MR | Zbl
[12] Spline functions on triangulations, Encyclopedia of Mathematics and Its Applications, 110, Cambridge University Press, 2007, xvi+592 pages | MR | Zbl
[13] Simplex Splines on the Clough–Tocher Element, Comput. Aided Geom. Des., Volume 65 (2018), pp. 76-92 | DOI | MR | Zbl
[14] A Hermite interpolatory subdivision scheme for -quintics on the Powell–Sabin 12-split, Comput. Aided Geom. Des., Volume 31 (2014) no. 7-8, pp. 464-474 | DOI | MR | Zbl
[15] Stable Simplex Spline Bases for Quintics on the Powell–Sabin 12-Split, Constr. Approx., Volume 45 (2016), pp. 1-32 | DOI | MR | Zbl
[16] On a numerically efficient method for computing multivariate B-splines, Multivariate Approximation Theory: Proceedings of the Conference held at the Mathematical Research Institute at Oberwolfach Black Forest, Birkhäuser, 1979, pp. 211-248 | DOI | Zbl
[17] Notebook: B-spline-like bases for cubics on the Powell–Sabin 12-split (2019) (https://github.com/georgmuntingh/SSplines/blob/master/examples/C2-cubic.ipynb)
[18] Hierarchical conforming finite element methods for the biharmonic equation, SIAM J. Numer. Anal., Volume 29 (1992) no. 6, pp. 1610-1625 | DOI | MR | Zbl
[19] Piecewise quadratic approximations on triangles, ACM Trans. Math. Softw., Volume 3 (1977) no. 4, pp. 316-325 | DOI | MR | Zbl
[20] Bézier and B-spline techniques, Mathematics and Visualization, Springer, 2002, xiv+304 pages | DOI | Zbl
[21] Smooth macro-elements on Powell–Sabin-12 splits, Math. Comput., Volume 75 (2006) no. 254, pp. 711-726 | DOI | MR | Zbl
[22] A normalized basis for quintic Powell–Sabin splines, Comput. Aided Geom. Des., Volume 27 (2010) no. 6, pp. 438-457 | DOI | MR | Zbl
[23] Simplex splines on the Powell–Sabin 12-split: components of the finite element method, University of Oslo (2018) (Master’s thesis) | arXiv
[24] A general theorem on triangular finite -elements, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, Volume 8 (1974) no. R-2, pp. 119-127 | Numdam | MR | Zbl
Cited by Sources: